

CS107 Lecture 10

Floating Point

reading:

B&O 2.4

CS107 Topic 5: How can a computer represent real numbers in addition to integer numbers?

Learning Goals

Understand the design and compromises of the floating point representation, including:

- Fixed point vs. floating point
- How a floating point number is represented in binary
- Issues with floating point imprecision
- Other potential pitfalls using floating point numbers in programs

Plan For Today

- Representing real numbers and (thought experiment) fixed point
- Floating Point: Normalized values
- **Break:** Announcements
- Floating Point: Special/denormalized values
- Floating Point Arithmetic

```
cp -r /afs/ir/class/cs107/samples/lectures/lect10 .
```

Review: Function pointers

fn_ptr_review.c

Warm-up (?): Function pointers

Review

```
1 int compare_strings(const void *p,  
2                      const void *q) {  
3     char *str1 = *(const char **) p;  
4     char *str2 = *(const char **) q;  
5     return strcmp(str1, str2);  
6 }  
7  
8 void test_bsearch() {  
9     char *words[] = {"aardvark", "beaver", "capybara"}; // sorted  
10    int n = sizeof(words) / sizeof(*words);  
11    char *searchkey = strdup("beaver");  
12    char **found = bsearch(&searchkey, words, n, sizeof(words[0]),  
13                           compare_strings);  
14    printf("found %s\n", found ? *found : "none");  
15    free(searchkey);  
16 }
```


fn_ptr_review.c

1. What are types are the parameters passed into bsearch?
2. Let's change line 3 to:
char *str1 = (const char *) p;
What happens?

Tips: (1) draw pictures, and (2) read man pages carefully.

Course Topic Overview

Review

1. **Bits and Bytes** - *How can a computer represent integer numbers?*
2. **Chars and C-Strings** - *How can a computer represent and manipulate more complex data like text?*
3. **Pointers, Stack and Heap** – *How can we effectively manage all types of memory in our programs?*
4. **Generics** - *How can we use our knowledge of memory and data representation to write code that works with any data type?*

5. **Floats** - *How can a computer represent floating point numbers in addition to integer numbers?*
6. **Assembly** - *How does a computer interpret and execute C programs?*
7. **Heap Allocators** - *How do core memory-allocation operations like malloc and free work?*

Plan For Today

- Representing real numbers and (thought experiment) fixed point
 - Floating Point: Normalized values
 - **Break:** Announcements
 - Floating Point: Special/denormalized values
 - Number representations in C
 - Floating point arithmetic

Base 2 conversion

Convert the following number/fractions to base 10 (decimal) and base 2.

<u>Number/fraction</u>	<u>Base 10</u>	<u>Base 2</u>
1. $1/2$	0.5	0.1
2. 5		
3. $9/8$		
4. $1/3$		
5. $1/10$ (bonus)		

Base 2 conversion

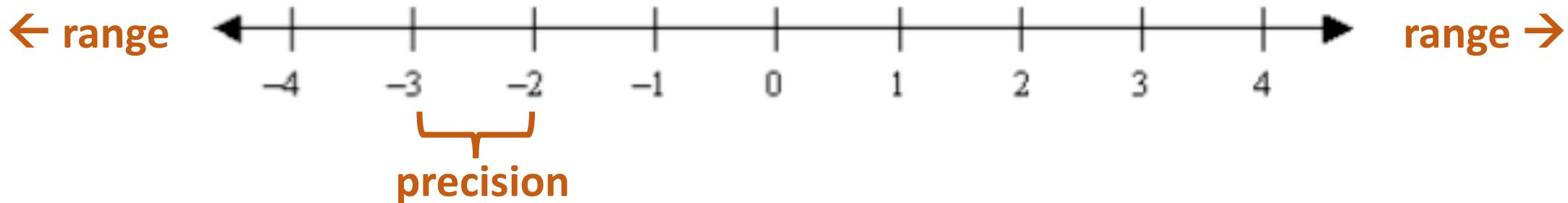
Convert the following number/fractions to base 10 (decimal) and base 2.

<u>Number/fraction</u>	<u>Base 10</u>	<u>Base 2</u>
1. $1/2$	0.5	0.1
2. 5	5.0	101.0
3. $9/8$	1.125	1.001
4. $1/3$	0.3333...	0.01010101...
5. $1/10$ (bonus)	0.1	0.00011001100...

Conceptual goal: How can we represent real numbers with a *fixed* number of bits?
Learning goal: Appreciate the IEEE floating point format!

Approximating real numbers

How can we represent real numbers with a *fixed* number of bits?



