CS107 Lecture 13

Assembly: Control Flow

reading:
B&O 3.6

Slides by Jerry Cain and Lisa Yan, who leveraged prior work by Nick Troccoli, Julie Zelenski, Marty Stepp, Cynthia Lee, Chris Gregg, and others. 1



Reflections + Warm-up

Reflections: Share your CS107 midterm experience with your neighbor:
* What is one concept/skill you are comfortable with?
* What is one concept/skill you can work on for the final exam?

* Examples: logical operations, pointer arithmetic, generics,
understanding the spec, studying an assignment,
gdb, time management, ...

Warm-up: What'’s the difference between 1lea and mov?

movq -0x8(%rdi,%rsi,8), %rax leaq -0x8(%rdi,%rsi,8), %rax
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What's the difference
between 1lea and mov?

movq -0x8(%rdi,%rsi,8), %rax

Y%rax 0x1234

long last elt(long arr[], long nelems)

{
}

return arr[nelems - 1];

%rdi Ox7fe850 Ox1234

OxCDEF

leaq -0x8(%rdi,%rsi,8), %rax

%rax Ox7fe860

long *1last _ptr(long arr[], long nelems)
{

¥

return arr + (nelems - 1);

lea makes use of indirect addressing to perform
arithmetic with fewer instructions.




Register Responsibilities

Some registers take on special responsibilities during program execution.
* %rax stores the return value
* %rdi stores the first parameter to a function

* %rsi stores the second parameter to a function

See the x86-64 Guide and Reference Sheet on the Resources webpage for more!

https://web.stanford.edu/class/cs107/resources/x86-64-reference.pdf



https://web.stanford.edu/class/cs107/resources/x86-64-reference.pdf

Learning Assembly

Arithmetic and
logical Control flow Function calls
operations

2/10 2/17 Today 2/24

(get excited:
learn how instructions
execute in order)

Moving data
around




Register Responsibilities

Some registers take on special responsibilities during program execution.

* %rip stores the address of the next instruction to execute < :

See the x86-64 Guide and Reference Sheet on the Resources webpage for more!



Plan For Today

* Control Flow
* Condition Codes
* Assembly Instructions

e Conditional branches: If statements
* Announcements

* Loops
* While loops
* For loops



Plan For Today

* Control Flow
* Condition Codes
* Assembly Instructions



What does it mean for a program
to execute?



So far:
* Program values can be stored in memory or registers.

* Assembly instructions read/write values back and forth
between registers (on the CPU) and memory.

* Assembly instructions are also stored in memory.

Today:

e Who controls the instructions?
How do we know what to do now or next?

Answer:
* The program counter (PC), %rip.
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The program counter %rip

00000000004004ed <loop>:
4004ed: 55 push  %rbp

4004f1: 7 45 fc 00 00 00 00  movl  $0x0, -0x4(%rbp)

400418 83 45 fc o1 addl  $0x1,-0x4(%rbp)
4004fc: eb fa jmp 400418 <loop+0xb>

The program counter (PC), known as
%rip in x86-64, stores the address in
memory of the next instruction to be
executed.

%rip ©x4004ed
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- B ole - 0 0 4004fd
4004fc
4004fb

00000000004004ed <loop>: 4004F3
4004ed: 55 push 40049
400418

4004f1: 7 45 fc 00 00 00 00  movl jggjz
400418 83 45 fc o1 addl 40045
4004fc:: eb fa jmp A004f4
400413

. 400412
Special hardware sets the program poonl

counter to the next instruction:

fa

eb

01

fc

45

83

00

00

00

00

fc

45

c/

%rip += size of bytes of current instruction

%rip Ox4004ed 1064ed

55
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- B ole - 0 0 4004fd
4004fc
4004fb

00000000004004ed <loop>: 4004F3
4004ed: 55 push 40049
400418

4004f1: 7 45 fc 00 00 00 00  movl jggjz
400418 83 45 fc o1 addl 40045
4004fc:: eb fa jmp A004f4
400413

. 400412
Special hardware sets the program poonl

counter to the next instruction:

fa

eb

01

fc

45

83

00

00

00

00

fc

45

c/

%rip += size of bytes of current instruction

%rip Ox4004ee 40040d

55
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00000000004004ed <loop>:
4004ed: 55

40041 : c7 45 fc 00 00 0O 00
400418 : 83 45 fc 01
4004fc: eb fa

Special hardware sets the program
counter to the next instruction:

