CS107 Lecture 10
Floating Point

reading:
B&O 2.4

Slides by Jerry Cain and Lisa Yan, who leveraged prior work by Nick Troccoli, Julie Zelenski, Marty Stepp, Cynthia Lee, Chris Gregg, and others. 1

CS107 Topic 5: How can a
computer represent real
numbers in addition to

iInteger numbers?

Learning Goals

Understand the design and compromises of the floating point representation,
including:

* Fixed point vs. floating point

* How a floating point number is represented in binary

* Issues with floating point imprecision

* Other potential pitfalls using floating point numbers in programs

Plan For Today

* Representing real numbers and (thought experiment) fixed point
* Floating Point: Normalized values

* Break: Announcements

* Floating Point: Special/denormalized values

* Floating Point Arithmetic

cp -r /afs/ir/class/csl1l07/samples/lectures/lectlo .

Review: Function pointers

fn_ptr_review.c

Warm-up (?): Function pointers v

1 int compare_strings(const void *p, 1. What are types are the parameters
2 const void *q) { passed into bsearch?

3 char *strl = *(const char **) p;

4 char *str2 = *(const char **) q; 2. Let’s change line 3 to:

5 return strcmp(strl, str2); char *strl = (const char *) p;
6 } What happens?

7

8 void test bsearch() {
9 char *words[] = {"aardvark", "beaver", "capybara"}; // sorted
10 int n = sizeof(words) / sizeof(*words);

11 char *searchkey = strdup("beaver");

12 char **found = bsearch(&searchkey, words, n, sizeof(words[@]),
13 compare_strings);

14 printf("found %s\n", found ? *found : "none");

15 free(searchkey);

16 } Tips: (1) draw pictures, and (2) read nd
fn_ptr_review.c man pages carefully.

Course Topic Overview Review

1. Bits and Bytes - How can a computer represent integer numbers?

Chars and C-Strings - How can a computer represent and manipulate more
complex data like text?

3. Pointers, Stack and Heap — How can we effectively manage all types of
memory in our programs?

4. Generics - How can we use our knowledge of memory and data
representation to write code that works with any data type?

5. Floats - How can a computer represent floating point numbers in addition to
integer numbers?

6. Assembly - How does a computer interpret and execute C programs?

7. Heap Allocators - How do core memory-allocation operations
like malloc and free work? ;

Plan For Today

* Representing real numbers and (thought experiment) fixed point

Base 2 conversion

Convert the following number/fractions to base 10 (decimal) and base 2.

Number/fraction Base 10 Base 2
1/2 0.5 0.1

5

9/8

1/3

1/10 (bonus)

A S

Base 2 conversion

Convert the following number/fractions to base 10 (decimal) and base 2.

Number/fraction Base 10 Base 2
1. 1/2 0.5 0.1
2. 5 5.0 101.0
3. 9/8 1.125 1.001
4. 1/3 ©.3333.. 0.01010101..
5. 1/10 (bonus) 0.1 ©.00011001100...

Conceptual goal: How can we represent real numbers with a fixed number of bits?
Learning goal: Appreciate the IEEE floating point format!

10

Approximating real numbers

How can we represent real numbers with a fixed number of bits?
| |

< range 4 | | | | | ¥ range >
— -3 -2 -1 0 1 2 3 4

o

precision

In the world of real numbers:
* The real number line extends forever (infinite range).

e Real numbers have infinite resolution (infinite precision).

In the base-2 world of computers, we must approximate:
* Each variable type is fixed width (float: 32 bits, double: 64 bits).

 Compromises are inevitable (range and precision). Like with int, we need to make choices

about which numbers make the cut and which don’t.
11

Thought experiment: Fixed point

Base 10, decimal case: Base 2, binary case:
5934.216123121...4, 1011.0101010101...,
~ ~
5934.2167 1011.0101
10° 102 10! 10° 101 102 10° 104 23 22 21 90 21 22 23)4

» Decide on fixed granularity, e.g., 1/16
* Assign bits to represent powers from 23 to 24

12

Thought experiment: Fixed point

Strategy evaluation

What values can be represented?

