CS107: Lecture 12
Assembly: Arithmetic and Logic

Reading: B&O 3.5-3.6

Slides by Jerry Cain and Lisa Yan, who leveraged prior work by Nick Troccoli, Julie Zelenski, Marty Stepp, Cynthia Lee, Chris Gregg, and others. 1

CS107 Topic 6: How does a
computer interpret and
execute C programs?

Learning Assembly

Arithmetic and
logical Control flow Function calls
operations

2/10 Today 2/21 2/24

Reference Sheet: cs107.stanford.edu/resources/x86-64-reference.pdf
See more guides on Resources page of course website! 3

Learning Goals

* Learn how to perform arithmetic and logical operations in assembly

Plan For Today

* Recap: Assembly and mov
e Data and Register Sizes
* The lea Instruction

* Logical and Arithmetic Operations

Plan For Today

* Recap: Assembly and mov

Assembly

* Assembly code is a human-readable form of the machine code your computer
executes when running your programs.

* Assembly works at a lower level of abstraction than C code. It works with 64-
bit spaces called registers that act as "scratch paper" for the processor.

e Operations in your C program ultimately are converted to operations that read
or write to registers and perform calculations on these registers. Each of these
assembly code instructions emulates something you wrote in C.

Our First Assembly

00000000004005b6 <sum_array>:

4005b6: ba 00 00 00 00
4005bb : b8 00 00 00 00
4005c0O: eb 09

4005c2: 48 63 ca
4005c5: 03 04 8f
4005c8: 83 c2 91
4005chb : 39 {2

4005cd: 7¢c 3

4005cT: 3 c3

mov $0x0, %edx

mov $0x0, %eax

jmp 4005cb <sum_array+0x15>
movslq %edx,%rcx

add (%rdi,%rcx,4),%eax

add $0x1, %edx

cmp %esi,nedx

jl 4005c2 <sum_array+0xc>
repz retq

Our First Assembly

00000000004005b6 <sum_array>:

4005c8: 83 c2 01 add $0x1, %edx

Each instruction has an
operation name (“opcode”).

Our First Assembly

00000000004005b6 <sum_array>:

4005c8: 83 c2 01 add $0x1, %edx

Each instruction can also have
arguments (“operands”).

10

The mov instruction copies bytes from one place to another.

mov src,dst

The src and dst can each be one of:

* Immediate (constant value, like a number) (only src)
* Register

 Memory Location (at most one of src, dst)

11

Memory Location Syntax

Syntax Meaning

0x104 Address 0x104 (no S)

(%rax) What’s in %rax

4(%rax) What's in %rax, plus 4
(%rax, %rdx) Sum of what’s in %rax and %rdx

4(%rax, %rdx)

Sum of values in %rax and %rdx, plus 4

(, %rcx, 4)

What’s in %rcx, times 4 (multiplier can be 1,
2,4, 8)

(%rax, %rcx, 2)

What's in %rax, plus 2 times what’s in %rcx

8(%rax, %rcx, 2)

What's in %rax, plus 2 times what’s in %rcx,
plus 8

14

Operand Forms

Type Operand Value Name
Immediate $Imm Imm Immediate
Register Ty R[r,] Register
Memory Imm M[Imm] Absolute
Memory (1) M[R[7,]] Indirect
Memory Imm(r) M[Imm + R[rp]] Base + displacement
Memory (1, 17) M[R[r,] + R[n;]] Indexed
Memory Imm(ry, 1;) M[Imm + R[r,] + R[r;]] Indexed
Memory (1, 8) M[R[r;] - s] Scaled indexed
Memory Imm(,1;,) M[Imm + R[r;] - s] Scaled indexed
Memory (15,13, S) M[R[rp] + R[r;] - s] Scaled indexed
Memory Imm(ry,,1;,S) M[Imm + R[r,] + R[r;] -+ s] Scaled indexed

Figure 3.3 from the book: “Operand forms. Operands can denote immediate (constant) values, register values
or values from memory. The scaling factor s must be either. 1, 2, 4, or 8.”

