
1

CS107 Winter 2020, Lecture 1
Welcome to CS107!

reading:
General Information handout

Bryant & O’Hallaron, Ch. 1

Slides by Jerry Cain and Lisa Yan, who leveraged prior work by Nick Troccoli, Julie Zelenski, Marty Stepp, Cynthia Lee, Chris Gregg, and others.

2

Plan For Today
• Introduction
• CS107 Course Policies
• Unix and the Command Line
• Getting Started With C

3

Plan For Today
• Introduction
• CS107 Course Policies
• Unix and the Command Line
• Getting Started With C

4

What is CS107?
• The CS106 series:
• Taught you how to solve problems as a programmer
• Many times, CS106 instructors had to say, “just don’t worry about that,” or “it probably

doesn’t make sense why that happens, but ignore it for now,” or “just type this to fix it”

• CS107 finally takes you behind the scenes:
• Not quite down to hardware or physics/electromagnetism (that’s for later…)
• It’s how things work inside C++/Python/Java, and how your programs map onto the

components of computer systems
• Who doesn’t love being in on a secret? It just feels good to know!

5

What is CS107?
Computer Organization and Systems
• How languages like C++/Java/Python

represent data under the hood
• How programming structures are

encoded in bits and bytes
• How to efficiently manipulate and

manage memory
• How computers compile programs
• Uses the C programming language
• Programming style and software

development practices

6

CS107 Learning Goals
The goals for CS107 are for students to gain mastery of

- writing C programs with complex use of memory and pointers
- an accurate model of the address space and compile/runtime behavior

of C programs
to achieve competence in

- translating C to/from assembly
- writing programs that respect the limitations of computer arithmetic
- identifying bottlenecks and improving runtime performance
- working effectively in a Unix development environment

and have exposure to
- a working understanding of the basics of computer architecture

7

CS107 Learning Goals
(also learn to identify legitimate programmer scenes in old movies)

Jeff Goldblum’s character saving the
world by uploading a virus to

the alien mothership
Independence Day, 1996

Trinity saving the world by
hacking into the power grid using

Nmap Network Scanning
The Matrix Reloaded, 2003

8

Course Topic Overview
1. Bits and Bytes - How can a computer represent integer numbers?
2. Chars and C-Strings - How can a computer represent and manipulate more

complex data like text?
3. Pointers, Stack and Heap – How can we effectively manage all types of

memory in our programs?
4. Generics - How can we use our knowledge of memory and data

representation to write code that works with any data type?
5. Floats - How can a computer represent floating point numbers in addition to

integer numbers?
6. Assembly - How does a computer interpret and execute C programs?
7. Heap Allocators - How do core memory-allocation operations

like malloc and free work?

9

Companion Class: CS107A
• CS107A is an extra 1-unit “Pathfinders” or “ACE” section with additional course

support, practice and instruction.
• Meets for an additional weekly section and has additional review sessions
• Entry by application – see the FAQ on the course website for details

10

Plan For Today
• Introduction
• CS107 Course Policies
• Unix and the Command Line
• Getting Started With C

11

Course Website

cs107.stanford.edu

https://cs107.stanford.edu/

12

Textbooks
• Computer Systems: A Programmer’s Perspective

by Bryant & O’Hallaron, 3rd Edition
• 3rd edition matters – important updates to course

materials

• A C programming reference of your choice
• The C Programming Language by Kernighan and

Ritchie (free link on course website Resources page)
• Other C programming books, websites, or reference

sheets

13

Website vs Textbook
• Course website:
• Lecture code, slides
• Assignment writeups
• How-to guides
• Walkthrough videos

✅ Great reference guide
✅ Review details from lecture
⚠ Can be overwhelming if you

you don’t know where to start

• Textbook (B&O, K&R):
• Words wrihen by someone other than

CS107 instructors
• Pracice problems (conceptual, coding)
• Lots of diagrams, new examples

✅ Tells a comprehensive story of
the course material

✅ Has lots of visuals to
understand concepts beher

⚠ Goes more in-depth into material
than what is expected for this course

The textbook (and C programming references) are very good resources in this course,
especially post-midterm.

14

Grading

**** 35% Assignments
** 15% Lab Participation
** 17% Midterm Exam
**** 33% Final Exam

15

Grading

**** 35% Assignments
** 15% Lab Participation
** 17% Midterm Exam
**** 33% Final Exam

16

Assignments
• 8 programming assignments completed

individually using Unix command line tools
• Free somware, pre-installed on Myth machines /

available on course website
• We will give out starter projects for each

assignment

• Graded on func`onality (behavior) and style
(elegance)
• Funcionality graded using automated tools, given

as point score
• Style graded via automated tests and TA code

review, given as bucket score
• Grades returned via course website

17

The Style Bucket System

+ An outstanding job; could be used as course example code for good style.

ok A good job; solid effort, but also opportunities for improvement.