%rip += size of bytes of current instruction

%rip 0x4004f1

push

mov1l
addl
Jjmp
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4004ed

fa

eb

01

fc

45

83

00

00

00

00

fc

45

c/

55

14



00000000004004ed <loop>:
4004ed: 55

40041 : c7 45 fc 00 00 0O 00
400418 : 83 45 fc 01
4004fc: eb fa

Special hardware sets the program
counter to the next instruction:

%rip += size of bytes of current instruction

Yorip

push

mov1l
addl
Jjmp

Ox400418
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00000000004004ed <loop>:
4004ed: 55

40041 : c7 45 fc 00 00 0O 00
400418 : 83 45 fc 01
4004fc: eb fa

Special hardware sets the program
counter to the next instruction:

%rip += size of bytes of current instruction

%rip Ox4004fc

push

mov1l
addl
Jjmp

4004+d
4004fc

40041b
4004fa
400419
400418
400417
400416
400415
400414
400413
400412
400411

4004ed
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00

00

00
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“Interfering” with %rip

1. How do we repeat instructions in a loop?



00000000004004ed <loop>:
4004ed: push  %rbp

400411 movl  $0x0,-0x4(%rbp)
400418 addl  $0x1,-0x4(%rbp)
4004fc: jmp 400418 <loop+0xb>

jmp is an unconditional jump that sets
the program counter to the jump target.

%rip Ox4004fc
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- 0 0 4004Fd

4004fc

4004fb

00000000004004ed <loop>: 4004F3
4004ed: push  %rbp 40049
40048

4004f1: movl  $0x0, -0x4(%rbp) jggjz
40048 addl  $0x1, -0x4(%rbp) AOBAES
4004fc: jmp 400418 <loop+0xb> 4004F4
40043

: : diti I that set 40042
Jjmp Is an unconditional jump that sets roonil

the program counter to the jump target.

%rip Ox400418 1004ed
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00000000004004ed <loop>:
4004ed: push  %rbp

400411 movl  $0x0,-0x4(%rbp)
400418 addl  $0x1,-0x4(%rbp)
4004fc: jmp 400418 <loop+0xb>

jmp is an unconditional jump that sets
the program counter to the jump target.

%rip Ox4004fc
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4004fc

40041b
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- 0 0 4004Fd

4004fc

4004fb

00000000004004ed <loop>: 4004F3
4004ed: push  %rbp 40049
40048

4004f1: movl  $0x0, -0x4(%rbp) jggjz
40048 addl  $0x1, -0x4(%rbp) AOBAES
4004fc: jmp 400418 <loop+0xb> 4004F4
40043

: : diti I that set 40042
Jjmp Is an unconditional jump that sets roonil

the program counter to the jump target.

%rip Ox400418 1004ed

| control_intro.c

fa

eb

01

fc

45

83

00

00

00

00

fc

45

c/

55

21



“Interfering” with %rip

1. How do we repeat instructions in a loop?

jmp [target]

e Gives us an infinite loop

A 1l-step unconditional jump (always
jump when we execute this instruction)

What if we want a conditional jump?

22



“Interfering” with %rip

2. How do we skip instructions

in an if/if-else statement? Answer:
. — condition codes
3. How do we loop while + conditional jumps!

some condition is true?

23



Typical 2-instruction control flow

Compare two values to write condition codes
(implicit destination register)

cmp S1, S2
test S1, S2

Conditionally jump based on reading condition codes
(implicit source register)

je/jz, jne/jnz, jl, jg, ...,

Condition codes are special registers that auto-store the in gdb:
results of the most recent arith/logical operation. %eflags

24



Condition codes

Compare two values to write condition codes
(implicit destination register)

cmp S1, S2 S2 - S1 Do not store result;
test S1, S2 S2 & S1 just set condition codes

Condition codes are single-bit registers, packed into %eflags for convenience.
If T is the result of cmp/test arithmetic operations:

e ZF =zero flag (t = 0)

 SF =sign flag (t < 9)

e CF =carry flag (there was a carry out of MSB¥*, i.e., unsigned overflow)
e OF = overflow flag (MSB* changed from O to 1, i.e., signed overflow)

*MSB: Most Significant Bit 25



Exercise: Condition codes

00000000004004d6 <if then>:

. %edi Ox5
4004d6: 83 ff 86 cmp  $0x6,%edi = x

1. After the cmp instruction, which of the below condition codes are set?
e ZF =zeroflag (t = 9)
* SF =signflag (t < 9)
* CF = carry flag (unsigned overflow)
* OF = overflow flag (signed overflow)

2. After the cmp instruction, what is %edi?

26



Exercise: Condition codes

00000000004004d6 <if then>:

