
1

CS107: Lecture 12
Assembly: Arithmetic and Logic

Slides by Jerry Cain and Lisa Yan, who leveraged prior work by Nick Troccoli, Julie Zelenski, Marty Stepp, Cynthia Lee, Chris Gregg, and others.

Reading: B&O 3.5-3.6

2

CS107 Topic 6: How does a
computer interpret and
execute C programs?

3

Learning Assembly

Moving data
around

Arithmetic and
logical

operations
Control flow Function calls

2/10 Today 2/21 2/24

Reference Sheet: cs107.stanford.edu/resources/x86-64-reference.pdf
See more guides on Resources page of course website!

4

Learning Goals
• Learn how to perform arithmetic and logical operations in assembly

5

Plan For Today
• Recap: Assembly and mov
• Data and Register Sizes
• The lea Instruction
• Logical and Arithmetic Operations

6

Plan For Today
• Recap: Assembly and mov
• Data and Register Sizes
• The lea Instruction
• Logical and Arithmetic Operations

7

Assembly
• Assembly code is a human-readable form of the machine code your computer

executes when running your programs.
• Assembly works at a lower level of abstraction than C code. It works with 64-

bit spaces called registers that act as "scratch paper" for the processor.
• Operations in your C program ultimately are converted to operations that read

or write to registers and perform calculations on these registers. Each of these
assembly code instructions emulates something you wrote in C.

8

Our First Assembly
00000000004005b6 <sum_array>:

4005b6: ba 00 00 00 00 mov $0x0,%edx
4005bb: b8 00 00 00 00 mov $0x0,%eax
4005c0: eb 09 jmp 4005cb <sum_array+0x15>
4005c2: 48 63 ca movslq %edx,%rcx
4005c5: 03 04 8f add (%rdi,%rcx,4),%eax
4005c8: 83 c2 01 add $0x1,%edx
4005cb: 39 f2 cmp %esi,%edx
4005cd: 7c f3 jl 4005c2 <sum_array+0xc>
4005cf: f3 c3 repz retq

9

Our First Assembly
00000000004005b6 <sum_array>:

4005b6: ba 00 00 00 00 mov $0x0,%edx
4005bb: b8 00 00 00 00 mov $0x0,%eax
4005c0: eb 09 jmp 4005cb <sum_array+0x15>
4005c2: 48 63 ca movslq %edx,%rcx
4005c5: 03 04 8f add (%rdi,%rcx,4),%eax
4005c8: 83 c2 01 add $0x1,%edx
4005cb: 39 f2 cmp %esi,%edx
4005cd: 7c f3 jl 4005c2 <sum_array+0xc>
4005cf: f3 c3 repz retq

Each instruction has an
operation name (“opcode”).

10

Our First Assembly
00000000004005b6 <sum_array>:

4005b6: ba 00 00 00 00 mov $0x0,%edx
4005bb: b8 00 00 00 00 mov $0x0,%eax
4005c0: eb 09 jmp 4005cb <sum_array+0x15>
4005c2: 48 63 ca movslq %edx,%rcx
4005c5: 03 04 8f add (%rdi,%rcx,4),%eax
4005c8: 83 c2 01 add $0x1,%edx
4005cb: 39 f2 cmp %esi,%edx
4005cd: 7c f3 jl 4005c2 <sum_array+0xc>
4005cf: f3 c3 repz retqEach instruction can also have

arguments (“operands”).

11

mov
The mov instruction copies bytes from one place to another.

mov src,dst

The src and dst can each be one of:
• Immediate (constant value, like a number) (only src)
• Register
• Memory Location (at most one of src, dst)

12

Memory Location Syntax
Syntax Meaning

0x104 Address 0x104 (no $)

(%rax) What’s in %rax

4(%rax) What’s in %rax, plus 4

(%rax, %rdx) Sum of what’s in %rax and %rdx

4(%rax, %rdx) Sum of values in %rax and %rdx, plus 4

(, %rcx, 4) What’s in %rcx, times 4 (multiplier can be 1,
2, 4, 8)