In the world of real numbers:

- The real number line extends forever (infinite **range**).
- Real numbers have infinite resolution (infinite **precision**).

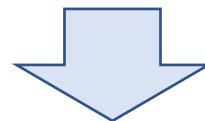
In the base-2 world of computers, we must **approximate**:

- Each variable type is fixed width (float: 32 bits, double: 64 bits).
- Compromises are inevitable (**range** and **precision**). Like with `int`, we need to make choices about which numbers make the cut and which don't.

Thought experiment: Fixed point

Base 10, decimal case:

$5934.216123121\dots_{10}$

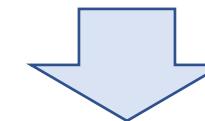


5 9 3 4 . 2 1 6 7

$10^3 \ 10^2 \ 10^1 \ 10^0 \ 10^{-1} \ 10^{-2} \ 10^{-3} \ 10^{-4}$

Base 2, binary case:

$1011.0101010101\dots_2$



1 0 1 1 . 0 1 0 1

$2^3 \ 2^2 \ 2^1 \ 2^0 \ 2^{-1} \ 2^{-2} \ 2^{-3} \ 2^{-4}$

- Decide on fixed granularity, e.g., 1/16
- Assign bits to represent powers from 2^3 to 2^{-4}

Thought experiment: Fixed point

Strategy evaluation

What values can be represented?

- Largest magnitude? Smallest? To what precision?

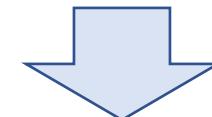
How hard to implement?

- How to convert `int` into 32-bit fixed point? 32-bit fixed point to `int`?
- Can existing integer ops (add, multiply, shift) be repurposed?

How well does this meet our needs?

Base 2, binary case:

1011.0101010101...₂



1 0 1 1 . 0 1 0 1

$2^3 \quad 2^2 \quad 2^1 \quad 2^0 \quad 2^{-1} \quad 2^{-2} \quad 2^{-3} \quad 2^{-4}$

- Decide on fixed granularity, e.g., 1/16
- Assign bits to represent powers from 2^3 to 2^{-4}

The problem with fixed point

Problem: We must fix where the decimal point is in our representation. This fixes our **precision**.

$$6.022\text{e}23 = 11\ldots0.0$$

(base 10)

79 bits

(base 2)

$$6.626\text{e-}34 = 0.0\ldots01$$

113 bits

To store both these numbers in the same fixed-point representation, the bit width of the type would need to be at least 192 bits wide!

Scientific notation to the rescue (1/2)

We have a need for relative rather than absolute precision.

- How much error/approximation is tolerable? Radius of atom, bowling ball, planet?

Consider for decimal values:

$$3,650,123 \rightarrow 3.65 \times 10^6$$

$$0.0000072491 \rightarrow 7.25 \times 10^{-6}$$

1 digit for exponent

3 digits for mantissa (and round)

- As a datatype, store mantissa and exponent separately
- Division of digits into exponent/mantissa determines range and precision

IEEE floating point

IEEE Standard 754

- Established in 1985 as uniform standard for floating point arithmetic
- Supported by all major systems today
 - Hardware: specialized co-processor vs. integrated into main chip

Driven by numerical concerns

- Behavior defined in mathematical terms
- Clear standards for rounding, overflow, underflow
- Support for transcendental functions (roots, trig, exponentials, logs)
- Hard to make fast in hardware

Numerical analysts predominated over hardware designers in defining standard

I think that it is nice to have at least one example—and the floating-point standard is one—where sleaze did not triumph.

— Will Kahan
(chief architect of standard)

Plan For Today

- Representing real numbers and fixed point
- **Floating Point: Normalized values**
- **Break: Announcements**
- Floating Point: Special/denormalized values
- Number representations in C
- Floating point arithmetic

IEEE Floating Point

Let's aim to represent numbers of the following scientific-notation-like format:

$$V = (-1)^s \times M \times 2^E$$

Sign bit, s :
negative ($s == 1$)
positive ($s == 0$)

