CS107 Lecture 11

Introduction to Assembly

reading:
B&O 3.1-3.4

Slides by Jerry Cain and Lisa Yan, who leveraged prior work by Nick Troccoli, Julie Zelenski, Marty Stepp, Cynthia Lee, Chris Gregg, and others. 1

Warm-up: Float review (bank)

Lisa was unable to deposit S1 into her bank account with $16,777,216. Why?

32-bit float for V = 16,777,216 = 1.0 x22* V=(-1)°%xMx2E
exponent (8 bits) fraction (23 bits): E = exponent — 127
0 1011 0111 0000 0000 00O 00O 00O 00O M = 1. [fraction bits]

Overflow in float when trying to store 16,777,217

f1loat does not have enough

precision to store 16,777,217

f1loat does not have enough

range to store 16,777,217

Bug in the code

Use double (64-bit floating point) "
Other

Warm-up: Float review (bank)

Lisa was unable to deposit S1 into her bank account with $16,777,216. Why?
32-bit float for V = 16,777,216 = 1.0 x2** V=(-1°%xMx2E

exponent (8 bits)

fraction (23 bits): E = exponent — 127

0 1011 0111 0000 0000 0VVO 00O VOO 00O M = 1.[fraction bits]

Overflow in float when trying to store 16,777,217 X overflow for floats means INF;

f1loat does not have enough
precision to store 16,777,217
f1loat does not have enough
range to store 16,777,217
Bug in the code

Use double (64-bit floating point)

Other

underflow means 0

Precision = # bits in fraction

Range = # bits in exponent

Maybe ©

Different account balances could still have
limitations in precision

Mid-quarter feedback

Thank you for your honest opinions about CS107!

We’re happy that CS107 is working well for some of you,
but we also realize that CS107 is a *huge™ step up in difficulty, time, and
independent learning compared to the CS106 series.

Learn C and computer
system design/layout

Learning goals Improve programming skills
for this course:

Develop ability to glean important information from dense resources
(C manual, website, lecture, lab/assignment specs, textbook)

(We also realize that Hewlett 200 is a *gigantic™ lecture hall!)

Course Topic Overview

5. Floats - How can a computer represent floating point numbers in addition to
integer numbers?

6. Assembly - How does a computer interpret and execute C programs? <

7. Heap Allocators - How do core memory-allocation operations
like malloc and free work? :

CS107 Topic 6: How does a
computer interpret and
execute C programs?

Learning Assembly

Arithmetic and

Moving data logical Control flow Function calls
around :
operations
Today 2/17 2/21 2/24
Midterm (get excited:

learn how the
stack is actually
managed)

Today’s Learning Goals

* Learn what assembly language is and why it is important
* Become familiar with the format of human-readable assembly and x86
* Learn the mov instruction and how data moves around at the assembly level

Plan For Today

* Overview: GCC and Assembly

* Demo: Looking at an executable

* Registers and The Assembly Level of Abstraction
* Break: Announcements

* The mov instruction

cp -r /afs/ir/class/csl1l07/samples/lectures/lectll .

Plan For Today

* Overview: GCC and Assembly

10

It's bits all the way down...

Data representation so far

* Integer (unsigned int, 2’s complement signed int)
e char (ASCII)

e Address (unsigned long)

 f1loat/double (IEEE floating point)

* Aggregates (arrays, structs)

The code itself is binary too!
* Instructions (machine encoding)

11

High-level
programming
code

Assembly
code

Machine
code

int sum_array(int arr[], int nelems) { gCC (compiler) compiles human-
int sum = 9; . .
for (int i = @; i < nelems; i++) { readable code into machine-readable

} sum += arr[i]; instructions (bits and bytes).
return sum;

mov $0x0, %edx
mov $0x0,%eax

jmp 4005cb <sum_array+0x15> Assembly/machine code is
movslq %edx,%rcx .,
processor-dependent (C code isn’t).

ba 00 00 00 00 Assembly code is a shorthand/
b8 00 00 00 00

eb 09 legible version of machine code.
48 63 ca

12

Plan For Today

* Demo: Looking at an executable

13

Demo: Looking at an
Executable (objdump -d)

Our First Assembly

int sum_array(int arr[], int nelems) {
int sum = 0;
for (int 1 = @; 1 < nelems; i++) {
sum += arr[i];
}

return sum;

¥

What does this look like in assembly?