- Shows some effort and understanding but has larger problems that
should be focused on.

- - Little effort; incomplete or mostly non-functional.

0 No work submitted, or barely any changes from the starter assignment.

18

Late Policy
• Submitting by the assignment deadline typically earns an extra-credit on-time

bonus, usually ~5%.
• If you miss the deadline, there may be a grace period for late submissions,

typically 48 hours, but submitting during the grace period does not earn any
on-time bonus.
• "Pre-granted grace period" – additional extensions granted only in very special

circumstances. Instructor must approve extensions.

19

Grading

**** 35% Assignments
** 15% Lab Participation
** 17% Midterm Exam
**** 33% Final Exam

20

Lab Sections
• Weekly 1 hour 50-minute labs led by a CA, staring next week, offered on

Tuesdays, Wednesdays and Thursdays.
• Hands-on pracice in pairs at computers with lecture material and course

concepts.
• Graded on ahendance + paricipaion (verified by submisng work at the end)
• Lab signups open Friday 01/10 at 10:30AM and are first-come-first-served.

Sign up on the labs page of the course website.

21

Grading

**** 35% Assignments
** 15% Lab Participation
** 17% Midterm Exam
**** 33% Final Exam

22

Exams
• Midterm – Friday, February 14th, 12:30PM-2:20PM (during full class period)
• Final – Friday, March 20th, 3:30PM-6:30PM

• You MUST be able to take both exams at the scheduled time, except for
university athletics or OAE accommodations.
• Both exams are closed-book, closed-notes, but you may bring in one double-

sided page of notes. You will also be provided with a syntax reference sheet.
• Exams are administered electronically via BlueBook.

23

Grading

**** 35% Assignments
** 15% Lab Paricipaion
** 17% Midterm Exam
**** 33% Final Exam

24

Getting Help
• Post on Piazza
• Online discussion forum for students; post questions, answer other students’ questions
• Best for course material discussions, course policy questions or general assignment

questions (DON’T POST ASSIGNMENT CODE!)

• Visit us at helper hours
• Scheduled throughout the week; schedule be posted to course website later this week
• Best for coding/debugging questions, or longer course material discussions

• Email the Course Staff
• cs107@cs.stanford.edu – please do not email CAs individually
• Best for private matters (e.g. grading questions, OAE accommodations).

http://cs.stanford.edu

25

Stanford Honor Code
• The Honor Code is an undertaking of the students, individually and collectively:

• that they will not give or receive aid in examinations; that they will not give or receive unpermitted aid in class work,
in the preparation of reports, or in any other work that is to be used by the instructor as the basis of grading;

• that they will do their share and take an active part in seeing to it that others as well as themselves uphold the spirit
and letter of the Honor Code.

• The faculty on its part manifests its confidence in the honor of its students by refraining from proctoring examinations and
from taking unusual and unreasonable precautions to prevent the forms of dishonesty mentioned above. The faculty will
also avoid, as far as practicable, academic procedures that create temptations to violate the Honor Code.

• While the faculty alone has the right and obligation to set academic requirements, the students and faculty will work
together to establish optimal conditions for honorable academic work.

see also: http://honorcode.stanford.edu/

It is your responsibility to ensure you have read and are familiar with the honor code guidelines posted on the main page
of the CS107 course website. Please read them and come talk to us if you have any questions or concerns.

http://honorcode.stanford.edu/

26

Honor Code and CS107
• Please help us ensure academic integrity:
• Indicate any assistance received on HW (books, friends, etc.).
• Do not look at other people's solution code or answers
• Do not give your solutions to others or post them on the web or our Piazza forum.
• Report any inappropriate activity you see performed by others.

• Assignments are checked regularly for similarity with help of software tools.

• If you realize that you have made a mistake, you may retract your submission
to any assignment at any time, no questions asked.

• If you need help, please contact us and we will help you.
• We do not want you to feel any pressure to violate the Honor Code in order to succeed

in this course.

27

OAE Accommodations
• Please email the course staff as soon as possible with any accommodaions

you may need for the course.
• We are eager to do everything we can to support you and make you successful

in CS107!

28

Questions?

29

Course structure
• Lectures: understand concepts, see live lecture demos
• Labs: learn tools, study code, discuss with peers
• Assignments: build programming skills, synthesize lecture/lab content

• assign0: out today, due next Monday (covers today’s lecture)

Monday Tues-Thurs Friday
Week N Lecture: part A
Week N+1 Lecture: part B

assignN released
Lab

Week N+2 assignN due

Great preview of homework!