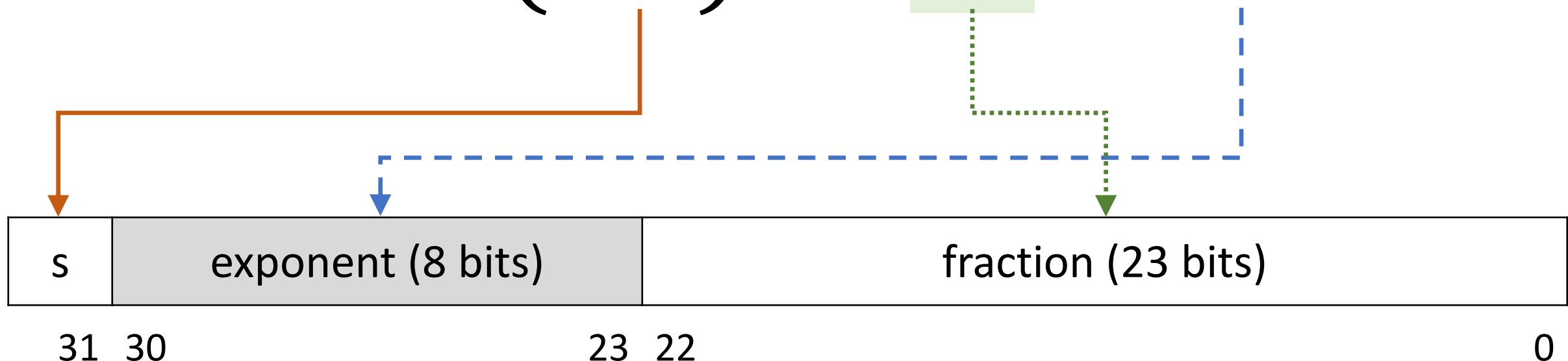
Mantissa, M :
Significant digits,
also called
significand

Exponent, E :
Scales value by
(possibly negative)
power of 2

IEEE Floating Point

Let's aim to represent numbers of the following scientific-notation-like format:

$$V = (-1)^{\textcolor{brown}{S}} \times \textcolor{lightgreen}{M} \times 2^{\textcolor{blue}{E}}$$



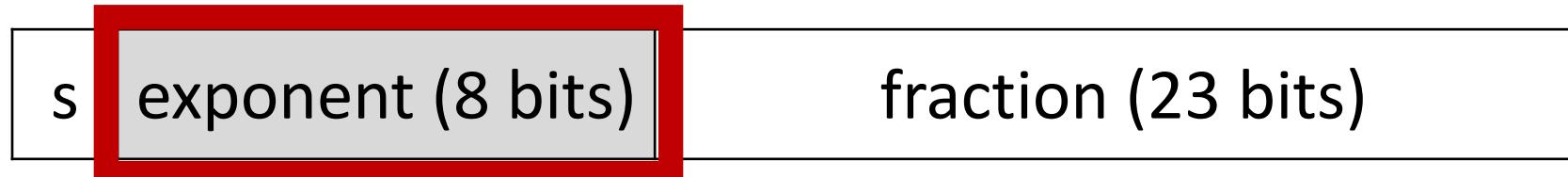
⚠️ Quirky! Exponent and fraction are not encoded as M and E in 2's complement!

Example for the next few slides

What is the number represented by the following 32-bit float?

s	exponent (8 bits)	fraction (23 bits)
0	1000 0000	0100 0000 0000 0000 0000 000

Exponent



exponent (Binary)	<i>E</i> (Base 10)
11111111	RESERVED
11111110	127
11111101	126
11111100	125
...	...
00000011	-124
00000010	-125
00000001	-126
00000000	RESERVED

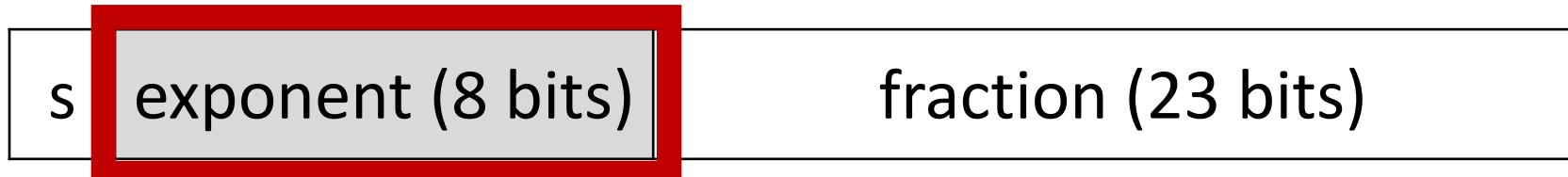
special

normalized

denormalized

A red curly brace groups the first four rows of the table (exponents 127 to 125) under the label "normalized". It also groups the last three rows (exponents -124 to -126) under the label "denormalized". The first and last rows are labeled "special".

Exponent: Normalized values



exponent (Binary)	<i>E</i> (Base 10)
11111111	RESERVED
11111110	127
11111101	126
11111100	125
...	...
00000011	-124
00000010	-125
00000001	-126
00000000	RESERVED

- Based on this table, how do we compute an exponent from a binary value?
- Why would this be a good idea? (hint: what if we wanted to compare two floats with $>$, $<$, $=$?)