15

Our First Assembly

int sum_array(int arr[], int nelems) {
int sum = 0;
for (int 1 = @; 1 < nelems; i++) {
sum += arr[i];

}
return sum;
} make
objdump -d sum
00000000004005b6 <sum_array>:
4005b6: ba 00 00 00 00 mov $0x0, %edx
4005bb : b8 00 00 00 00 mov $0x0, %eax
4005c0O: eb 09 jmp 4005cb <sum_array+0x15>
4005c2: 48 63 ca movslq %edx,%rcx
4005c5: 03 04 8f add (%rdi,%rcx,4),%eax
4005c8: 83 c2 01 add $0x1, %edx
4005cb: 39 f2 cmp %esi,%nedx
4005cd: 7¢ f3 jl 4005c2 <sum_array+0xc>

4005ct: 3 c3 repz retgqg 16

What's in an object file?

00000000004005b6 <sum_array>:

(4005b6)
4005bb :
4005c0O:
4005c2:
4005c5:
4005c8:
4005chb :
4005cd:
\4@@5C'F)

A

ba 00 00 00 00

function pointer: name of function, mem. address of code

mov $0x0, %edx

sequential
instructions are
at sequential
addresses

b8 00 00 00 00 mov $0x0, %eax
eb 09 jmp 4005cb <sum_array+0x15>
48 63 ca movslqg %edx,%rcx
93 04 8f add (%rdi,%rcx,4),%eax
(83 c2 0l« ¢ add $0x1, %edx)
39 f2 cmp %esi,znedx
7c 3 jl 4005c2 <sum_array+0xcp
. 3 c3 . repz retg y
— E—————

machine code
each instruction
encoded in binary

assembly code
each machine instruction decoded
into human-readable assembly

17

What is an assembly instruction?

4005c2: 48 63 ca movslg
4005c¢5: 03 04 8f add
4005c8: 83 c2 01 add
4005cbh: 39 2
4005cd: 7¢ 13 jl
$0x1 is constant . OPCOd?
e ., (instruction
value (“immediate”)
name/type)

4005c2 is direct
address in memory 18

%eax is register name
(storage location on CPU)

%edXx, %rcx l —
(%rdi,%rcx,4),%eax

$0x1, %edx

%esi,nedx

4005Cc2 <sum_array+exc>

operands
(arguments to instruction)

Plan For Today

* Registers and The Assembly Level of Abstraction

19

What is a register?

A register is a fast read/write memory
slot right on the CPU that can hold
variable values.

Registers are not located in memory.

Registers

H
H
H
H

%rax %rsSi %Tr8 %r12

H
H
H
H

%rbx %rdi %Tr9 %r13

H
H
H
H

%rcx %rbp %r10 %r14

H
H
H
H

Y%rdx Y%rsp %r11 %r15

21

Computer architecture

CPU
registers accessed [Registerfile 7
by name
. . PC
ALU is main ST 655
workhorse of CPU |\ i) %m bus Memolry bu ~ memory needed
e , | | [] for program
A/ H H] \ ”)
Bus interface I b r|i/c'ci)g = m';n;'gry e b execution
| hellocode | (stack, heap, etc.)
/ accessed by address
I/O bus] D D _
Expansion slots for
_ other devices such
USB ' Graphics Disk as network adapters
controller adapter controller
NSRRI Ry r— ’ hello executable disk/server stores program

Disk | storedondisk when not executing

———

22

Registers

* A register is a 64-bit space inside the processor.
* There are 16 registers available, each with a unigue name.

e Registers are like “scratch paper” for the processor. Data being calculated or
manipulated is moved to registers first. Operations are performed on
registers.

* Registers also hold parameters and return values for functions.
* Registers are extremely fast memory!

* Processor instructions consist mostly of moving data into/out of registers and
performing arithmetic on them. This is the level of logic your program must be
in to execute!