Plan For Today

e Data and Register Sizes

14

Data sizes in assembly have slightly different terminology to get used to:
* A byte is 1 byte.

 Aword is 2 bytes.

* A double word is 4 bytes.

* A quad word is 8 bytes.

Assembly instructions can have suffixes to refer to these sizes:

* b means byte

* W means word

e 1 means double word

* d means quad word s

Register Sizes

Bit: 63 31 15 7 %)
%rax %eax |%ax [%al |“
%rbx %ebx lwbx [o1 |“
%rcx %ecx ex el |“
%rdx %edx lwdx [%a1 |“
%rsi %esi ‘%si | %si1 |“
%rdi %edi |%di [xdil |“

16

Register Sizes

Bit: 63 31 15 7 %)
%rbp %ebp |%bp [%bp1 |“
%rsp %esp ‘%sp |%spl |“
%8 %r8d |%rew [%rsb |“
%r9 %r9d ‘ %row |%rob |“
%r10 %r10d |%r10w [%r1eb |“
%r11 %r11d ‘ %rllw |%riib |“

17

Register Sizes

Bit: 63 31 1> . :
%12 %r12d ‘ %ri2w | %ri2b |“
%r13 %r13d ‘ %r13w | %r13b |“
%14 %r14d ‘ %ridw | %riab |“
%r15 %r15d ‘ %ri5w | %risb |“

18

Register Responsibilities

Some registers take on special responsibilities during program execution.
* %rax stores the return value

* %rdi stores the first parameter to a function

* %rsi stores the second parameter to a function

* %rdx stores the third parameter to a function

* %rip stores the address of the next instruction to execute

* %rsp stores the address of the current top of the stack

See the x86-64 Guide and Reference Sheet on the Resources webpage for more!

19

NVALEHERLIS

* mov can take an optional suffix (b, w, |, or q) that specifies the size of data to
move: movb, movw, movl, movqg

* mov only updates the specific register bytes or memory locations indicated.
* Exception: movl writing to a register will also set high order 4 bytes to 0.

20

Practice: mov And Data Sizes

For each of the following mov instructions, determine the appropriate suffix
based on the operands (e.g. movb, movw, movl or movq).

. mov_ %eax, (%rsp)

. mov_ (%rax), %dx

. mov_ $oxff, %bl

. mov_ (%rsp,%srdx,4),%dl

. mov_ (%rdx), %rax

o vl A W DN B

. mov_ %dx, (%rax)

21

Practice: mov And Data Sizes

For each of the following mov instructions, determine the appropriate suffix
based on the operands (e.g. movb, movw, movl or movq).

. movl %eax, (%rsp)

. movw (%rax), %dx

. movb $Oxff, %bl

. movb (%rsp,%srdx,4),%dl

. movqg (%rdx), %rax

o vl A W DN B

. movw %dx, (%rax)

22

* The movabsq instruction is used to write a 64-bit immediate (constant) value.

* The regular movq instruction can only take 32-bit immediate values.
* 64-bit immediate as source, only register as destination.

movabsq $0x0011223344556677, %rax

23

movz and movs

* There are two mov instructions that can be used to copy a smaller source to a
larger destination: movz and movs.

* movz fills the remaining bytes with zeros

* movs fills the remaining bytes by sign-extending the most significant bit in the
source.

* The source must be from memory or a register, and the destination is a
register.