Exponent: Normalized values

s	exponent (8 bits)	fraction (23 bits)
exponent (Binary)		<i>E</i> (Base 10)
	11111111	RESERVED
	11111110	127
	11111101	126
	11111100	125

	00000011	-124
	00000010	-125
	00000001	-126
	00000000	RESERVED

- Not 2's complement
- $E = \text{exponent} - \text{bias}$, where float bias = $2^{8-1} - 1 = 127$
- Exponents are sequentially represented starting from 000...1 (most negative) to 111...10 (most positive).
- Bit-level comparison is fast!

Fraction: Normalized values

We could just encode whatever M is in the fraction field (f). But there's a trick we can use to make the most out of the bits we have...

$$M = 1. \text{ [fraction bits]}$$

What???

Scientific notation to the rescue (2/2)

Correct scientific notation:

In the mantissa, always keep one non-zero digit to the left of the decimal point.

For base 10:

$$42.4 \times 10^5 \rightarrow 4.24 \times 10^6$$

$$324.5 \times 10^5 \rightarrow 3.245 \times 10^7$$

$$0.624 \times 10^5 \rightarrow 6.24 \times 10^4$$

For base 2:

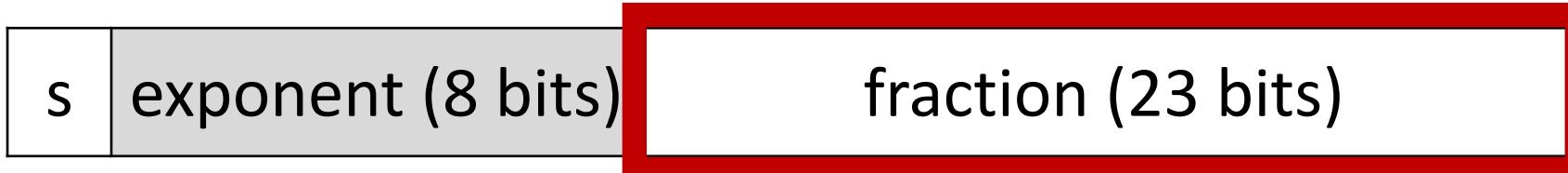
$$10.1 \times 2^5 \rightarrow 1.01 \times 2^6$$

$$1011.1 \times 2^5 \rightarrow 1.0111 \times 2^8$$

$$0.110 \times 2^5 \rightarrow 1.10 \times 2^4$$

Observation: in base 2, this means there is *always* a 1 to the left of the decimal point!

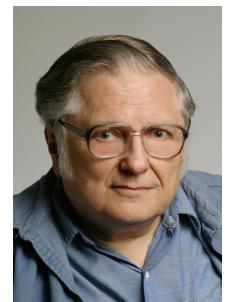
Fraction: Normalized values



We could just encode whatever M is in the fraction field (f). But there's a trick we can use to make the most out of the bits we have...

$$M = 1. \text{ [fraction bits]}$$

- An “implied leading 1” representation
- Means: we get one additional bit of precision for free!



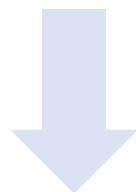
Thanks, Will!

Example from the past few slides

What is the number represented by the following 32-bit float?

s	exponent (8 bits)	fraction (23 bits)
0	1000 0000	0100 0000 0000 0000 0000 000

Subtract bias
 $(2^{8-1} - 1 = 127)$



Add implicit 1

$$E = 128 - 127 = 1$$

$$M = (1.01)_2 \quad (\text{base 2})$$

$$= 1 + 0 \times 2^{-1} + 1 \times 2^{-2} = 1.25 \quad (\text{base 10})$$

$$V = (-1)^0 \times 1.25 \times 2^1 = 2.5$$

Practice #1

s	exponent (8 bits)	fraction (23 bits)
0	0111 1110	0000 0000 0000 0000 0000 000

1. Is this number:
 - Greater than 0?
 - Less than 0?
2. Is this number:
 - Less than -1?
 - Between -1 and 1?
 - Greater than 1?
3. Bonus: What is the number?