23

Storage abstraction: C vs assembly

High-level programming language (C)

Variable

 Variable type (int, char, void*, etc.)
determines # of bytes stored + valid ops

* Local to stack frame (current function call)

Assembly language (x86-64)

Register

* 64-bit space inside processor, simply
holds bits

* Registers are shared across all
function calls

24

Storage abstraction: C vs assembly

High-level programming language (C)

Variable

Assembly language (x86-64)
Register

Shared abstraction (C and x86-64)

Memory

* Byte-addressable:
Each memory address refers to the
start of one byte

e Stack managed automatically in C,
manually in assembly

Shared abstraction (C and x86-64)

* Read/write to memory
» Assignment to variable/register
» Arithmetic on variables/registers

25

Instruction set architecture (ISA)

A contract between program/compiler and hardware:
» Defines operations that the processor (CPU) can execute

e Data read/write/transfer operations

* Control mechanisms

Intel originally designed their instruction set back in 1978.
* Legacy support is a huge issue for x86-64

* Originally 16-bit processor, then 32 bit, now 64 bit.
These design choices dictated the register sizes
(and even register/instruction names).

Application program

Compiler OS

CPU design

Circuit design

Chip layout

26

Two major categories of ISAs

CISC (e.g., x86)
* C for “Complex”

* Large set of expressive,
specialized instructions

e Used in most computers

* Developed by AMD, cross-
licensed by Intel

RISC (e.g., ARM, MIPS)
e R for “Reduced”

* Small set of simple instructions, but more
instructions in code

* Used in low-power, low-cost embedded
systems

* Former Stanford President John Hennessy
designed the MIPS processor

JOHN L HENNESSY {J

United States — 2017

CITATION

For pioneering a systematic, quantitative approach to the design and § ' »
evaluation of computer architectures with enduring impact on the
microprocessor industry.

27

Central Processing Units (CPUs)

Intel 8086, 16-bit
microprocessor
($86.65, 1978)

Raspberry Pi BCM2836
32-bit ARM microprocessor
($35 for everything, 2015)

Intel Core i9-9900K 64-bit
8-core multi-core processor
(%449, 2018)

28

Assembly code In movies

Trinity saving the world by
hacking into the power grid
using Nmap Network
Scanning

The Matrix Reloaded, 2003

Plan For Today

* Break: Announcements

30

The midterm exam is Fri. 2/14 12:30PM-2:20PM in Hewlett 200.

* Covers material through lab4/assign4 (no floats or assembly language)

* Closed-book, 1 2-sided page of notes permitted, C reference sheet provided

Administered via BlueBook software (on your laptop)
e Practice materials and BlueBook download available on course website

Assignment 4 on time deadline is tonight, assignment 5 goes out today and is due
Fri. 2/21. We recommend starting to work on it after the midterm exam.

31

Joke break

Classical learning
curves for some
common editors

Visual Studio

Plan For Today

* The mov instruction

33

The mov instruction copies bytes from one place to another;

it is similar to the assignment operator (=) in C.

mov src,dst

The src and dst can each be one of:

* Immediate (constant value, like a number) (only src) $9X194
* Register %rbx

Direct address @XGG@SC@

* Memory Location
(at most one of src, dst)

34

Operand forms: load/store

mov $0X0 5 oOx6040 Store the value 0 info memory

at address 0x6040.

mov %rbx.%rax Load the value in register %rbx,
3

store into register Y%rax

L lue fi
mov ©x6040, %rbx oad value from address

0x6040 into register Y%rbx

%rax

OXFEFE o 1234

%rbx 35

Practice #1: Imm/reg/direct

What are the results of the following move instructions (executed separately)?

1. mov $0x100, %rax

2. mov 0x100, %rax Yorax
3. mov %rbx,0x120 v oXAB

36

The mov instruction copies bytes from one place to another;

it is similar to the assignment operator (=) in C.

mov src,dst

* Memory Location Directaddress @X60Q5CO
(at most one of src, dst) Indirect address (%pbx)
37

Example for next slide

Y%rax OxBOOBOO
OXCOFFEE
T
YorbX OX5678
0x1234

%rcxX 8 bytes

38

Operand forms: Indirect (1/2)

mov (%p ax) , Load value at address %rax and store
into register %rax.
Store the constant 0 at

(o)
mov » 16 (%rbx) address (16 plus %rbx)
mov , (% r‘bx, %PCX) Store the constant 0 at

address (%rbx + %rcx)

Imm(r,, r;)isequivalenttoaddress Imm + R[r,] + R[r;]

/
Displacement: positive Base: register Index
or negative constant 39

Practice #2: Operand Forms

What are the results of the following move instructions (executed separately)?