24

movz and movs

MOVZ S,R R « ZeroExtend(S)

Instruction Description

movzbw Move zero-extended byte to word
movzbl Move zero-extended byte to double word
movzwl Move zero-extended word to double word
movzbq Move zero-extended byte to quad word
movzwg Move zero-extended word to quad word

25

movz and movs

MOVS S,R R « SignExtend(S)

Instruction Description

movsbw Move sign-extended byte to word
movsbl Move sign-extended byte to double word
movswl Move sign-extended word to double word
movsbq Move sign-extended byte to quad word
MOV SW(Move sign-extended word to quad word
movslq Move sign-extended double word to quad word
cltq Sign-extend %eax to %rax

%rax <- SignExtend(%eax)

26

Plan For Today

* The lea Instruction

27

The lea instruction copies an "effective address" from one place to another.

lea src,dst

Unlike mov, which copies data at the address src to the destination, lea copies
the value of src itself to the destination.

The syntax for the destinations is the same as
mov. The difference is how it handles the src.

28

e e e o

6 (%r-ax) , srdx Go to the address (6 + what’s in %rax), Copy 6 + what’s in %rax into %rdx.
and copy data there into %rdx

29

e e e o

6(%rax), %rdx

(%rax, %rcx), %rdx

Go to the address (6 + what’s in %rax), Copy 6 + what’s in %rax into %rdx.
and copy data there into %rdx

Go to the address (what’s in %rax + Copy (what’s in %rax + what’s in %rcx)
what’s in %rcx) and copy data there into into %rdx.
%rdx

30

e e e o

6(%rax), %rdx

(%rax, %rcx), %rdx

(%rax, %rcx, 4), %rdx

Go to the address (6 + what’s in %rax), Copy 6 + what’s in %rax into %rdx.
and copy data there into %rdx

Go to the address (what’s in %rax + Copy (what’s in %rax + what’s in %rcx)
what’s in %rcx) and copy data there into into %rdx.
%rdx

Go to the address (%rax + 4 * %rcx) and Copy (%rax + 4 * %rcx) into %rdx.
copy data there into %rdx.

31

6 (%r'ax) , srdx Go to the address (6 + what’s in %rax), = Copy 6 + what’s in %rax into %rdx.
and copy data there into %rdx

(%rax, %pcx) , srdx Go to the address (what’s in %rax + Copy (what’s in %rax + what’s in %rcx)
what’s in %rcx) and copy data there into into %rdx.
%rdx

(%rax, %rcx, 4), %rdx Goto the address (%rax + 4 * %rcx) and Copy (%rax + 4 * %rcx) into %rdx.
copy data there into %rdx.

7(%rax, %rcx, 8), %rdx Goto the address (7 + %rax + 8 * %rcx) Copy (7 + %rax + 8 * %rcx) into %rdx.
and copy data there into %rdx.

Unlike mov, which copies data at the address
src to the destination, lea copies the value of
src itself to the destination.

32

Plan For Today

* Logical and Arithmetic Operations

33

Unary Instructions

The following instructions operate on a single operand (register or memory):

Instruction Effect Description
inc D De«<D+1 Increment
dec D De«<D-1 Decrement
neg D D « -D Negate

not D D « ~D Complement

Examples:
incqg 16(%rax)
dec %rdx

not %rcx

34

Binary Instructions

The following instructions operate on two operands (register or memory). Both
cannot be memory locations. Read it as, e.g. “Subtract S from D”:

Instruction Effect Description
add S, D D«<D+ S Add

sub S, D D«<D-S Subtract
imul S, D D«D*S Multiply
xor S, D De«<DA”™S Exclusive-or
or S, D De«D]| S Or

and S, D D«D&S And

Examples:

addqg %rcx, (%rax)
xorq $16, (%rax, %rdx, 8)
subg %rdx,8(%rax)

35

Large Multiplication

* Multiplying 64-bit numbers can produce a 128-bit result. How does x86-64
support this with only 64-bit registers?

* If you specify two operands to imul, it multiplies them together and truncates
until it fits in a 64-bit register.

imul S, D De«D*S

* If you specify one operand, it multiplies that by %rax, and splits the product
across 2 registers. It puts the high-order 64 bits in %rdx and the low-order 64
bits in %rax.