Practice #1

s	exponent (8 bits)	fraction (23 bits)
0	0111 1110	0000 0000 0000 0000 0000 000

1. Is this number:
 - Greater than 0?
 - Less than 0?
2. Is this number:
 - Less than -1?
 - Between -1 and 1?
 - Greater than 1?
3. Bonus: What is the number?
$$1.0 \times 2^{-1} = 0.5$$

Plan For Today

- Representing real numbers and fixed point
- Floating Point: Normalized values
- **Break: Announcements**
- Floating Point: Special/denormalized values
- Number representations in C
- Floating point arithmetic

Midterm Exam

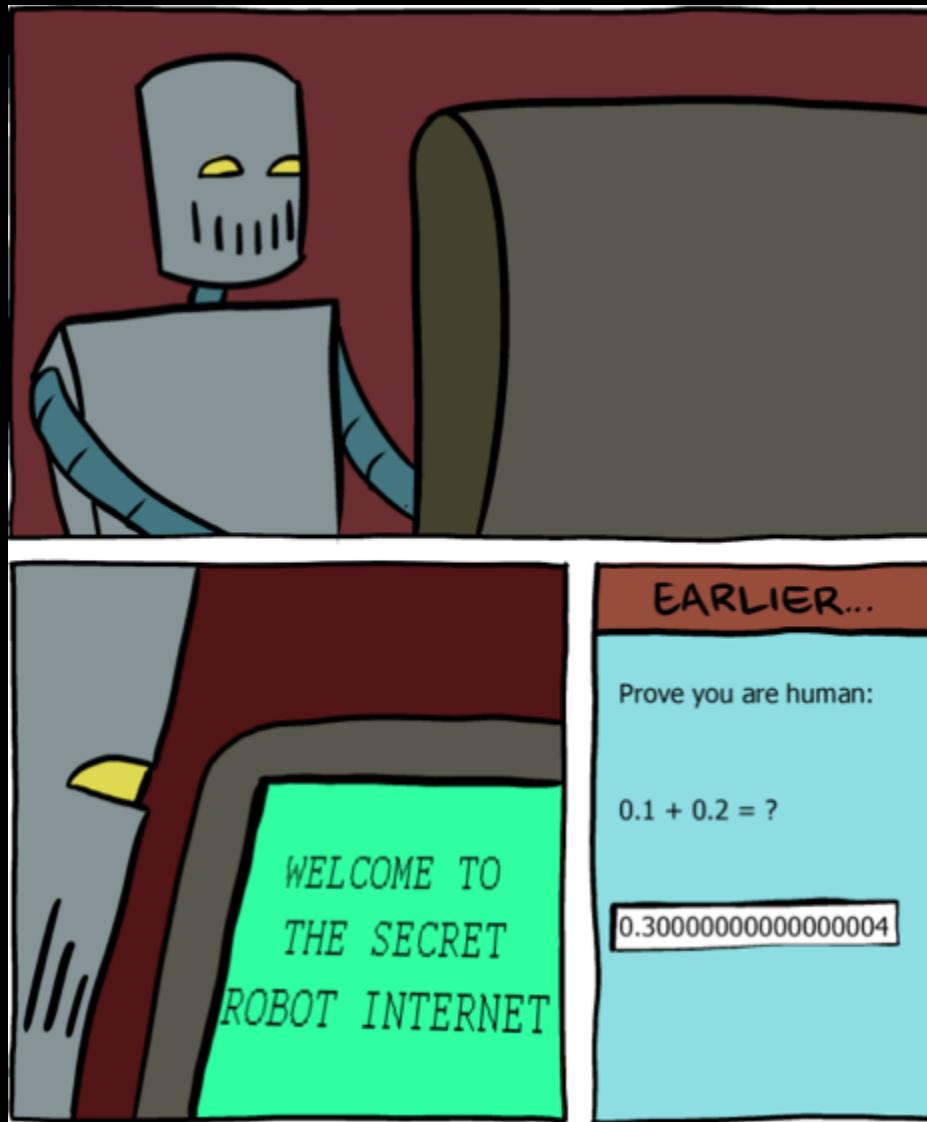
The midterm exam is **Fri. 2/14 12:30PM-2:20PM in Hewlett 200.**

- Covers material through **lab4/assign4** (no floats or assembly language)
- Closed-book, 1 2-sided page of notes permitted, C reference sheet provided

Administered via BlueBook software (on your laptop)

- Practice materials and BlueBook download available on course website
- If you have academic (e.g. OAE) or athletics accommodations, please let us know by **Sunday 2/9** if possible.
- If you do not have a workable laptop for the exam, you must let us know by **Sunday 2/9**. Limited charging outlets will be available for those who need them.

