
1

CS107 Lecture 11
Introduction to Assembly

Slides by Jerry Cain and Lisa Yan, who leveraged prior work by Nick Troccoli, Julie Zelenski, Marty Stepp, Cynthia Lee, Chris Gregg, and others.

reading:
B&O 3.1-3.4

2

Warm-up: Float review (bank)
Lisa was unable to deposit $1 into her bank account with $16,777,216. Why?

A. Overflow in float when trying to store 16,777,217
B. float does not have enough

precision to store 16,777,217
C. float does not have enough

range to store 16,777,217
D. Bug in the code
E. Use double (64-bit floating point)
F. Other

s exponent (8 bits) fraction (23 bits):
0 1011 0111 0000 0000 0000 0000 0000 000

32-bit float for 𝑉 = 16,777,216 = 1.0 ×2+,

🤔

𝑉 = −1 . ×𝑀 × 20

𝑀 = 1. [fracYon bits]
𝐸 = exponent− 127

3

Warm-up: Float review (bank)
Lisa was unable to deposit $1 into her bank account with $16,777,216. Why?

A. Overflow in float when trying to store 16,777,217
B. float does not have enough

precision to store 16,777,217
C. float does not have enough

range to store 16,777,217
D. Bug in the code
E. Use double (64-bit floating point)
F. Other

s exponent (8 bits) fraction (23 bits):
0 1011 0111 0000 0000 0000 0000 0000 000

❌ overflow for floats means INF;
underflow means 0

Precision ≈ # bits in fraction

Range ≈ # bits in exponent

Different account balances could still have
limitations in precision

Maybe J

32-bit float for 𝑉 = 16,777,216 = 1.0 ×2+, 𝑉 = −1 . × 𝑀 × 20

𝑀 = 1. [fracYon bits]
𝐸 = exponent− 127

4

Mid-quarter feedback
Thank you for your honest opinions about CS107!

We’re happy that CS107 is working well for some of you,
but we also realize that CS107 is a *huge* step up in difficulty, time, and

independent learning compared to the CS106 series.

Learning goals
for this course:

(We also realize that Hewlett 200 is a *gigantic* lecture hall!)

Improve programming skills Learn C and computer
system design/layout

Develop ability to glean important information from dense resources
(C manual, website, lecture, lab/assignment specs, textbook)

5

Course Topic Overview
1. Bits and Bytes - How can a computer represent integer numbers?
2. Chars and C-Strings - How can a computer represent and manipulate more

complex data like text?
3. Pointers, Stack and Heap – How can we effectively manage all types of

memory in our programs?
4. Generics - How can we use our knowledge of memory and data

representation to write code that works with any data type?
5. Floats - How can a computer represent floating point numbers in addition to

integer numbers?
6. Assembly - How does a computer interpret and execute C programs?
7. Heap Allocators - How do core memory-allocation operations

like malloc and free work?

6

CS107 Topic 6: How does a
computer interpret and
execute C programs?

7

Learning Assembly

Moving data
around

Arithmetic and
logical

operations
Control flow Function calls

Today 2/17 2/21 2/24
Midterm (get excited:

learn how the
stack is actually

managed)

8

Today’s Learning Goals
• Learn what assembly language is and why it is important
• Become familiar with the format of human-readable assembly and x86
• Learn the mov instruction and how data moves around at the assembly level

9

Plan For Today
• Overview: GCC and Assembly
• Demo: Looking at an executable
• Registers and The Assembly Level of Abstraction
• Break: Announcements
• The mov instruction

cp -r /afs/ir/class/cs107/samples/lectures/lect11 .

10

Plan For Today
• Overview: GCC and Assembly
• Demo: Looking at an executable
• Registers and The Assembly Level of Abstraction
• Break: Announcements
• The mov instruction

11

It’s bits all the way down...
Data representation so far
• Integer (unsigned int, 2’s complement signed int)
• char (ASCII)
• Address (unsigned long)
• float/double (IEEE floating point)
• Aggregates (arrays, structs)

The code itself is binary too!
• Instructions (machine encoding)

12

GCC

High-level
programming

code

Machine
code

Assembly
code

gcc (compiler) compiles human-
readable code into machine-readable

instructions (bits and bytes).

Assembly/machine code is
processor-dependent (C code isn’t).

Assembly code is a shorthand/
legible version of machine code.

13

Plan For Today
• Overview: GCC and Assembly
• Demo: Looking at an executable
• Registers and The Assembly Level of Abstraction
• Break: Announcements
• The mov instruction

14

Demo: Looking at an
Executable (objdump -d)

15

Our First Assembly
int sum_array(int arr[], int nelems) {

int sum = 0;
for (int i = 0; i < nelems; i++) {

sum += arr[i];
}
return sum;

}

What does this look like in assembly?