* Largest magnitude? Smallest? To what
precision?

How hard to implement?

* How to convert int into 32-bit fixed
point? 32-bit fixed point to 1nt?

e Can existing integer ops (add, multiply,
shift) be repurposed?

How well does this meet our needs?

[N
e 0

=

Base 2, binary case:

1011.0101010101...,

~~
1011.0101

» Decide on fixed granularity, e.g., 1/16
* Assign bits to represent powers from 23 to 24

13

The problem with fixed point

Problem: We must fix where the decimal point is in our representation. This
fixes our precision.

6.022e23 =11 0.0
_'_l

79 bits (base 2)

6.626e-34 =0.0.... 01

I

113 bits

(base 10

To store both these numbers in the same fixed-point representation, the bit
width of the type would need to be at least 192 bits wide! 2

Scientific notation to the rescue (1/2)

We have a need for relative rather than absolute precision.

 How much error/approximation is tolerable? Radius of atom, bowling ball, planet?

Consider for decimal values:

3,650,123 > 3.65 x 10°
0.0000072491 > 7.25 x 106« datior
|_'_l

3 digits for mantissa (and round)

* As a datatype, store mantissa and exponent separately

* Division of digits into exponent/mantissa =\/"7 -!,gw;\
determines range and precision g

IEEE floating point

IEEE Standard 754

e Established in 1985 as uniform standard for
floating point arithmetic

I think that it is nice
* Supported by all major systems today e

floating-point standard
is one—where sleaze
did not triumph.

Hardware: specialized co-processor vs. integrated into main chip

Driven by numerical concerns |
— Will Kahan

(chief architect of standard)

* Behavior defined in mathematical terms
 Clear standards for rounding, overflow, underflow —

e Support for transcendental functions (roots, trig, exponentials, logs)

* Hard to make fast in hardware
Numerical analysts predominated over hardware designers in defining standard

Plan For Today

* Floating Point: Normalized values

17

IEEE Floating Point

Let’s aim to represent numbers of the following scientific-notation-like format:

V=(-1)xXMx?2"

: : Mantissa, M : Exponent, E:
Sign bit, s: e ..
ative (s == Significant digits, = Scales value by
also called (possibly negative)

POSIE (== significand power of 2

18

IEEE Floating Point

Let’s aim to represent numbers of the following scientific-notation-like format:

= (—1)° ><M><2E

F———————————————————————.h————

v 4 v
S exponent (8 bits) fraction (23 bits)
31 30 23 22 0)

I Quirky! Exponent and fraction are not
encoded as M and E in 2's complement!

19

Example for the next few slides

What is the number represented by the following 32-bit float?

s | exponent (8 bits) fraction (23 bits)
0 1000 0000 0100 0000 0000 0000 0000 000

20

s |l exponent (8 bits) ‘
exponent (Binary) E (Base 10)

fraction (23 bits)

11111111 RESERVED
11111110 127
11111101 126
11111100 125
00000011 -124
00000010 -125
00000001 -126
00000000 RESERVED

special

1— normalized

denormalized

21

Exponent: Normalized values

s |l exponent (8 bits) ‘
exponent (Binary) E (Base 10)

11111110 127 "I_ * Based on this table, how do we
compute an exponent from a

fraction (23 bits)

11111101 126 ,
binary value?
11111100 125 | |
* Why would this be a good idea?

(hint: what if we wanted to
00000011 124 compare two floats with >, <, =?)
00000010 -125
00000001 126) s

22

Exponent: Normalized values

s |l exponent (8 bits) ‘
exponent (Binary) E (Base 10)

fraction (23 bits)

* Not 2’s complement

11111110 127 1 < E =exponent — bias,

itc = 981_1 =
11111101 126 ~ where float bias =2 1=127
11111100 125 * Exponents are sequentially

represented starting from
000...1 (most negative) to

00000011 -124 111...10 (most positive).
00000010 -125

00000001 -126

* Bit-level comparison is fast!