Joke break



<https://www.smbc-comics.com/comic/2013-06-05>

Slightly off from the real float 0.3 😊

<https://www.h-schmidt.net/FloatConverter/IEEE754.html>

Plan For Today

- Representing real numbers and fixed point
- Floating Point: Normalized values
- **Break: Announcements**
- **Floating Point: Special/denormalized values**
- Number representations in C
- Floating point arithmetic

Reserved exponent values

The diagram illustrates the IEEE 754 floating-point format. It shows the layout of the bits: sign (s), exponent (8 bits), and fraction (23 bits). The exponent is highlighted with a red box. A table below shows the binary representation of the exponent and its corresponding base 10 value. A vertical brace on the right side of the table groups the first seven rows (from 11111111 down to 00000011) under the label 'normalized', and the last two rows (00000010 and 00000001) under the label 'denormalized'. The first row (11111111) is labeled 'RESERVED'. The last row (00000000) is also labeled 'RESERVED'. The values for the normalized rows decrease from 127 down to 124, then increase from -125 up to -124. The values for the denormalized rows are -125 and -126.

exponent (Binary)	<i>E</i> (Base 10)
11111111	RESERVED
11111110	127
11111101	126
11111100	125
...	...
00000011	-124
00000010	-125
00000001	-126
00000000	RESERVED

special

normalized

denormalized

Reserved exponent values: All zeros

Zero (+0, -0)

s	exponent (8 bits)	fraction (23 bits)
any	0000 0000	all zeros

Why would two zeros be okay?

Denormalized floats:

s	exponent (8 bits)	fraction (23 bits)
any	0000 0000	any nonzero

- Smallest normalized exponent: $E = 1 - \text{bias} = -126$ $V = (-1)^s \times M \times 2^E$
- Mantissa has no leading zero: $M = 0.$ [fraction bits]

Why would we want so much precision for tiny numbers?

Reserved exponent values: All zeros

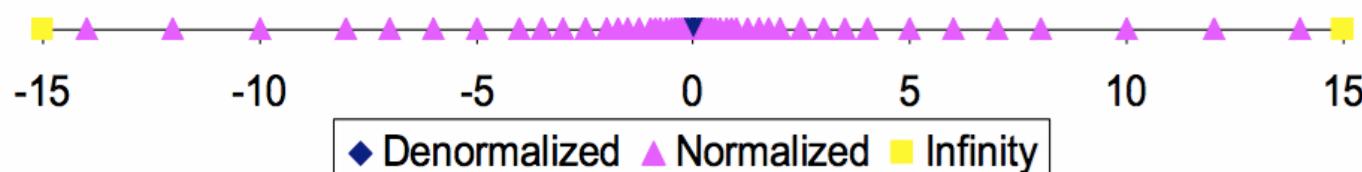
Zero (+0, -0)

s	exponent (8 bits)	fraction (23 bits)
any	0000 0000	all zeros

Denormalized floats:

s	exponent (8 bits)	fraction (23 bits)
any	0000 0000	any nonzero

- Smallest normalized exponent: $E = 1 - \text{bias} = -126$ $V = (-1)^s \times M \times 2^E$
- Mantissa has no leading zero: $M = 0.$ [fraction bits]



Reserved exponent values: All ones

Infinity (+inf, -inf)

s	exponent (8 bits)	fraction (23 bits)
any	1111 1111	all zeros

Why would we want to represent infinity?

Not a number (**NaN**):

s	exponent (8 bits)	fraction (23 bits)
any	1111 1111	any nonzero

Computation result that is an invalid mathematical real number.

What kind of mathematical computation would result in a **non-real** number? (hint: square root)

Reserved exponent values: All ones

Infinity (+inf, -inf)

s	exponent (8 bits)	fraction (23 bits)
any	1111 1111	all zeros

Floats have built-in handling of overflow:
infinity + anything = infinity

Not a number (**NaN**):

s	exponent (8 bits)	fraction (23 bits)
any	1111 1111	any nonzero

Computation result that is an invalid mathematical real number.

Examples: `sqrt(x)` (i.e., $\sqrt[2]{x}$), where x is negative, $\frac{\infty}{\infty}$, $\infty + (-\infty)$, etc.

Questions?

Plan For Today

- Representing real numbers and fixed point
- Floating Point: Normalized values
- **Break:** Announcements
- Floating Point: Special/denormalized values
- **Number representations in C**
- Floating point arithmetic

Skipping Numbers

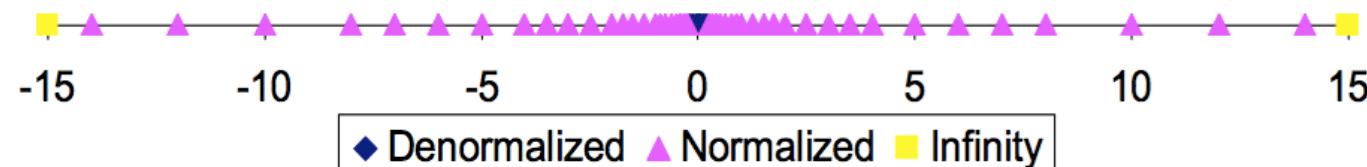
We said that it's not possible to represent *all* real numbers using a fixed-width representation. What does this look like?

