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CS107 Lecture 10
Floating Point

Slides by Jerry Cain and Lisa Yan, who leveraged prior work by Nick Troccoli, Julie Zelenski, Marty Stepp, Cynthia Lee, Chris Gregg, and others.

reading:
B&O 2.4
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CS107 Topic 5: How can a 
computer represent real 
numbers in addition to 

integer numbers?
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Learning Goals
Understand the design and compromises of the floating point representation, 
including:
• Fixed point vs. floating point
• How a floating point number is represented in binary
• Issues with floating point imprecision
• Other potential pitfalls using floating point numbers in programs
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Plan For Today
• Representing real numbers and (thought experiment) fixed point
• Floating Point: Normalized values
• Break: Announcements
• Floating Point: Special/denormalized values
• Floating Point Arithmetic

cp -r /afs/ir/class/cs107/samples/lectures/lect10 .
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Review: Function pointers

fn_ptr_review.c
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Warm-up (?): Function pointers Review

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

int compare_strings(const void *p,
const void *q) {

char *str1 = *(const char **) p;
char *str2 = *(const char **) q;
return strcmp(str1, str2);

}

void test_bsearch() {
char *words[] = {"aardvark", "beaver", "capybara"}; // sorted
int n = sizeof(words) / sizeof(*words);
char *searchkey = strdup("beaver");
char **found = bsearch(&searchkey, words, n, sizeof(words[0]),

compare_strings);
printf("found %s\n", found ? *found : "none");
free(searchkey);

} 🤔Tips: (1) draw pictures, and (2) read 
man pages carefully.

1. What are types are the parameters 
passed into bsearch?

2. Let’s change line 3 to:
char *str1 = (const char *) p; 
What happens?

fn_ptr_review.c
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Course Topic Overview
1. Bits and Bytes - How can a computer represent integer numbers?
2. Chars and C-Strings - How can a computer represent and manipulate more 

complex data like text?
3. Pointers, Stack and Heap – How can we effectively manage all types of 

memory in our programs?
4. Generics - How can we use our knowledge of memory and data 

representation to write code that works with any data type?
5. Floats - How can a computer represent floating point numbers in addition to 

integer numbers?
6. Assembly - How does a computer interpret and execute C programs?
7. Heap Allocators - How do core memory-allocation operations 

like malloc and free work?

Review
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Plan For Today
• Representing real numbers and (thought experiment) fixed point
• Floating Point: Normalized values
• Break: Announcements
• Floating Point: Special/denormalized values
• Number representations in C
• Floating point arithmetic
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Base 2 conversion
Convert the following number/fractions to base 10 (decimal) and base 2.

Number/fraction Base 10 Base 2
1. 1/2 0.5 0.1
2. 5
3. 9/8
4. 1/3 
5. 1/10 (bonus)

🤔
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Base 2 conversion
Convert the following number/fractions to base 10 (decimal) and base 2.

Number/fraction Base 10 Base 2
1. 1/2 0.5 0.1
2. 5
3. 9/8
4. 1/3 
5. 1/10 (bonus)

Conceptual goal: How can we represent real numbers with a fixed number of bits?
Learning goal: Appreciate the IEEE floating point format!

5.0 101.0
1.125 1.001
0.3333… 0.01010101…
0.1 0.00011001100…
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Approximating real numbers
How can we represent real numbers with a fixed number of bits?

In the world of real numbers:
• The real number line extends forever (infinite range).
• Real numbers have infinite resolution (infinite precision).

In the base-2 world of computers, we must approximate:
• Each variable type is fixed width (float: 32 bits, double: 64 bits).
• Compromises are inevitable (range and precision). Like with int, we need to make choices 

about which numbers make the cut and which don’t.

range à

precision

ß range
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Thought experiment: Fixed point
Base 10, decimal case: Base 2, binary case:

5 9 3 4 . 2 1 6 7
103 102 101 100 10-1 10-2 10-3 10-4

5934.216123121…10

1 0 1 1 . 0 1 0 1
23 22 21 20 2-1 2-2 2-3 2-4

1011.0101010101…2

• Decide on fixed granularity, e.g., 1/16
• Assign bits to represent powers from 23 to 2-4
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Thought experiment: Fixed point
Strategy evaluation
What values can be represented? 
• Largest magnitude? Smallest? To what 

precision? 