30

Plan For Today
• Introduction
• CS107 Course Policies
• Unix and the Command Line
• Getting Started With C

31

What is Unix?
• Which of the following is a Unix system? (select all that apply)

• Unix: a set of standards and tools commonly used in software development.
• Mac OS X and Linux are operating systems built on top of Unix

• You can navigate a Unix system using the command line (“terminal”)
• Every Unix system works with the same tools and commands

A. Windows

🤔

B. Linux C. Mac OS X

32

What is the Command Line?
• The command-line is a text-based interface

(i.e., terminal interface) to navigate a
computer, instead of a Graphical User
Interface (GUI).
• Just like a GUI file explorer interface, a

terminal interface can:
• show you a specific place on your computer at

any given time.
• let you go into folders and out of folders.
• let you create new files and edit them.
• let you execute programs.

Graphical User Interface

Text-based interface

33

Why Use Unix / the Command Line?

The Matrix (1999)

34

Why Use Unix / the Command Line?
• You can navigate almost any device using the same tools and commands:
• Servers
• Laptops and desktops
• Embedded devices (Raspberry Pi, etc.)
• Mobile Devices (Android, etc.)

• Used frequently by software engineers:
• Web development: running servers and web tools on servers
• Machine learning: processing data on servers, running algorithms
• Systems: writing operating systems, networking code and embedded software
• Mobile Development: running tools, managing libraries
• And more…

• We’ll use Unix and the command line to implement and execute our programs.

35

Demo: Using Unix and the
Command Line

36

Unix Commands Recap
• cd – change directories (..)
• ls – list directory contents
• mkdir – make directory
• emacs – open text editor
• rm – remove file or folder
• man – view manual pages

See the Resources page of the course website for more commands, and a
complete reference.

37

Practice builds confidence

• Using Unix and the command line can
be intimidating at first:
• It looks really retro!
• How do I know what to type?

• It’s like learning a new language:
• At the beginning, you might have to constantly

look things up (Resources page on course website)
• It’s important you spend as much time as you can (during lab and assignments)

building muscle memory with the tools.

• We’ll continue to work on your Unix while we introduce C.

38

Plan For Today
• Introduction
• CS107 Course Policies
• Unix and the Command Line
• Getting Started With C

39

The C Language
C was created around 1970 to make writing Unix and Unix tools easier.
• Part of the C/C++/Java family of languages (C++ and Java were created later)
• Design principles:
• Small, simple abstractions of hardware
• Minimalist aesthetic
• Prioritizes efficiency and minimalism over safety and high-level abstractions

40

C vs. C++ and Java/Python
They all share:
• Syntax
• Basic data types
• Arithmetic, relational, and logical

operators

C doesn’t have:
• More advanced features like

operator overloading, default
arguments, pass by reference, classes
and objects, ADTs, etc.
• Extensive libraries (no graphics,

networking, etc.) – this means not
much to learn C!
• many compiler and runtime checks,

so extra care must be taken to write
code that works and works without
security concerns

41

Programming Language Philosophies
C is procedural: you write functions, rather than define new variable types with
classes and call methods on objects. C is small, fast and efficient.

C++ is procedural, with objects: you write functions, and you also define new
variable types with classes, and call methods on objects.

Python is also procedural, but dynamically typed: you still write functions and
call methods on objects, but the development process is very different.

Java is object-oriented: virtually everything is an object, and everything you
write needs to conform to the OO paradigm

42

Why C?
• Many tools (and even other languages, like Python!) are implemented in C.
• C is the language of choice for fast, highly efficient programs.
• C is popular for systems programming (operating systems, networking, etc.)
• C lets you work at a lower level to manipulate and understand the underlying

system.

43

Programming Language Popularity

https://www.tiobe.com/tiobe-index/

https://www.tiobe.com/tiobe-index/

44

Our First C Program
/*
* hello.c
* This program prints a welcome message
* to the user.
*/

#include <stdio.h> // for printf

int main(int argc, char *argv[]) {
printf("Hello, world!\n");
return 0;

}

45

Our First C Program
/*
* hello.c
* This program prints a welcome message
* to the user.
*/

#include <stdio.h> // for printf

int main(int argc, char *argv[]) {
printf("Hello, world!\n");
return 0;

}
Program comments
You can write block or inline comments.