. %edi Ox5
4004d6: 83 ff 86 cmp  $0x6,%edi = x

1. After the cmp instruction, which of the below condition codes are set?
e ZF =zeroflag (t = 9)
 SF =signflag (t < 9)
* CF = carry flag (unsigned overflow)  (fixedsince lecture)
* OF = overflow flag (signed overflow)

2. After the cmp instruction, what is %ed1? %edi is unchanged

27



Step 1, Control flow: cmp, test A

1. Compare two values to write condition codes
(implicit destination register)

cmp S1, S2 S2 - S1
test S1, S2 S2 & S1

I Note the operand order!

cmp/test do not store the result (unlike sub/and)!
They just set condition codes.

Cool tip: testg %rax,srax checks if %rax is positive, negative, or zero.

28



Step 2, Control flow: Conditional jump

2. Conditionally jump based on reading condition codes
(implicit source register)
je target jump if ZF is 1

* Target is a memory address—the address of instruction.
* We jump to target if specific condition codes are on (ZF, SF, CF, OF).

* Jumps are also known as branch instructions.

29



Exercise 1: Conditional jump

je target jump if ZF is 1

Let %ed1i store 0x10. Will we jump in the following cases?  %edi

1. cmp $0x10,%edi
je 40056F
add $0x1,%edi

2. test $0x10,%edi
je  40056f p
add  $ox1,%edi s

30



Exercise 1: Conditional jump

je target jump if ZF is 1

Let %ed1i store 0x10. Will we jump in the following cases?  %edi

1. cmp $0x10,%edi _
je 40056F S2-S1==0, so jump

add $0x1,%edi

2. test $0x10,%edi
je  40056f S2 & S1 =0, so don’t jump
add $0x1,%edi

31



Step 2, Control flow: conditional jump

Conditionally jump based on reading condition codes
(implicit source register)

Instruction Synonym Set Condition

je Label jz Equal / zero (ZF = 1)

jne Label jnz Not equal / not zero (ZF = 0)

js Label Negative (SF = 1)

jns Label Nonnegative (SF = 0)

jg Label jnle Greater (signed >) (SF = 0 and SF = OF)

jge Label jnl Greater or equal (signed >=) (SF = OF)

jl Label jnge Less (signed <) (SF != OF)

jle Label jng Less or equal (signed <=) (ZF = 1 or SF! = OF)
ja Label jnbe Above (unsigned >) (CF =0 and ZF = 0)

jae Label jnb Above or equal (unsigned >=) (CF = 0)

jb Label jnae Below (unsigned <) (CF = 1)

jbe Label jna Below or equal (unsigned <=) (CF=1or ZF =1) -




Exercise 2: Conditional jump

00000000004004d6 <if then>:

4004d6: 83 ff 06 cmp  $0x6,%edi oed! %>
4004d9: 75 03 jne 4004de <if then+0x8>
400rdb: 83 c7 01 add $0x1, %edi
4004de: 8d 04 3f lea (%rdi,%rdi,1),%eax
4004el: c3 retq
1. What is the value of %rip after 2. What is the value of %eax
executing the jne instruction? when we hit the retq instruction?
A. 4004d9 A. 4004el
5. 4004db B. 0Ox2
C. 4004ae C. Oxa —~
D. Other D. OXc s
£.  Other ‘
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Condition code details and

Reference

other conditional ops

e Condition codes are set for many operations other than test and set, and
there are many details as to which instructions set what condition codes.

* There exist conditional operators other than jump: setx and cmov.

| want to cover more conceptually challenging material in today’s lecture, so the
following slides are here for your reference.

Please read B&O 3.6 for more information if you find it useful.
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Details about condition codes reference

* Different combinations of condition codes can indicate different things.
* To check equality, we can cmp and look at the ZF flag (a = b meansa—b =0).
* To check sign of %eax, we can test %eax,%eax and look at the SF or ZF flag

* Previously-discussed arithmetic and logical instructions update these flags.
lea does not (it was intended only for address computations).

* Logical operations (xor, etc.) set carry and overflow flags to zero.

* Shift operations set the carry flag to the last bit shifted out and set the
overflow flag to zero.

* For more complicated reasons, inc and dec set the overflow and zero flags, but
leave the carry flag unchanged.