How hard to implement? 
• How to convert int into 32-bit fixed 

point? 32-bit fixed point to int?
• Can existing integer ops (add, multiply, 

shift) be repurposed? 

How well does this meet our needs? 

🤔

Base 2, binary case:

• Decide on fixed granularity, e.g., 1/16
• Assign bits to represent powers from 23 to 2-4

1 0 1 1 . 0 1 0 1
23 22 21 20 2-1 2-2 2-3 2-4

1011.0101010101…2
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The problem with fixed point
Problem: We must fix where the decimal point is in our representation.  This 
fixes our precision.

11.....0.0
79 bits

6.022e23 =
(base 10) (base 2)

0.0.....01
113 bits

6.626e-34 =
To store both these numbers in the same fixed-point representation, the bit 
width of the type would need to be at least 192 bits wide!
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Scientific notation to the rescue (1/2)
We have a need for relative rather than absolute precision.
• How much error/approximation is tolerable? Radius of atom, bowling ball, planet?

Consider for decimal values:

3,650,123 à 3.65 x 106

0.0000072491 à 7.25 x 10-6

• As a datatype, store mantissa and exponent separately
• Division of digits into exponent/mantissa

determines range and precision

3 digits for mantissa (and round)

1 digit for
exponent
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IEEE floating point
IEEE Standard 754 
• Established in 1985 as uniform standard for

floating point arithmetic 
• Supported by all major systems today

Hardware: specialized co-processor vs. integrated into main chip

Driven by numerical concerns 
• Behavior defined in mathematical terms
• Clear standards for rounding, overflow, underflow
• Support for transcendental functions (roots, trig, exponentials, logs) 
• Hard to make fast in hardware

Numerical analysts predominated over hardware designers in defining standard 
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Plan For Today
• Representing real numbers and fixed point
• Floating Point: Normalized values
• Break: Announcements
• Floating Point: Special/denormalized values
• Number representations in C
• Floating point arithmetic
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IEEE Floating Point
Let’s aim to represent numbers of the following scientific-notation-like format:

𝑉 = −1 % × 𝑀 × 2)
Sign bit, 𝑠:
negative (s == 1)
positive (s == 0)

Mantissa, 𝑀 :
Significant digits, 
also called 
significand

Exponent, 𝐸:
Scales value by 
(possibly negative) 
power of 2
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IEEE Floating Point
Let’s aim to represent numbers of the following scientific-notation-like format:

𝑉 = −1 % × 𝑀 × 2)

s exponent (8 bits) fraction (23 bits)

31 30 23 22 0

⚠Quirky! Exponent and frachon are not 
encoded as 𝑀 and 𝐸 in 2’s complement!
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Example for the next few slides
What is the number represented by the following 32-bit float?

s exponent (8 bits) fraction (23 bits)

0 1000 0000 0100 0000 0000 0000 0000 000
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Exponent

exponent (Binary)
11111111
11111110
11111101
11111100

…
00000011
00000010
00000001
00000000

s exponent (8 bits) fraction (23 bits)

normalized

special

denormalized

exponent (Binary) 𝐸 (Base 10)
11111111 RESERVED
11111110 127
11111101 126
11111100 125

… …
00000011 -124
00000010 -125
00000001 -126
00000000 RESERVED
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Exponent: Normalized values

exponent (Binary) 𝐸 (Base 10)
11111111 RESERVED
11111110 127
11111101 126
11111100 125

… …
00000011 -124
00000010 -125
00000001 -126
00000000 RESERVED

s exponent (8 bits) fraction (23 bits)

🤔

• Based on this table, how do we 
compute an exponent from a 
binary value?

• Why would this be a good idea? 
(hint: what if we wanted to 
compare two floats with >, <, =?)
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Exponent: Normalized values

• Not 2’s complement
• 𝐸 = exponent – bias,

where float bias = 28-1 – 1 = 127
• Exponents are sequentially 

represented starting from 
000…1 (most negative) to 
111…10 (most positive).