(%rax, %rcx, 2) What’s in %rax, plus 2 times what’s in %rcx

8(%rax, %rcx, 2) What’s in %rax, plus 2 times what’s in %rcx,
plus 8

13

Operand Forms
Type Form Operand Value Name

Immediate $𝐼𝑚𝑚 𝐼𝑚𝑚 Immediate

Register 𝑟% R[𝑟%] Register

Memory 𝐼𝑚𝑚 M[𝐼𝑚𝑚] Absolute

Memory (𝑟%) M[R 𝑟%] Indirect

Memory 𝐼𝑚𝑚(𝑟,) M[𝐼𝑚𝑚 + R 𝑟,] Base + displacement

Memory (𝑟,, 𝑟/) M[R 𝑟, + R 𝑟/] Indexed

Memory 𝐼𝑚𝑚(𝑟,, 𝑟/) M[𝐼𝑚𝑚 + R 𝑟, + R 𝑟/] Indexed

Memory (, 𝑟/, 𝑠) M[R 𝑟/ 1 𝑠] Scaled indexed

Memory 𝐼𝑚𝑚(, 𝑟/, 𝑠) M[𝐼𝑚𝑚 + R 𝑟/ 1 𝑠] Scaled indexed

Memory (𝑟,, 𝑟/, 𝑠) M[R 𝑟, + R 𝑟/ 1 𝑠] Scaled indexed

Memory 𝐼𝑚𝑚(𝑟,, 𝑟/, 𝑠) M[𝐼𝑚𝑚 + R 𝑟, + R 𝑟/ 1 𝑠] Scaled indexed

Figure 3.3 from the book: “Operand forms. Operands can denote immediate (constant) values, register values,
or values from memory. The scaling factor s must be either. 1, 2, 4, or 8.”

14

Plan For Today
• Recap: Assembly and mov
• Data and Register Sizes
• The lea Instruction
• Logical and Arithmetic Operations
• Control

• Condition Codes
• Assembly Instructions

• Practice: Reverse-Engineering

15

Data Sizes
Data sizes in assembly have slightly different terminology to get used to:
• A byte is 1 byte.
• A word is 2 bytes.
• A double word is 4 bytes.
• A quad word is 8 bytes.

Assembly instructions can have suffixes to refer to these sizes:
• b means byte
• w means word
• l means double word
• q means quad word

16

Register Sizes
63Bit: 071531

%rax %eax %ax %al

%rbx %ebx %bx %bl

%rcx %ecx %cx %cl

%rdx %edx %dx %dl

%rsi %esi %si %sil

%rdi %edi %di %dil

17

Register Sizes

%rbp %ebp %bp %bpl

63Bit: 071531

%rsp %esp %sp %spl

%r8 %r8d %r8w %r8b

%r9 %r9d %r9w %r9b

%r10 %r10d %r10w %r10b

%r11 %r11d %r11w %r11b

18

Register Sizes

%r12 %r12d %r12w %r12b

63Bit: 071531

%r13 %r13d %r13w %r13b

%r14 %r14d %r14w %r14b

%r15 %r15d %r15w %r15b

19

Register Responsibilities
Some registers take on special responsibilities during program execution.
• %rax stores the return value
• %rdi stores the first parameter to a function
• %rsi stores the second parameter to a function
• %rdx stores the third parameter to a function
• %rip stores the address of the next instruction to execute
• %rsp stores the address of the current top of the stack

See the x86-64 Guide and Reference Sheet on the Resources webpage for more!

20

mov Variants
• mov can take an optional suffix (b, w, l, or q) that specifies the size of data to

move: movb, movw, movl, movq
• mov only updates the specific register bytes or memory locations indicated.

• Exception: movl writing to a register will also set high order 4 bytes to 0.

21

Practice: mov And Data Sizes
For each of the following mov instructions, determine the appropriate suffix
based on the operands (e.g. movb, movw, movl or movq).

1. mov_ %eax, (%rsp)
2. mov_ (%rax), %dx
3. mov_ $0xff, %bl
4. mov_ (%rsp,%rdx,4),%dl
5. mov_ (%rdx), %rax
6. mov_ %dx, (%rax)

22

Practice: mov And Data Sizes
For each of the following mov instructions, determine the appropriate suffix
based on the operands (e.g. movb, movw, movl or movq).

1. movl %eax, (%rsp)
2. movw (%rax), %dx
3. movb $0xff, %bl
4. movb (%rsp,%rdx,4),%dl
5. movq (%rdx), %rax
6. movw %dx, (%rax)

23

mov
• The movabsq instruction is used to write a 64-bit immediate (constant) value.
• The regular movq instruction can only take 32-bit immediate values.
• 64-bit immediate as source, only register as destination.

movabsq $0x0011223344556677, %rax

24

movz and movs
• There are two mov instructions that can be used to copy a smaller source to a

larger destination: movz and movs.
• movz fills the remaining bytes with zeros
• movs fills the remaining bytes by sign-extending the most significant bit in the

source.
• The source must be from memory or a register, and the destination is a

register.