23

Fraction: Normalized values

s | exponent (8 bits) fraction (23 bits)

We could just encode whatever M is in the fraction field (f). But there’s a trick
we can use to make the most out of the bits we have...

M = 1. [fraction bits]

What???

24

Scientific notation to the rescue (2/2)

Correct scientific notation:
In the mantissa, always keep one non-zero digit to the left of the decimal point.

For base 10: 42 .4 X 10° > 4.24 x 10°
324.5 Xx 10> > 3.245 x 10’

90.624 x 10> - 6.24 x 104

For base 2: 10.1 x 2° - 1.01 x 2°¢
1011.1 X 2° 2 1.0111 x 28

©.110 x 2° »> 1.10 x 24

Observation: in base 2, this means there is
always a 1 to the left of the decimal point!

25

Fraction: Normalized values

s | exponent (8 bits) fraction (23 bits)

We could just encode whatever M is in the fraction field (f). But there’s a trick

we cah use to make the most out of the bits we have...

M = 1. [fraction bits]

* An “implied leading 1” representation

* Means: we get one additional bit of precision for free!
Thanks, Will!

26

Example from the past few slides

What is the number represented by the following 32-bit float?

S

exponent (8 bits)

fraction (23 bits)

0

1000 0000

0100 0000 0000 0000 0000 000

Subtract bias
(281-1=127)

E=128—-127 =1

Add implicit 1

M = (1.01), (base 2)
=1+0x2"1+1%x27% = 1.25 (base 10)

V=(-1)"%x1.25x2! =25

27

Practice #1

S exponent (8 bits) fraction (23 bits)
%) 90111 1110 0000 00O 0O 0O 0000 000
1. Is this number: A. Greater than 0?
B. Lessthan 0?

A. Less than -1?
5. Between-1and1?
C. Greater than 1?

2. Is this number:

3. Bonus: What is the number? \b

28

Practice #1

S exponent (8 bits) fraction (23 bits)
%) 90111 1110 0000 00O 0O 0O 0000 000
1. Is this number: A. Greater than 0?
B. Lessthan 0?

A. Less than -1?
5. Between-1and1?
C. Greater than 1?

2. Is this number:

3. Bonus: What is the number? 1.0 x 2_1 = 0.5

29

Plan For Today

 Break: Announcements

30

The midterm exam is Fri. 2/14 12:30PM-2:20PM in Hewlett 200.

* Covers material through lab4/assign4 (no floats or assembly language)

* Closed-book, 1 2-sided page of notes permitted, C reference sheet provided

Administered via BlueBook software (on your laptop)
e Practice materials and BlueBook download available on course website

* |f you have academic (e.g. OAE) or athletics accommodations, please let us know
by Sunday 2/9 if possible.

* |f you do not have a workable laptop for the exam, you must let us know
by Sunday 2/9. Limited charging outlets will be available for those who need them.

31

Joke break

Prove you are human:

01+02=7?

WELCOME TO
THE SECRET 0.30000000000000004
ROBOT INTERNET

Slightly off from the
real float 0.3 ©

https://www.smbc-comics.com/comic/2013-06-05
https://www.h-schmidt.net/FloatConverter/IEEE754.html

Plan For Today

* Floating Point: Special/denormalized values

33

Reserved exponent values

s |l exponent (8 bits) ‘

fraction (23 bits)

exponent (Binary) E (Base 10)

11111111 RESERVED special

00000000 RESERVED denormalized 34

Reserved exponent values: All zeros

Zero (+9, -0) s | exponent (8 bits) fraction (23 bits)

any | 0000 0000 all zeros

‘Why would two zeros be okay?

Denormalized floats: s | exponent (8 bits) fraction (23 bits)

any | 0000 0000 any nonzero

» Smallest normalized exponent: E = 1 — bias = =126 V= (=1)°* x M x 2°

* Mantissa has no leading zero: M = 0. [fraction bits]

Why would we want so much
precision for tiny numbers?