• Bit-level comparison is fast!

exponent (Binary) 𝐸 (Base 10)
11111111 RESERVED
11111110 127
11111101 126
11111100 125

… …
00000011 -124
00000010 -125
00000001 -126
00000000 RESERVED

s exponent (8 bits) fraction (23 bits)
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Fraction: Normalized values

We could just encode whatever 𝑀 is in the fraction field (𝑓).  But there’s a trick 
we can use to make the most out of the bits we have… 

𝑀 = 1. [frachon bits]

s exponent (8 bits) fraction (23 bits)

What???
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Scientific notation to the rescue (2/2)
Correct scientific notation:
In the mantissa, always keep one non-zero digit to the left of the decimal point.
For base 10: 42.4    x 105 à 4.24  x 106

324.5   x 105 à 3.245 x 107

0.624 x 105 à 6.24  x 104

For base 2: 10.1   x 25 à 1.01   x 26

1011.1   x 25 à 1.0111 x 28

0.110 x 25 à 1.10   x 24

Observation: in base 2, this means there is 
always a 1 to the left of the decimal point!
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Fraction: Normalized values

We could just encode whatever 𝑀 is in the fraction field (𝑓).  But there’s a trick 
we can use to make the most out of the bits we have… 

𝑀 = 1. [frachon bits]

• An “implied leading 1” representation
• Means: we get one additional bit of precision for free!

s exponent (8 bits) fraction (23 bits)

Thanks, Will!
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Example from the past few slides
What is the number represented by the following 32-bit float?

𝐸 = 128 − 127 = 1

Subtract bias
(28-1 – 1 = 127)

𝑉 = −1 2 × 1.25 × 24 = 2.5

𝑀 = 1.01 6
= 1 + 0×284 + 1×286 = 1.25

(base 2)

(base 10)

Add implicit 1

s exponent (8 bits) fraction (23 bits)

0 1000 0000 0100 0000 0000 0000 0000 000
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Practice #1

1. Is this number:

2. Is this number:

3. Bonus: What is the number?

s exponent (8 bits) fraction (23 bits)

0 0111 1110 0000 0000 0000 0000 0000 000

A. Greater than 0?
B. Less than 0?

A. Less than -1?
B. Between -1 and 1?
C. Greater than 1?

🤔
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Practice #1

1. Is this number:

2. Is this number:

3. Bonus: What is the number?

s exponent (8 bits) fraction (23 bits)

0 0111 1110 0000 0000 0000 0000 0000 000

A. Greater than 0?
B. Less than 0?

A. Less than -1?
B. Between -1 and 1?
C. Greater than 1?

1.0 × 284 = 0.5
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Plan For Today
• Representing real numbers and fixed point
• Floating Point: Normalized values
• Break: Announcements
• Floating Point: Special/denormalized values
• Number representations in C
• Floating point arithmetic
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Midterm Exam
The midterm exam is Fri. 2/14 12:30PM-2:20PM in Hewlett 200.
• Covers material through lab4/assign4 (no floats or assembly language)
• Closed-book, 1 2-sided page of notes permitted, C reference sheet provided

Administered via BlueBook software (on your laptop)
• Practice materials and BlueBook download available on course website
• If you have academic (e.g. OAE) or athletics accommodations, please let us know

by Sunday 2/9 if possible.
• If you do not have a workable laptop for the exam, you must let us know

by Sunday 2/9.  Limited charging outlets will be available for those who need them.
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Joke break

https://www.smbc-
comics.com/comic/2013-06-05

https://www.h-
schmidt.net/FloatConverter/IEEE
754.html

Slightly off from the 
real float 0.3 J

https://www.smbc-comics.com/comic/2013-06-05
https://www.h-schmidt.net/FloatConverter/IEEE754.html
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Plan For Today
• Representing real numbers and fixed point
• Floating Point: Normalized values
• Break: Announcements
• Floating Point: Special/denormalized values
• Number representations in C
• Floating point arithmetic
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Reserved exponent values

exponent (Binary) 𝐸 (Base 10)
11111111 RESERVED
11111110 127
11111101 126
11111100 125

… …
00000011 -124
00000010 -125
00000001 -126
00000000 RESERVED

s exponent (8 bits) fraction (23 bits)

normalized

special

denormalized
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Reserved exponent values: All zeros
Zero (+0, -0)

Denormalized floats:

• Smallest normalized exponent: 𝐸 = 1 − bias = −126
• Mantissa has no leading zero: 𝑀 = 0. [frachon bits]

🤔

s exponent (8 bits) fraction (23 bits)
any 0000 0000 all zeros

Why would we want so much 
precision for tiny numbers?

s exponent (8 bits) fraction (23 bits)
any 0000 0000 any nonzero

Why would two zeros be okay?