25

movz and movs

Instruction Description

movzbw Move zero-extended byte to word

movzbl Move zero-extended byte to double word

movzwl Move zero-extended word to double word

movzbq Move zero-extended byte to quad word

movzwq Move zero-extended word to quad word

MOVZ S,R R ← ZeroExtend(S)

26

movz and movs

Instruction Description

movsbw Move sign-extended byte to word

movsbl Move sign-extended byte to double word

movswl Move sign-extended word to double word

movsbq Move sign-extended byte to quad word

movswq Move sign-extended word to quad word

movslq Move sign-extended double word to quad word

cltq Sign-extend %eax to %rax
%rax <- SignExtend(%eax)

MOVS S,R R ← SignExtend(S)

27

Plan For Today
• Recap: Assembly and mov
• Data and Register Sizes
• The lea Instruction
• Logical and Arithmetic Operations
• Practice: Reverse-Engineering

28

lea
The lea instruction copies an "effective address" from one place to another.

lea src,dst

Unlike mov, which copies data at the address src to the destination, lea copies
the value of src itself to the destination.

The syntax for the destinations is the same as
mov. The difference is how it handles the src.

29

lea vs. mov
Operands mov Interpretation lea Interpretation

6(%rax), %rdx Go to the address (6 + what’s in %rax),
and copy data there into %rdx

Copy 6 + what’s in %rax into %rdx.

30

lea vs. mov
Operands mov Interpretation lea Interpretation

6(%rax), %rdx Go to the address (6 + what’s in %rax),
and copy data there into %rdx

Copy 6 + what’s in %rax into %rdx.

(%rax, %rcx), %rdx Go to the address (what’s in %rax +
what’s in %rcx) and copy data there into
%rdx

Copy (what’s in %rax + what’s in %rcx)
into %rdx.

31

lea vs. mov
Operands mov Interpretation lea Interpretation

6(%rax), %rdx Go to the address (6 + what’s in %rax),
and copy data there into %rdx

Copy 6 + what’s in %rax into %rdx.

(%rax, %rcx), %rdx Go to the address (what’s in %rax +
what’s in %rcx) and copy data there into
%rdx

Copy (what’s in %rax + what’s in %rcx)
into %rdx.

(%rax, %rcx, 4), %rdx Go to the address (%rax + 4 * %rcx) and
copy data there into %rdx.

Copy (%rax + 4 * %rcx) into %rdx.

32

lea vs. mov
Operands mov Interpretation lea Interpretation

6(%rax), %rdx Go to the address (6 + what’s in %rax),
and copy data there into %rdx

Copy 6 + what’s in %rax into %rdx.

(%rax, %rcx), %rdx Go to the address (what’s in %rax +
what’s in %rcx) and copy data there into
%rdx

Copy (what’s in %rax + what’s in %rcx)
into %rdx.

(%rax, %rcx, 4), %rdx Go to the address (%rax + 4 * %rcx) and
copy data there into %rdx.

Copy (%rax + 4 * %rcx) into %rdx.

7(%rax, %rcx, 8), %rdx Go to the address (7 + %rax + 8 * %rcx)
and copy data there into %rdx.

Copy (7 + %rax + 8 * %rcx) into %rdx.

Unlike mov, which copies data at the address
src to the destination, lea copies the value of
src itself to the destination.

33

Plan For Today
• Recap: Assembly and mov
• Data and Register Sizes
• The lea Instruction
• Logical and Arithmetic Operations
• Practice: Reverse-Engineering

34

Unary Instructions
The following instructions operate on a single operand (register or memory):

Examples:
incq 16(%rax)
dec %rdx
not %rcx

Instruction Effect Description

inc D D ← D + 1 Increment

dec D D ← D - 1 Decrement

neg D D ← -D Negate

not D D ← ~D Complement

35

Binary Instructions
The following instructions operate on two operands (register or memory). Both
cannot be memory locations. Read it as, e.g. “Subtract S from D”:

Examples:
addq %rcx,(%rax)
xorq $16,(%rax, %rdx, 8)
subq %rdx,8(%rax)

Instruction Effect Description

add S, D D ← D + S Add

sub S, D D ← D - S Subtract

imul S, D D ← D * S Multiply

xor S, D D ← D ^ S Exclusive-or

or S, D D ← D | S Or

and S, D D ← D & S And

36

Large Multiplication
• Multiplying 64-bit numbers can produce a 128-bit result. How does x86-64

support this with only 64-bit registers?
• If you specify two operands to imul, it multiplies them together and truncates

until it fits in a 64-bit register.
imul S, D D ← D * S

• If you specify one operand, it multiplies that by %rax, and splits the product
across 2 registers. It puts the high-order 64 bits in %rdx and the low-order 64
bits in %rax.