35

Reserved exponent values: All zeros

Zero (+9, -0) s | exponent (8 bits) fraction (23 bits)
any | 0000 0000 all zeros

Denormalized floats: s | exponent (8 bits) fraction (23 bits)

any | 0000 0000 any nonzero

* Smallest normalized exponent: E = 1 — bias = —126 V=(-1)5xMx?2E
* Mantissa has no leading zero: M = 0. [fraction bits]

-15 -10 -5 0 5 10 15
¢ Denormalized A Normalized Infinity 36

Reserved exponent values: All ones

|nfinity (+j_n-|'—" - j_n-F) S exponent (8 bits) fraction (23 bits)
any | 1111 1111 all zeros

‘Why would we want to represent infinity?

Not a number (NaN): s | exponent (8 bits) fraction (23 bits)
any | 1111 1111 any nonzero

Computation result that is an
invalid mathematical real number.

What kind of mathematical
computation would result in a non- | (=
real number? (hint: square root)

37

Reserved exponent values: All ones

|nfinity (+j_n-F’ - j_n-F) S exponent (8 bits) fraction (23 bits)
any | 1111 1111 all zeros

Floats have built-in handling of overflow:
infinity + anything = infinity

Not a number (NaN): s | exponent (8 bits) fraction (23 bits)
any | 1111 1111 any nonzero

Computation result that is an
invalid mathematical real number.

Examples: sqr‘t(x) (i.e., 3/x), where x
is negative, —, 00 + (—00) etc.

OO

38

Questions?

39

Plan For Today

* Number representations in C

40

Skipping Numbers

We said that it’s not possible to represent all real numbers using a fixed-width
representation. What does this look like?

Float Converter
e https://www.h-schmidt.net/FloatConverter/IEEE754.html

Floats and Graphics

* https://www.shadertoy.com/view/4tVyDK

—k r S A A—h—A—h—AAA MMM A A A A —h—h—A—A A r S A—
-15 -10 -5 0 5 10 15
¢ Denormalized A Normalized Infinity

41

https://www.h-schmidt.net/FloatConverter/IEEE754.html
https://www.shadertoy.com/view/4tVyDK

float and double

+loat (32 bits)

exponent Fraction
 8-bit exponent ranges from -126 to +127, 3 (8 bits) (23 bits)
2127 = 1037
double (64 bits)
e 11-bit exponent ranges from -1022 to +1023,
21023 = 1308
exponent Fraction

(11 bits) (52 bits)

42

float and int

32-bit integer (type int)::

All integers in
—2,147,483,648 to 2147483647

these ranges can

64-bit integer (type long): be represented.

-9,223,372,036,854,775,80

to 9,223,372,036,854,775,807 +—t+—t—t—t+—F—F—t—F+—t»
- -3 -2 -1 0 1 2 3 4

32-bit floating point (type float): Not all numbers can be represented.
~1.7 x10738 to ~3.4 x1038 (+ negative range) Gaps can get quite large: larger the

, , , exponent, larger the gap between
64-bit floating point (type double): successive fraction values.
~9 x10-397 to ~1.8 x103% (+ negative range)

(normalized float/double ranges) 15 10 5 0 5 10 15
¢ Denormalized A Normalized Infinity 43

Plan For Today

* Floating point arithmetic

44

Key (floating) points

Approximation and rounding is

inevitable.
Single operations are commutative,

but sequence is not associative.
(a + b) equals (b + a)
But (a + b) + c may not equal a + (b + ¢)

Equality comparison operations are
often unwise.

45

Key (floating) points

Approximation and rounding is
inevitable.

46

Lisa’s Oﬁicia#

Cuide To Making
Money

FAST.! Yow cawn lose

moweg, too!

Demo: Float Arithmetic

>

Try it yourself:

./bank 100 1 # deposit
./bank 100 -1 # withdraw
./bank 100000000 -1 # make bank
./bank 16777216 1 # lose bank

bank.c

Why is 224 special?
48

Introducing "Minifloat”

For a more compact example representation, we will use an 8 bit “minifloat”
with a 4 bit exponent, 3 bit fraction and bias of 7 (note: minifloat is just for
example purposes, and is not a real datatype).