Instruction Effect Description
imulg S R[%rdx]:R[%rax] « S x R[%rax] Signed full multiply

mulg S R[%rdx]:R[%rax] « S x R[%rax] Unsigned full multiply

36

Division and Remainder

Instruction Effect Description

idivg S R[¢rdx] <« R[¢rdx]:R[¢rax] mod S; Signed divide
R[¢rax] «— R[¢rdx]:R[¢rax] + S

divg S R[¢rdx] «— R[%rdx]:R[¢rax] mod S; Unsigned divide
R[¢rax] «— R[¢rdx]:R[¢rax] + S

» Terminology: dividend / divisor = quotient + remainder

* x86-64 supports dividing up to a 128-bit value by a 64-bit value.

* The high-order 64 bits of the dividend are in %rdx, and the low-order 64 bits
are in %rax. The divisor is the operand to the instruction.

* The quotient is stored in %rax, and the remainder in %rdx.

37

Division and Remainder

Instruction Effect Description

cgto R[¢rdx]:R[¢rax] «— SignExtend(R[¢rax]) Convert to oct word

idivg S R[¢rdx] <« R[¢rdx]:R[¢rax] mod S; Signed divide
R[¢rax] «— R[¢rdx]:R[¢rax] + S

divg S R[¢rdx] «— R[%rdx]:R[¢rax] mod S; Unsigned divide
R[¢rax] «— R[¢rdx]:R[¢rax] + S

* Most division uses only 64 bit dividends. The cqto instruction sign-extends the
64-bit value in %rax into %rdx to fill both registers with the dividend, as the

division instruction expects. N

The following instructions operate on two operands, one the shift amount and
the other the destination to shift. The shift amount k can be either an
immediate value, or the byte register %cl (and only that register!)

Instruction Effect Description

sal k, D D—D<<k Left shift

shl k, D D — D <<k Left shift (same as sal)
sar k, D D «— D >>ak Arithmetic right shift
shr k, D D<«—D>>_k Logical right shift

Examples:
shll $3, (%rax)
shrl %cl, (%rax,%rdx,8)
sarl $4,8(%rax)

39

Instruction Effect Description

sal k, D D—D<<k Left shift

shl k, D D — D <<k Left shift (same as sal)
sar k, D D «— D >>ak Arithmetic right shift
shr k, D D<«—D>>_k Logical right shift

* When using %cl, the width of what you are shifting determines how much of
%cl it is shifted by.

* For w bits of data, it looks at the low-order log2(w) bits of %cl to know how
much to shift.
* If %cl = Oxff, then: shlb shifts by 7 because it considers only the low-order log2(8) = 3

bits, which represent 7. shlw shifts by 15 because it considers only the low-order
log2(16) = 4 bits, which represent 15.

40

Assembly Exploration

* Let’s pull these different commands together and see how some C code we
write may be translated into assembly.

* Compiler Explorer is a handy website that lets you write C code and see its
assembly translation without having to log into Myth or compile/disassemble a
program. Let’s check it out!

* https://sodbolt.org/z/NLYhVf

41

https://godbolt.org/z/NLYhVf

Code Reference: add _to first

// Returns the sum of x and the first element in arr
int add to first(int x, int arr[]) {

int sum = Xx;

sum += arr[0];

return sum;

add_to first:
movl %edi, Z%eax
addl (%rsi), %eax
ret

42

Code Reference: full divide

// Returns x/y, stores remainder in location stored in remainder_ ptr

long full divide(long x, long y, long *remainder ptr) {
long quotient = x / vy;

long remainder = X % y;
*remainder ptr = remainder;

return quotient;

full divide:
movq %rdx, %rcx
movq %rdi, %rax
cqgto
idivqg %rsi
movq %rdx, (%rcx)
ret 43

Recap

* Recap: Assembly and mov
e Data and Register Sizes
* The lea Instruction

* Logical and Arithmetic Operations

Next time: Control flow in assembly

44