35



set: Read condition codes  reference

set instructions conditionally set a byte to O or 1.

e Reads current state of flags

e Destination is a single-byte sub-register (e.g., %al)
* Does not perturb other bytes of register
 Typically followed by movzbl to zero those bytes

cmp $0xf,%edi
setle %al

movzbl %al, %eax
retqg

int small(int x) {
return x < 16;

}

36



set: Read condition codes  reference

Instruction Synonym Set Condition (1 if true, O if false)
sete D setz Equal / zero

setne D setnz Not equal / not zero

sets D Negative

setns D Nonnegative

setg D setnle Greater (signed >)

setge D setnl Greater or equal (signed >=)
setl D setnge Less (signed <)

setle D setng Less or equal (signed <=)
seta D setnbe Above (unsigned >)

setae D setnb Above or equal (unsigned >=)
setb D sethae Below (unsigned <)

setbe D setha Below or equal (unsigned <=)

37



cmov: Conditional move Reference

cmovx src,dst conditionally moves data in src to data in dst.

* Mov src to dst if condition x holds; no change otherwise

* src is memory address/register, dst is register

* May be more efficient than branch (i.e., jump)

e Often seen with C ternary operator: result = test ? then: else;

. . . cm %edi,sesi
int max(int x, int y) { mos Vedi, %eax
o] k) o

return x > P X Y .
y Y cmovge %esi, %eax

) retg

38



Instruction

cmov: Conditional move

Synonym

Move Condition

cmove S,R cmovz Equal / zero (ZF = 1)

cmovhe S,R cmovnz Not equal / not zero (ZF = 0)

cmovs S,R Negative (SF=1)

cmovnhs S,R Nonnegative (SF = 0)

cmovg S,R cmovnle Greater (signed >) (SF = 0 and SF = OF)
cmovge S,R cmovnl Greater or equal (signed >=) (SF = OF)
cmovl S,R cmovnge Less (signed <) (SF != OF)

cmovle S,R cmovng Less or equal (signed <=) (ZF = 1 or SF! = OF)
cmova S,R cmovnbe Above (unsigned >) (CF = 0 and ZF = 0)
cmovae S,R cmovnb Above or equal (unsigned >=) (CF = 0)
cmovb S,R cmovnae Below (unsigned <) (CF = 1)

cmovbe S,R cmovna Below or equal (unsigned <=) (CF=1 or ZF = 1)

Reference

39



lab6’s conditional move Reference

int signed division(int x) {
return x / 4;

}
signed division:
leal 3(%rdi), %eax Put x + 3 into %eax
testl %edl, %»edi Check the sign of x
cmovns %edi, 7%eax If x is positive, put x into %eax
sarl $2, %eax Divide %eax by 4

ret

40



Condition code details and

Reference

other conditional ops

(end of reference slides)

Please read B&O 3.6 for more information if you find it useful.

41



Plan For Today

e Conditional branches: If statements

42



“Interfering” with %rip

2. How do we skip instructions
in an if/if-else statement?



The code we've been working with

00000000004004d6 <if then>:
4004d6: 83 ff 06 cmp $0x6,%edi
4004d9: 75 03 jne 4004de <if then+0x8>
400rdb: 83 c7 01 add $0x1, %edi
4004de: 8d 04 3f 1lea (%rdi,%rdi,1),%eax
4004el: c3 retq

This code can be translated into C function code
containing a branch statement (1f)!

44



Practice: Fill In The Blank

int if then(int paraml) 0©00000000004004d6 <if then>:

{ 4004d6:
if ( ) { 4004d9:
; 4004db:
} 4004de:
4004el.
return 5
}

cmp  $0x6,%edi

jne 4004de

add $0x1,%edi

lea (%rdi,%rdi,1),%eax
retg

45



Practice: Fill In The Blank

int if then(int paraml) 0©00000000004004d6 <if then>:

{ 4004d6:
if (paraml == 6 ) { 4004d9:
paraml++; 4004db :

} 4004de:
4004el.:

return paraml * 2;

¥

cmp  $0x6,%edi

jne 4004de

add $0x1,%edi

lea (%rdi,%rdi,1),%eax
retg

46



Plan For Today

* Anhouncements

47



Joke break

Hacking Pokemon Blue into Pong
* Instructions are bytes in memory!
* Find an exploit that lets you change the
program counter:
“8F is an item executing machine
code starting from SD163
(Number of Pokemon) upon use."
*  Write executable code by navigating the
world and moving around items



https://www.youtube.com/watch%3Fv=D3EvpRHL_vk

Announcements

* Midterm scores will be on website gradebook after regrade deadline closes on
Monday 2/24, 11:59pm

* Note about makeup labs:

* If you cannot attend your assigned lab, you may go to a different lab that same week *if
space is available*.

* We want to note that we may have to turn people away who are making up a lab if there
is not enough space to accommodate them.