𝑉 = −1 % × 𝑀 × 2)
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Reserved exponent values: All zeros
Zero (+0, -0)

Denormalized floats:

• Smallest normalized exponent: 𝐸 = 1 − bias = −126
• Mantissa has no leading zero: 𝑀 = 0. [frachon bits]

s exponent (8 bits) fraction (23 bits)
any 0000 0000 all zeros

s exponent (8 bits) fraction (23 bits)
any 0000 0000 any nonzero

𝑉 = −1 % × 𝑀 × 2)
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Reserved exponent values: All ones
Infinity (+inf, -inf)

Not a number (NaN):

Computation result that is an
invalid mathematical real number.

🤔

s exponent (8 bits) fraction (23 bits)
any 1111 1111 all zeros

What kind of mathematical 
computation would result in a non-
real number? (hint: square root)

s exponent (8 bits) fraction (23 bits)
any 1111 1111 any nonzero

Why would we want to represent infinity?



38

What kind of mathematical 
computation would result in a non-
real number? (hint: square root)

Reserved exponent values: All ones
Infinity (+inf, -inf)

Not a number (NaN):

Computation result that is an
invalid mathematical real number.

s exponent (8 bits) fraction (23 bits)
any 1111 1111 all zeros

Floats have built-in handling of overflow: 
infinity + anything = infinity

s exponent (8 bits) fraction (23 bits)
any 1111 1111 any nonzero

Examples: sqrt(x) (i.e., : 𝑥), where x
is negative, <

<
,∞ + −∞ , etc.
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Questions?
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Plan For Today
• Representing real numbers and fixed point
• Floating Point: Normalized values
• Break: Announcements
• Floating Point: Special/denormalized values
• Number representations in C
• Floating point arithmetic
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Skipping Numbers
We said that it’s not possible to represent all real numbers using a fixed-width 
representation.  What does this look like?

Float Converter
• https://www.h-schmidt.net/FloatConverter/IEEE754.html

Floats and Graphics
• https://www.shadertoy.com/view/4tVyDK

https://www.h-schmidt.net/FloatConverter/IEEE754.html
https://www.shadertoy.com/view/4tVyDK
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float and double
float (32 bits)
• 8-bit exponent ranges from -126 to +127,

2127 = 1037

double (64 bits)
• 11-bit exponent ranges from -1022 to +1023,

21023 = 10308

s exponent
(8 bits)

Fraction
(23 bits)

s exponent
(11 bits)

Fraction
(52 bits)
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float and int
32-bit integer (type int): :
–2,147,483,648 to 2147483647
64-bit integer (type long):
−9,223,372,036,854,775,80
to 9,223,372,036,854,775,807 

32-bit floating point (type float):
~1.7 x10-38 to ~3.4 x1038 (+ negative range)
64-bit floating point (type double): 
~9 x10-307 to ~1.8 x10308 (+ negative range)

All integers in 
these ranges can 
be represented.

Not all numbers can be represented.
Gaps can get quite large: larger the 

exponent, larger the gap between 
successive fraction values.

(normalized float/double ranges)
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Plan For Today
• Representing real numbers and fixed point
• Floating Point: Normalized values
• Break: Announcements
• Floating Point: Special/denormalized values
• Number representations in C
• Floating point arithmetic
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Key (floating) points

Single operations are commutative, 
but sequence is not associative.

(a + b) equals (b + a)
But (a + b) + c may not equal a + (b + c)

Equality comparison operations are 
often unwise.

Approximation and rounding is 
inevitable.
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Key (floating) points

Single operations are commutative, 
but sequence is not associative.

(a + b) equals (b + a)
But (a + b) + c may not equal a + (b + c)

Equality comparison operations are 
often unwise.

Approximation and rounding is 
inevitable.
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FAST!

Lisa’s Official 
Guide To Making 
Money

It’s easy!

You can lose 
money, too!
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Demo: Float Arithmetic

bank.c

Try it yourself:
./bank 100 1        # deposit
./bank 100 -1       # withdraw
./bank 100000000 -1 # make bank
./bank 16777216 1   # lose bank

Why is 224 special?
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Introducing “Minifloat”
For a more compact example representation, we will use an 8 bit “minifloat” 
with a 4 bit exponent, 3 bit fraction and bias of 7 (note: minifloat is just for 
example purposes, and is not a real datatype).