46

Our First C Program
/*
* hello.c
* This program prints a welcome message
* to the user.
*/

#include <stdio.h> // for printf

int main(int argc, char *argv[]) {
printf("Hello, world!\n");
return 0;

} Import statements
C libraries are written with angle brackets.
Local libraries have quotes:
#include "lib.h"

47

Our First C Program
/*
* hello.c
* This program prints a welcome message
* to the user.
*/

#include <stdio.h> // for printf

int main(int argc, char *argv[]) {
printf("Hello, world!\n");
return 0;

}

Main function – entry point for the program
Should always return an integer (0 = success)

48

Our First C Program
/*
* hello.c
* This program prints a welcome message
* to the user.
*/

#include <stdio.h> // for printf

int main(int argc, char *argv[]) {
printf("Hello, world!\n");
return 0;

}

Main parameters – main takes two parameters,
both relating to the command line arguments
used to execute the program.

argc is the number of arguments in argv
argv is an array of arguments (char * is C string)

49

Our First C Program
/*
* hello.c
* This program prints a welcome message
* to the user.
*/

#include <stdio.h> // for printf

int main(int argc, char *argv[]) {
printf("Hello, world!\n");
return 0;

}

printf – prints output to the screen

50

Familiar Syntax
int x = 42 + 7 * d; // variables, types
double pi = 3.14159;
char c = 'Q'; /* two comment styles */

for (int i = 0; i < 10; i++) { // for loops
if (i % 2 == 0) { // if statements

x += i;
}

}

while (x > 0 && !(c == 'Q' || c == 'q')) { // while loops, logic
x = x / 2;
if (x == 42) { return 0; }

}

binky(x, 17, c); // function call

51

Boolean Variables
To declare Booleans, (e.g. bool b = ...), you must include stdbool.h:

#include <stdio.h> // for printf
#include <stdbool.h> // for bool

int main(int argc, char *argv[]) {
bool x = argc >= 2 && strcmp(argv[1], "--informal") == 0;
if (x) {

printf("Hello, world!\n");
} else {

printf("Howdy, world!\n");
}
return 0;

}

52

Console Output: printf
printf(text, arg1, arg2, arg3);

// Example
char *classPrefix = "CS";
int classNumber = 107;
printf("You are in %s%d", classPrefix, classNumber); // You are in CS107

printf makes it easy to print out the values of variables or expressions.
If you include placeholders in your printed text, printf will replace each
placeholder in order with the values of the parameters passed amer the text.

%s (string) %d (integer) %f (double)

53

Writing, Debugging and Compiling
This quarter, we will use:
• the emacs or vim text editors to write our C programs
• the make tool to compile our C programs
• the gdb debugger to debug our programs
• the valgrind tools to debug memory errors and measure program efficiency

54

Demo: Compiling And
Running A C Program

55

Working On C Programs Recap
• ssh – remotely log in to Myth computers
• emacs – text editor to edit C program source files
• Use the mouse to position cursor, scroll, and highlight text
• ctrl-x ctrl-s to save, ctrl-x ctrl-c to quit
• You can use vim, too — see website for documentation on both editors

• make – compile program using provided Makefile
• ./myprogram – run executable program (optionally with arguments)
• make clean – remove executables and other compiler files
• Lecture code is accessible at /afs/ir/class/cs107/samples/lect[N]
• Make your own copy: cp -r /afs/ir/class/cs107/samples/lectures/lect[N] lect[N]
• See the course Resources page for even more commands, and a complete reference.

56

assign0
Assignment 0 (Introducion to Unix and C) will be released late today on the
course website and is due in one week on Mon. 1/13 at 11:59PM PST.

There are 5 parts to the assignment, which is meant to get you comfortable
using the command line, and ediing/compiling/running C programs:
• Visit the Resources page to become familiar with different Unix commands
• Clone the assign0 starter project
• Answer several quesions in readme.txt
• Compile a provided C program and modify it
• Submit the assignment

57

Recap
• CS107 is a programming class in C that teaches you about what goes on under

the hood of programming languages and software.
• We’ll use Unix and command line tools to write, debug and run our programs.
• Please visit the course website, cs107.stanford.edu, where you can read the

General Information Handout, information about the Honor Code in CS107,
and more about CS107 course policies and logistics.

We’re looking forward to an awesome quarter!

58

Preview: Next Time
• Make sure to reboot Boeing Dreamliners every 248 days
• Comair/Delta airline had to cancel thousands of flights days before Christmas
• Many operating systems may have issues storing timestamp values beginning

on Jan 19, 2038
• Reported vulnerability CVE-2019-3857 in libssh2 may allow a hacker to

remotely execute code

Next time: How can a computer represent integer numbers? What are the
limitations?

https://www.engadget.com/2015/05/01/boeing-787-dreamliner-software-bug/
https://arstechnica.com/uncategorized/2004/12/4490-2/
https://computer.howstuffworks.com/question75.htm
https://nvd.nist.gov/vuln/detail/CVE-2019-3857