1. mov $0x42, (%rax)

%rax

ox11

2. mov. -8(%rax),%rbx 1

%Trbx

OXAB
3. mov 9(%rax,%rcx),%rbx Ox7 < 8hytes

%rcx

Imm(r,, r;)isequivalentto address
Imm + R[r,] + R[ry] (70‘\

40

Operand forms: Indirect (2/2)

Load value at address
(4 times %rax) and store in
register %rbx.

mov (,%rax,4),

o o Store the constant 0 at
mov ,0x10(%rbx,%rax,2) address (0x10 plus

Y%rbx + (2 times %rax))

Imm(r,, r;, S)isequivalentto
address Imm + R[r,] + R[r;]*s

J
Displacement: pos/neg Tl
constant (if missing, = 0)

Scale must be 1,2,4, or 8
(if missing, = 1)

Base: register (if missing, = 0)

41

Practice #3: Operand Forms

What are the results of the following move instructions (executed separately)?

Ox108

1. mov $0x42,0xfc(,%rbx,4) ora
Ox11
. . ox1 OxCD
2. mov (%rax,%srcx,4),%rdx
Y%rbx
OXAB
0x2 < 8bytes ”

%rcx

Imm(r,, r;, s)isequivalentto
address Imm + R[r,] + R[r;]*s

Y%rdx K\’T

42

Most General Operand Form

Imm(ry,r;,s)
IS equivalent to...

Imm + R[r,] + R[r;]*s

Operand Forms

Type Operand Value Name
Immediate $Imm Imm Immediate
Register Ty R[r,] Register
Memory Imm M[Imm] Absolute
Memory (1) M[R[7,]] Indirect
Memory Imm(r) M[Imm + R[rp]] Base + displacement
Memory (1, 17) M[R[r,] + R[n;]] Indexed
Memory Imm(ry, 1;) M[Imm + R[r,] + R[r;]] Indexed
Memory (1, 8) M[R[r;] - s] Scaled indexed
Memory Imm(,1;,) M[Imm + R[r;] - s] Scaled indexed
Memory (15,13, S) M[R[rp] + R[r;] - s] Scaled indexed
Memory Imm(ry,,1;,S) M[Imm + R[r,] + R[r;] -+ s] Scaled indexed

Figure 3.3 from the book: “Operand forms. Operands can denote immediate (constant) values, register values
or values from memory. The scaling factor s must be either. 1, 2, 4, or 8.”

Goals of indirect addressing: C

Why are there so many forms of
indirect addressing?

We see these indirect addressing
paradigms in C as well!

Goals of indirect addressing: C

1 long exchange(long *xp, long y) {

2 long x = *xp;

3 *Xp = Y;

4 return vy;

5}

6 void last element(long *arr, int nelems) {
7 long z = arr[nelems - 1];

8 }

Try your intuition: How do you
think each of the C assignments

Imm(r,, r;, s)isequivalentto might map to mov instructions?
address Imm + R[r,] + R[r;]*s

(many right answers!) c?r)

46

Our First Assembly

int sum_array(int arr[], int nelems) { | We're 1/4t of the way to understanding assembly!

int sum = 0;

for (int 1 = @; i < nelems; i++) {

sum += arr[i];

}
return sum;
}
00000000004005b6 <sum_array>:
4005b6 . ba 00 00 00 00
4005bb : b8 00 00 00 00O
4005¢O: eb 09
4005c2: 48 63 cCa
4005c5: 03 04 8f
Y 12.17.1"Wal * X Q2 2 ~1

We'll come back to this
example in a week!

What looks understandable right now?

Some notes:

 Registers store addresses and values
* mov src, dst copies value into dst
e sizeof(int) is4

* Instructions executed sequentially

mov $0x0, %edx
mov $0x0, %eax

jmp 4005cb <sum_array+0x15>
movslq %edx,%rcx

add (%rdi,%rcx,4),%eax

add $0x1, %edx

cmp %esi,%edx V‘f
jl 4005c2 <sum_array+oxc> -

repz retq

47