Float Converter

- <https://www.h-schmidt.net/FloatConverter/IEEE754.html>

Floats and Graphics

- <https://www.shadertoy.com/view/4tVyDK>



float and double

float (32 bits)

- 8-bit exponent ranges from -126 to +127,
 $2^{127} = 10^{37}$

s	exponent (8 bits)	Fraction (23 bits)
---	----------------------	-----------------------

double (64 bits)

- 11-bit exponent ranges from -1022 to +1023,
 $2^{1023} = 10^{308}$

s	exponent (11 bits)	Fraction (52 bits)
---	-----------------------	-----------------------

float and int

32-bit integer (type **int**): :

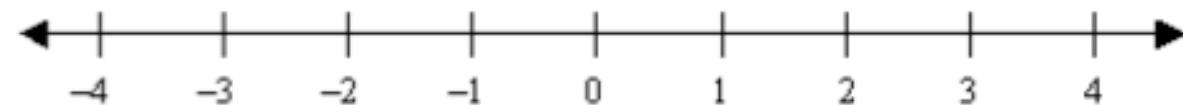
-2,147,483,648 to 2147483647

64-bit integer (type **long**):

-9,223,372,036,854,775,80

to 9,223,372,036,854,775,807

All integers in these ranges can be represented.



32-bit floating point (type **float**):

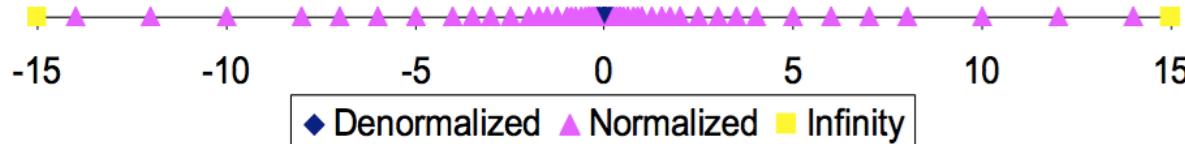
$\sim 1.7 \times 10^{-38}$ to $\sim 3.4 \times 10^{38}$ (+ negative range)

64-bit floating point (type **double**):

$\sim 9 \times 10^{-307}$ to $\sim 1.8 \times 10^{308}$ (+ negative range)

Not all numbers can be represented.
Gaps can get quite large: larger the exponent, larger the gap between successive fraction values.

(normalized float/double ranges)



Plan For Today

- Representing real numbers and fixed point
- Floating Point: Normalized values
- **Break:** Announcements
- Floating Point: Special/denormalized values
- Number representations in C
- Floating point arithmetic

Key (floating) points

Approximation and rounding is
inevitable.

Single operations are commutative,
but sequence is not associative.

$(a + b)$ equals $(b + a)$
But $(a + b) + c$ may not equal $a + (b + c)$

Equality comparison operations are
often unwise.

Key (floating) points

Approximation and rounding is
inevitable.

Single operations are commutative,
but sequence is not associative.

$(a + b)$ equals $(b + a)$
But $(a + b) + c$ may not equal $a + (b + c)$

Equality comparison operations are
often unwise.

Lisa's Official Guide To Making Money

It's easy!

FAST!

You can lose
money, too!

Demo: Float Arithmetic

bank.c

Try it yourself:

```
./bank 100 1      # deposit
./bank 100 -1     # withdraw
./bank 100000000 -1 # make bank
./bank 16777216 1  # lose bank
```

Why is 2^{24} special?

Introducing “Minifloat”

For a more compact example representation, we will use an 8 bit “minifloat” with a 4 bit exponent, 3 bit fraction and bias of 7 (note: minifloat is just for example purposes, and is not a real datatype).

Floating Point Arithmetic

In minifloat, with a balance of \$128, a deposit of \$4 **would not be recorded** at Lisa's Bank. Why not?

$$\begin{array}{r} 128 \\ + \quad 4 \\ \hline 128? \end{array}$$

Let's step through the calculations to add these two numbers (note: this is just for understanding; real float calculations are more efficient).