16

Our First Assembly
int sum_array(int arr[], int nelems) {

int sum = 0;
for (int i = 0; i < nelems; i++) {

sum += arr[i];
}
return sum;

}

00000000004005b6 <sum_array>:
4005b6: ba 00 00 00 00 mov $0x0,%edx
4005bb: b8 00 00 00 00 mov $0x0,%eax
4005c0: eb 09 jmp 4005cb <sum_array+0x15>
4005c2: 48 63 ca movslq %edx,%rcx
4005c5: 03 04 8f add (%rdi,%rcx,4),%eax
4005c8: 83 c2 01 add $0x1,%edx
4005cb: 39 f2 cmp %esi,%edx
4005cd: 7c f3 jl 4005c2 <sum_array+0xc>
4005cf: f3 c3 repz retq

make
objdump -d sum

17

What’s in an object file?
00000000004005b6 <sum_array>:

4005b6: ba 00 00 00 00 mov $0x0,%edx
4005bb: b8 00 00 00 00 mov $0x0,%eax
4005c0: eb 09 jmp 4005cb <sum_array+0x15>
4005c2: 48 63 ca movslq %edx,%rcx
4005c5: 03 04 8f add (%rdi,%rcx,4),%eax
4005c8: 83 c2 01 add $0x1,%edx
4005cb: 39 f2 cmp %esi,%edx
4005cd: 7c f3 jl 4005c2 <sum_array+0xc>
4005cf: f3 c3 repz retq

function pointer: name of function, mem. address of code

sequential
instructions are
at sequential
addresses

machine code
each instruction
encoded in binary

assembly code
each machine instruction decoded
into human-readable assembly

18

What is an assembly instruction?
00000000004005b6 <sum_array>:

4005b6: ba 00 00 00 00 mov $0x0,%edx
4005bb: b8 00 00 00 00 mov $0x0,%eax
4005c0: eb 09 jmp 4005cb <sum_array+0x15>
4005c2: 48 63 ca movslq %edx,%rcx
4005c5: 03 04 8f add (%rdi,%rcx,4),%eax
4005c8: 83 c2 01 add $0x1,%edx
4005cb: 39 f2 cmp %esi,%edx
4005cd: 7c f3 jl 4005c2 <sum_array+0xc>
4005cf: f3 c3 repz retq

opcode
(instruction
name/type)

operands
(arguments to instruction)$0x1 is constant

value (“immediate”)

4005c2 is direct
address in memory

%eax is register name
(storage location on CPU)

19

Plan For Today
• Overview: GCC and Assembly
• Demo: Looking at an executable
• Registers and The Assembly Level of Abstraction
• Break: Announcements
• The mov instruction

20

Registers

What is a register?

A register is a fast read/write memory
slot right on the CPU that can hold

variable values.
Registers are not located in memory.

21

Registers

%rax

%rbx

%rcx

%rdx

%rsi

%rdi

%rbp

%rsp

%r8

%r9

%r10

%r11

%r12

%r13

%r14

%r15

22

Computer architecture

memory needed
for program
execution
(stack, heap, etc.)
accessed by address

registers accessed
by name

ALU is main
workhorse of CPU

disk/server stores program
when not executing

23

Registers
• A register is a 64-bit space inside the processor.
• There are 16 registers available, each with a unique name.
• Registers are like “scratch paper” for the processor. Data being calculated or

manipulated is moved to registers first. Operations are performed on
registers.

• Registers also hold parameters and return values for functions.
• Registers are extremely fast memory!
• Processor instructions consist mostly of moving data into/out of registers and

performing arithmetic on them. This is the level of logic your program must be
in to execute!

24

Storage abstraction: C vs assembly
High-level programming language (C)

Assembly language (x86-64)

Variable
• Variable type (int, char, void*, etc.)

determines # of bytes stored + valid ops
• Local to stack frame (current function call)

Register
• 64-bit space inside processor, simply

holds bits
• Registers are shared across all

function calls

25

Storage abstraction: C vs assembly
High-level programming language (C)

Assembly language (x86-64)

Variable
• Variable type (int, char, void*, etc.)

determines # of bytes stored + valid ops
• Local to stack frame (current function call)

Register
• 64-bit space inside processor, simply

holds bits
• Registers are shared across all

function calls

Memory
• Byte-addressable:

Each memory address refers to the
start of one byte

• Stack managed automatically in C,
manually in assembly

Shared abstraction (C and x86-64)

• Read/write to memory
• Assignment to variable/register
• Arithmetic on variables/registers

Shared abstraction (C and x86-64)

26

Instruction set architecture (ISA)
A contract between program/compiler and hardware:
• Defines operations that the processor (CPU) can execute
• Data read/write/transfer operations
• Control mechanisms

Intel originally designed their instruction set back in 1978.
• Legacy support is a huge issue for x86-64
• Originally 16-bit processor, then 32 bit, now 64 bit.