7 6 3 2 0

s exponent (4 bits) fraction (3 bits)
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Floating Point Arithmetic
In minifloat, with a balance of $128, a deposit of $4 would not be recorded at 
Lisa’s Bank.  Why not?

Let’s step through the calculations to add these two numbers (note: this is just 
for understanding; real float calculations are more efficient).

128
+    4

128?



51

Floating Point Arithmetic

Float arithmetic (we won’t go into details): x floatop y = Round(x op y)
• Manipulate significand and exponents independently
• Compute exact result (x op y)
• Round and put in floating point

128

4

0 1110 000

0 1001 000

128.00
+    4.00

132.00
aligned+

Exact result: 132

(next slide)

1.00 x 2^7
+ 1.00 x 2^2

not aligned
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Practice #2
7 6 3 2 0

s exponent (4 bits) fraction (3 bits)

? ???? ???

🤔

𝑉 = −1 % × 𝑀 × 2)
𝐸 = exponent − bias
𝑀 = 1. [frachon bits]

What is 132 as a minifloat?
bias = 2?84 − 1 = 7
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Practice #2

1. Convert to binary.
2. Convert to scientific notation 𝑀 × 2) .
3. Determine exponent = 𝐸 + bias
4. Determine fraction, with rounding.
5. Determine sign s

7 6 3 2 0

s exponent (4 bits) fraction (3 bits)

? ???? ???

𝑉 = −1 % × 𝑀 × 2)
𝐸 = exponent − bias
𝑀 = 1. [frachon bits]

What is 132 as a minifloat?
bias = 2?84 − 1 = 7

(1000 0100)2
(1.0000100)2 x 27

7 + 7 = 14 = (1110)2
(1.0000100)2
0 (positive)

1110 0000
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Approximation error is inevitable

128

4

0 1110 000

0 1001 000+

132? 0 1110 000

We didn’t have enough 
bits to differentiate 
between 128 and 132.
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Approximation error is inevitable

128

4

0 1110 000

0 1001 000+

132 0 1110 000

We didn’t have enough 
bits to differentiate 
between 128 and 132.

Another way to corroborate this: 
the next-largest minifloat that can 
be represented after 128 is 144.  
132 isn’t representable!

0 1110 001144:

Key Idea: the smallest float hop 
increase we can take is to increase 
the fractional component by 1.
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Key (floating) points

Single operations are commutative, 
but sequence is not associative.

(a + b) equals (b + a)
But (a + b) + c may not equal a + (b + c)

Equality comparison operations are 
often inaccurate.

Approximation and rounding is 
inevitable.
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Floating Point Arithmetic
Is this just overflowing?  It turns out it’s more subtle.

float a = 3.14;
float b = 1e20;
printf("(3.14 + 1e20) - 1e20 = %g\n", (a + b) - b); // prints 0
printf("3.14 + (1e20 - 1e20) = %g\n", a + (b - b)); // prints 3.14

Floating point arithmetic is not associative.  The order of operations matters!
• The first line loses precision when first adding 3.14 and 1e20, as we have seen.
• The second line first evaluates 1e20 – 1e20 = 0, and then adds 3.14
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Key (floating) points

Single operations are commutative, 
but sequence is not associative.

(a + b) equals (b + a)
But (a + b) + c may not equal a + (b + c)

Equality comparison operations are 
often inaccurate.

Approximation and rounding is 
inevitable.
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Demo: Float Equality

float_equality.c
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Floating point in other languages
Float arithmetic is an issue with most languages, not just C!
• http://geocar.sdf1.org/numbers.html

http://geocar.sdf1.org/numbers.html
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Key (floating) points

Single operations are commutative, 
but sequence is not associative.

(a + b) equals (b + a)
But (a + b) + c may not equal a + (b + c)

Equality comparison operations are 
often unwise inaccurate.

Approximation and rounding is 
inevitable.
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Let’s Get Real (and Fixed-Width)
What would be nice to have in a real number representation?
ü Represent widest range of numbers possible
ü Flexible “floating” decimal point
ü Still be able to compare quickly
ü Represent scientific notation numbers, e.g. 1.2 x 106

ü Have more predictable overflow behavior

s exponent (8 bits) fraction (23 bits)

31 30 23 22 0