Instruction Effect Description

imulq S R[%rdx]:R[%rax] ← S x R[%rax] Signed full multiply

mulq S R[%rdx]:R[%rax] ← S x R[%rax] Unsigned full multiply

37

Division and Remainder

• Terminology: dividend / divisor = quotient + remainder
• x86-64 supports dividing up to a 128-bit value by a 64-bit value.
• The high-order 64 bits of the dividend are in %rdx, and the low-order 64 bits

are in %rax. The divisor is the operand to the instruction.
• The quotient is stored in %rax, and the remainder in %rdx.

Instruction Effect Description
cqto R[%rdx]:R[%rax] ⟵ SignExtend(R[%rax]) Convert to oct word
idivq S R[%rdx] ⟵ R[%rdx]:R[%rax] mod S; Signed divide

R[%rax] ⟵ R[%rdx]:R[%rax] ÷ S
divq S R[%rdx] ⟵ R[%rdx]:R[%rax] mod S; Unsigned divide

R[%rax] ⟵ R[%rdx]:R[%rax] ÷ S

38

Division and Remainder

• Terminology: dividend / divisor = quotient + remainder
• The high-order 64 bits of the dividend are in %rdx, and the low-order 64 bits

are in %rax. The divisor is the operand to the instruction.
• Most division uses only 64 bit dividends. The cqto instruction sign-extends the

64-bit value in %rax into %rdx to fill both registers with the dividend, as the
division instruction expects.

Instruction Effect Description
cqto R[%rdx]:R[%rax] ⟵ SignExtend(R[%rax]) Convert to oct word
idivq S R[%rdx] ⟵ R[%rdx]:R[%rax] mod S; Signed divide

R[%rax] ⟵ R[%rdx]:R[%rax] ÷ S
divq S R[%rdx] ⟵ R[%rdx]:R[%rax] mod S; Unsigned divide

R[%rax] ⟵ R[%rdx]:R[%rax] ÷ S

39

Shift Instructions
The following instructions operate on two operands, one the shift amount and
the other the destination to shift. The shift amount k can be either an
immediate value, or the byte register %cl (and only that register!)

Examples:
shll $3,(%rax)
shrl %cl,(%rax,%rdx,8)
sarl $4,8(%rax)

Instruction Effect Description
sal k, D D ⟵ D << k Left shift
shl k, D D ⟵ D << k Left shift (same as sal)
sar k, D D ⟵ D >>A k Arithmetic right shift
shr k, D D ⟵ D >>L k Logical right shift

40

Shift Amount

• When using %cl, the width of what you are shifting determines how much of
%cl it is shifted by.

• For w bits of data, it looks at the low-order log2(w) bits of %cl to know how
much to shift.

• If %cl = 0xff, then: shlb shifts by 7 because it considers only the low-order log2(8) = 3
bits, which represent 7. shlw shifts by 15 because it considers only the low-order
log2(16) = 4 bits, which represent 15.

Instruction Effect Description
sal k, D D ⟵ D << k Left shift
shl k, D D ⟵ D << k Left shift (same as sal)
sar k, D D ⟵ D >>A k Arithmetic right shift
shr k, D D ⟵ D >>L k Logical right shift

41

Assembly Exploration
• Let’s pull these different commands together and see how some C code we

write may be translated into assembly.
• Compiler Explorer is a handy website that lets you write C code and see its

assembly translation without having to log into Myth or compile/disassemble a
program. Let’s check it out!

• https://godbolt.org/z/NLYhVf

https://godbolt.org/z/NLYhVf

42

Code Reference: add_to_first
// Returns the sum of x and the first element in arr
int add_to_first(int x, int arr[]) {

int sum = x;
sum += arr[0];
return sum;

}

add_to_first:
movl %edi, %eax
addl (%rsi), %eax
ret

43

Code Reference: full_divide
// Returns x/y, stores remainder in location stored in remainder_ptr
long full_divide(long x, long y, long *remainder_ptr) {

long quotient = x / y;
long remainder = x % y;
*remainder_ptr = remainder;
return quotient;

}

full_divide:
movq %rdx, %rcx
movq %rdi, %rax
cqto
idivq %rsi
movq %rdx, (%rcx)
ret

44

Recap
• Recap: Assembly and mov
• Data and Register Sizes
• The lea Instruction
• Logical and Arithmetic Operations

Next time: Control flow in assembly