These design choices dictated the register sizes
(and even register/instruction names).

Compiler

Application program

OS
ISA

CPU design

Circuit design

Chip layout

27

Two major categories of ISAs
CISC (e.g., x86)
• C for “Complex”
• Large set of expressive,

specialized instructions
• Used in most computers
• Developed by AMD, cross-

licensed by Intel

RISC (e.g., ARM, MIPS)
• R for “Reduced”
• Small set of simple instructions, but more

instructions in code
• Used in low-power, low-cost embedded

systems
• Former Stanford President John Hennessy

designed the MIPS processor

28

Central Processing Units (CPUs)

Intel 8086, 16-bit
microprocessor
($86.65, 1978)

Raspberry Pi BCM2836
32-bit ARM microprocessor
($35 for everything, 2015)

Intel Core i9-9900K 64-bit
8-core multi-core processor
($449, 2018)

29

Assembly code in movies

Trinity saving the world by
hacking into the power grid
using Nmap Network
Scanning
The Matrix Reloaded, 2003

30

Plan For Today
• Overview: GCC and Assembly
• Demo: Looking at an executable
• Registers and The Assembly Level of Abstraction
• Break: Announcements
• The mov instruction

31

Midterm Exam
The midterm exam is Fri. 2/14 12:30PM-2:20PM in Hewlett 200.
• Covers material through lab4/assign4 (no floats or assembly language)
• Closed-book, 1 2-sided page of notes permitted, C reference sheet provided

Administered via BlueBook software (on your laptop)
• Practice materials and BlueBook download available on course website

Assignment 4 on time deadline is tonight, assignment 5 goes out today and is due
Fri. 2/21. We recommend starting to work on it after the midterm exam.

32

Joke break

33

Plan For Today
• Overview: GCC and Assembly
• Demo: Looking at an executable
• Registers and The Assembly Level of Abstraction
• Break: Announcements
• The mov instruction

34

mov
The mov instruction copies bytes from one place to another;
it is similar to the assignment operator (=) in C.

mov src,dst

The src and dst can each be one of:
• Immediate (constant value, like a number) (only src)

• Register

• Memory Location
(at most one of src, dst)

$0x104

%rbx
0x6005c0Direct address

35

Operand forms: load/store

mov $0x0,0x6040

mov %rbx,%rax

mov 0x6040,%rbx

Store the value 0 into memory
at address 0x6040.

Load the value in register %rbx,
store into register %rax

Load value from address
0x6040 into register %rbx

0xC0FF
%rax

0xFEFE
%rbx

…

…

0x1234

0x6050

0x6048

0x6040

36

Practice #1: Imm/reg/direct
What are the results of the following move instructions (executed separately)?

1. mov $0x100,%rax

2. mov 0x100,%rax

3. mov %rbx,0x120

%rax

0xCD
%rbx

0xBEEF

0xAB

0x128

0x120

0x118

0x110

0x108

0x100

🤔
8 bytes

37

mov
The mov instruction copies bytes from one place to another;
it is similar to the assignment operator (=) in C.

mov src,dst

The src and dst can each be one of:
• Immediate (constant value, like a number) (only src)

• Register

• Memory Location
(at most one of src, dst)

$0x104

%rbx
0x6005c0Direct address

Indirect address (%rbx)

38

Example for next slide

0x6068
%rax

0x6050
%rbx

0xFACE

0xB00B00

0xC0FFEE

0xBEEF

0x5678

0x1234

0x6068

0x6060

0x6058

0x6050

0x6048

0x6040-8
%rcx 8 bytes

39

Imm(rb, ri) is equivalent to address Imm + R[rb] + R[ri]

Operand forms: Indirect (1/2)

mov (%rax),%rax

mov $0x0,16(%rbx)

mov $0x0,(%rbx,%rcx)

Load value at address %rax and store
into register %rax.

Store the constant 0 at
address (16 plus %rbx)

Store the constant 0 at
address (%rbx + %rcx)

Displacement: positive
or negative constant

Base: register Index

40

Practice #2: Operand Forms
What are the results of the following move instructions (executed separately)?