Floating Point Arithmetic

128

0	1110	000
---	------	-----

+ 4

0	1001	000
---	------	-----

$$\begin{array}{r} 128.00 \\ + 4.00 \\ \hline \end{array}$$

132.00

aligned

$$\begin{array}{r} 1.00 \times 2^7 \\ + 1.00 \times 2^2 \\ \hline \end{array}$$

not aligned

Float arithmetic (we won't go into details):

$x \text{ floatop } y = \text{Round}(x \text{ op } y)$

- Manipulate significand and exponents independently
- Compute exact result ($x \text{ op } y$)
- Round and put in floating point

Exact result: 132

(next slide)

Practice #2

	7 6	3 2	0
s	exponent (4 bits)	fraction (3 bits)	
?	????	???	

What is 132 as a minifloat?

$$V = (-1)^s \times M \times 2^E$$

$$E = \text{exponent} - \text{bias}$$

$$M = 1. \text{ [fraction bits]}$$

$$\text{bias} = 2^{4-1} - 1 = 7$$

Practice #2

7 6		3 2		0		
s	exponent (4 bits)			fraction (3 bits)		
0	1110			000		

$$V = (-1)^s \times M \times 2^E$$

$$E = \text{exponent} - \text{bias}$$

$$M = 1. \text{[fraction bits]}$$

$$\text{bias} = 2^{4-1} - 1 = 7$$

What is 132 as a minifloat?

1. Convert to binary. $(1000 \ 0100)_2$
2. Convert to scientific notation $M \times 2^E$. $(1.0000100)_2 \times 2^7$
3. Determine exponent = $E + \text{bias}$ $7 + 7 = 14 = (1110)_2$
4. Determine fraction, with rounding. $(1.\underline{000}0100)_2$
5. Determine sign s 0 (positive)

Approximation error is inevitable

128

0	1110	000
---	------	-----

+ 4

0	1001	000
---	------	-----

132?

0	1110	000
---	------	-----

We didn't have enough
bits to differentiate
between 128 and 132.

Approximation error is inevitable

128	<table border="1"><tr><td>0</td><td>1110</td><td>000</td></tr></table>	0	1110	000
0	1110	000		
+ 4	<table border="1"><tr><td>0</td><td>1001</td><td>000</td></tr></table>	0	1001	000
0	1001	000		
132	<table border="1"><tr><td>0</td><td>1110</td><td>000</td></tr></table>	0	1110	000
0	1110	000		

We didn't have enough bits to differentiate between 128 and 132.

Another way to corroborate this: the *next-largest minifloat* that can be represented after 128 is **144**. 132 isn't representable!

144:	<table border="1"><tr><td>0</td><td>1110</td><td>001</td></tr></table>	0	1110	001
0	1110	001		

Key Idea: the smallest float hop increase we can take is to increase the fractional component by 1.

Key (floating) points

Approximation and rounding is
inevitable.

Single operations are commutative,
but sequence is not associative.

$(a + b)$ equals $(b + a)$
But $(a + b) + c$ may not equal $a + (b + c)$

Equality comparison operations are
often inaccurate.

Floating Point Arithmetic

Is this just overflowing? It turns out it's more subtle.

```
float a = 3.14;
float b = 1e20;
printf("(3.14 + 1e20) - 1e20 = %g\n", (a + b) - b); // prints 0
printf("3.14 + (1e20 - 1e20) = %g\n", a + (b - b)); // prints 3.14
```

Floating point arithmetic is not associative. The order of operations matters!

- The first line loses precision when first adding 3.14 and 1e20, as we have seen.
- The second line first evaluates $1e20 - 1e20 = 0$, and then adds 3.14

Key (floating) points

Approximation and rounding is
inevitable.

Single operations are commutative,
but sequence is not associative.

$(a + b)$ equals $(b + a)$
But $(a + b) + c$ may not equal $a + (b + c)$

Equality comparison operations are
often inaccurate.

Demo: Float Equality

float_equality.c

Floating point in other languages

Float arithmetic is an issue with most languages, not just C!

- <http://geocar.sdf1.org/numbers.html>

Key (floating) points

Approximation and rounding is
inevitable.

Single operations are commutative,
but sequence is not associative.

$(a + b)$ equals $(b + a)$
But $(a + b) + c$ may not equal $a + (b + c)$

Equality comparison operations are
often ~~unwise~~ inaccurate.

Let's Get Real (and Fixed-Width)

What would be nice to have in a real number representation?

- ✓ Represent widest range of numbers possible
- ✓ Flexible “floating” decimal point
- ✓ Still be able to compare quickly
- ✓ Represent scientific notation numbers, e.g. 1.2×10^6
- ✓ Have more predictable overflow behavior