7 6 3 2 0

S exponent (4 bits) fraction (3 bits)

49

Floating Point Arithmetic

In minifloat, with a balance of $128, a deposit of $4 would not be recorded at
Lisa’s Bank. Why not?

128
+ 4
1287

Let’s step through the calculations to add these two numbers (note: this is just

for understanding; real float calculations are more efficient).
50

Floating Point Arithmetic

+ 4.00 + 1.00 X 272
132.00
-+ 4 0 1001 000 aligned not aligned
Float arithmetic (we won’t go into details): x floatop y = Round(x op y)

 Manipulate significand and exponents independently

 Compute exact result (x op y) | Exact result: 132 |

* Round and put in floating point | (next slide) |

51

Practice #2

76 3 2 0 V=(—1)SXMX2E
S exponent (4 bits) fraction (3 bits)

E = exponent — bias
? pP2? PP M = 1. [fraction bits]

bias=2%4"1-1=7

What is 132 as a minifloat? ‘

°)

p

52

Practice #2

76 3 2 0 V=(—1)SXMX2E
S exponent (4 bits) fraction (3 bits)

E = exponent — bias
0 1110 0o M = 1. [fraction bits]
bias=2%*1-1=7

What is 132 as a minifloat? ‘

1. Convert to binary. (1000 0100),

2. Convert to scientific notation M x 2E. (1.0000100), x 2’

3. Determine exponent = E + bias 7 +7 =14 = (1110);
4. Determine fraction, with rounding. (1.0000100),

5. Determine sign s 0 (positive)

53

Approximation error is inevitable

128 |[0| 1110 000
+ 4 |0| 1001 000
1327 |0| 1110 000

We didn’t have enough
bits to differentiate
between 128 and 132.

54

Approximation error is inevitable

128 |0| 1110

000

We didn’t have enough
bits to differentiate
between 128 and 132.

Another way to corroborate this:
the next-largest minifloat that can
be represented after 128 is 144.
132 isn’t representable!

144:. |0 1110 001

Key Idea: the smallest float hop
increase we can take is to increase
the fractional component by 1.

55

Key (floating) points

Single operations are commutative,
but sequence is not associative.
(a + b) equals (b + a)

But (a + b) + c may not equal a + (b + ¢)

56

Floating Point Arithmetic

Is this just overflowing? It turns out it’s more subtle.

float a 3.14;
float b = 1e20;
printf("(3.14 + 1e20) - 1e20
printf("3.14 + (1e20 - 1e20)

%g\n", (a + b) - b); // prints ©
%g\n", a + (b - b)); // prints 3.14

Floating point arithmetic is not associative. The order of operations matters!
* The first line loses precision when first adding 3.14 and 1e20, as we have seen.
* The second line first evaluates 1e20 — 1e20 = 0, and then adds 3.14

57

Key (floating) points

Equality comparison operations are
often inaccurate.

58

Demo: Float Equality

float _equality.c

Floating point in other languages

Float arithmetic is an issue with most languages, not just C!
* http://geocar.sdfl.org/numbers.html

60

http://geocar.sdf1.org/numbers.html

Key (floating) points

Approximation and rounding is

inevitable. . . _
Single operations are commutative,

but sequence is not associative.
(a + b) equals (b + a)
But (a + b) + c may not equal a + (b + ¢)

Equality comparison operations are
often uAwise inaccurate.

61

Let’s Get Real (and Fixed-Width)

What would be nice to have in a real number representation?

v’ Represent widest range of numbers possible

v’ Flexible “floating” decimal point

v Still be able to compare quickly

v’ Represent scientific notation numbers, e.g. 1.2 x 10°

v Have more predictable overflow behavior

exponent (8 bits)

fraction (23 bits)

31 30

23 22

62