1. mov $0x42,(%rax)

2. mov -8(%rax),%rbx

3. mov 9(%rax,%rcx),%rbx

🤔

0x108
%rax

%rbx

0x7
%rcx

Imm(rb, ri) is equivalent to address
Imm + R[rb] + R[ri]

Displacement Base Index

0x11

0xCD

0xAB

0x120

0x118

0x110

0x108

0x100
8 bytes

41

mov (,%rax,4),%rbx

mov $0x0,0x10(%rbx,%rax,2)

Imm(rb, ri, s) is equivalent to
address Imm + R[rb] + R[ri]*s

Operand forms: Indirect (2/2)
Load value at address

(4 times %rax) and store in
register %rbx.

Store the constant 0 at
address (0x10 plus

%rbx + (2 times %rax))

Displacement: pos/neg
constant (if missing, = 0)

Index

Scale must be 1,2,4, or 8
(if missing, = 1)Base: register (if missing, = 0)

42

Practice #3: Operand Forms
What are the results of the following move instructions (executed separately)?

1. mov $0x42,0xfc(,%rbx,4)

2. mov (%rax,%rcx,4),%rdx

🤔
Imm(rb, ri, s) is equivalent to
address Imm + R[rb] + R[ri]*s

Displacement Base Index Scale
(1,2,4,8)

0x108
%rax

0x1
%rbx

0x2
%rcx

0x11

0xCD

0xAB

0x120

0x118

0x110

0x108

0x100
8 bytes

-1
%rdx

43

Most General Operand Form

Imm(rb,ri,s)

is equivalent to…

Imm + R[rb] + R[ri]*s

44

Operand Forms
Type Form Operand Value Name

Immediate $𝐼𝑚𝑚 𝐼𝑚𝑚 Immediate

Register 𝑟8 R[𝑟8] Register

Memory 𝐼𝑚𝑚 M[𝐼𝑚𝑚] Absolute

Memory (𝑟8) M[R 𝑟8] Indirect

Memory 𝐼𝑚𝑚(𝑟=) M[𝐼𝑚𝑚 + R 𝑟=] Base + displacement

Memory (𝑟=, 𝑟?) M[R 𝑟= + R 𝑟?] Indexed

Memory 𝐼𝑚𝑚(𝑟=, 𝑟?) M[𝐼𝑚𝑚 + R 𝑟= + R 𝑟?] Indexed

Memory (, 𝑟?, 𝑠) M[R 𝑟? A 𝑠] Scaled indexed

Memory 𝐼𝑚𝑚(, 𝑟?, 𝑠) M[𝐼𝑚𝑚 + R 𝑟? A 𝑠] Scaled indexed

Memory (𝑟=, 𝑟?, 𝑠) M[R 𝑟= + R 𝑟? A 𝑠] Scaled indexed

Memory 𝐼𝑚𝑚(𝑟=, 𝑟?, 𝑠) M[𝐼𝑚𝑚 + R 𝑟= + R 𝑟? A 𝑠] Scaled indexed

Figure 3.3 from the book: “Operand forms. Operands can denote immediate (constant) values, register values,
or values from memory. The scaling factor s must be either. 1, 2, 4, or 8.”

45

Goals of indirect addressing: C

Why are there so many forms of
indirect addressing?

We see these indirect addressing
paradigms in C as well!

46

long exchange(long *xp, long y) {
long x = *xp;
*xp = y;
return y;

}
void last_element(long *arr, int nelems) {

long z = arr[nelems - 1];
}

Goals of indirect addressing: C

Try your intuition: How do you
think each of the C assignments
might map to mov instructions?
(many right answers!) 🤔

1
2
3
4
5
6
7
8

Imm(rb, ri, s) is equivalent to
address Imm + R[rb] + R[ri]*s

Displacement Base Index Scale
(1,2,4,8)

47

Our First Assembly
int sum_array(int arr[], int nelems) {

int sum = 0;
for (int i = 0; i < nelems; i++) {

sum += arr[i];
}
return sum;

}

00000000004005b6 <sum_array>:
4005b6: ba 00 00 00 00 mov $0x0,%edx
4005bb: b8 00 00 00 00 mov $0x0,%eax
4005c0: eb 09 jmp 4005cb <sum_array+0x15>
4005c2: 48 63 ca movslq %edx,%rcx
4005c5: 03 04 8f add (%rdi,%rcx,4),%eax
4005c8: 83 c2 01 add $0x1,%edx
4005cb: 39 f2 cmp %esi,%edx
4005cd: 7c f3 jl 4005c2 <sum_array+0xc>
4005cf: f3 c3 repz retq

We’re 1/4th of the way to understanding assembly!
What looks understandable right now?
Some notes:
• Registers store addresses and values
• mov src, dst copies value into dst
• sizeof(int) is 4
• Instructions executed sequentially

🤔We’ll come back to this
example in a week!