* |f you need to attend a makeup, you should plan ahead accordingly to ensure you can
get lab credit for that week.

* Assighment 6 released today ©

49



Preparing for assign6

* atm.c Security and Robustness
* Binary Bomb

Binary Bomb is like an escape game:
 Secret codes (assembly instructions)
* Fun tools (gdb, objdump)

* Unlock each level to continue

e Catharsis with successful escape
* Time limit (due M 3/2, grace W 3/4)

* Please start early.
* Please use gdb.

* Read the textbook (B&O) if you find it useful.

-~
’

4-’;"
z";‘;.»'

Escape

?crom they ©

“O 0 8
P z ”’Wh

was been sef op s, 'OUZ‘@
\“m peluse If g -na 2o rs

4 andco"

wholesome CS education!
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Tips for assign6 ) 0.0 ¢

* Registers do not have addresses. They are not located in memory.

* Draw pictures clearly depicting what is in memory and what is in registers.
* Deadlisting (reading assembly without executing anything) will be tedious.
e Use gdb.

» 1lea does not access memory; it performs arithmetic and stores the result.

e test/cmp sl1,s2 worklike and/sub sl1,s2. However, test/cmp do not
store the result anywhere; they only update condition codes.

e test/cmp + conditional jump can often be translated into a single C control
statement.

e testqg %rax, %raxchecksif%raxis positive, negative, or zero.
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Plan For Today

e Conditional branches: If statements

52



Common If-Else Construction

If-Else In C If-Else In Assembly pseudocode
if (arg > 3) { Test
ret = 10; Jump to else-body if test fails
If-body
} elset{_ 0 Jump to past else-body
ret =9, Else-body
} Past else body

ret++;

53



Practice: Fill in the Blank

If-Else In C 400552 <+0>: cmp $0x3,%edi
if ( ) { 400555 <+3>: Jjle 0Ox40055e <if_else+12>
. 400557 <+5>: mov $0xa, %eax
? 40055c <+10>: jmp ©Ox400563 <if else+17>
} else { 40055e <+12>: mov $0x0, %eax
’ 400563 <+17>: add $0x1,%eax
}
>
If-Else In Assembly pseudocode
Test
Jump to else-body if test fails
If-body
Jump to past else-body PN
Else-body -

Past else body -

54

ifelse.c




Practice: Fill in the Blank

If-Else In C 400552 <+0>: cmp $0x3,%edi
if ( arg > 3 ) { 400555 <+3>: Jle @x46@:55e <if_else+12>
ret = 10; 400557 <+5>: mov $0xa, %eax .
40055c <+10>: jmp ©Ox400563 <if else+l7>
} else { 40055e <+12>: mov $0x0, %eax
ret = 9; 400563 <+17>: add $0x1,%eax
}
ret++;
If-Else In Assembly pseudocode
Test
Jump to else-body if test fails
If-body
Jump to past else-body
Else-body

Past else body

ifelse.c
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“Interfering” with %rip

3. How do we loop while
some condition is true?



Plan For Today

* Loops
* While loops
* For loops
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While loops and assembly

void loop() { 00000000004004d6 <loop>:
int 1 = 0; 4004d6 <+0>: mov $0x0,%eax
while (i < 100) { 4004db <+5>: Jjmp 4004e0 <loop+0xa>
i++; 4004dd <+7>: add $0x1,%eax
} 4004e0 <+10>: cmp $0x63,%eax
} 4004e3 <+13>: jle 4004dd <loop+0x7>

4004e5 <+15>: repz retg

1. Which register is C code’s 17?

What is the unconditional jmp instruction doing?

3. What are the cmp and jle instructions doing? K? )
(j1le: jump less equal; signed <=)

58
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while_loop

while loop.c




While loops and assembly: Recap

void loop() { 00000000004004d6 <loop>:
int 1 = 0; 4004d6 <+0>: mov $0x0,%eax
while (i < 100) 4004db <+5>: Jjmp 4004e0 <loop+0xa>
i++; 4004dd <+7>: add $0x1,%eax
} 4004e0 <+10>: cmp $0x63,%eax
} 4004e3 <+13>: jle 4004dd <loop+0x7>

4004e5 <+15>: repz retg

1. Jumps to while

. 2. If %eax — 0x63 <=0 (i.e., %eax <= 99),
loop conditional k

then jump to execute loop body.
Else, execute next instruction (i.e., exit loop)

60



gdb tips ). 0. 0.1

(ctrl-x a: exit,

layout split (ir1-1: resize) View C, assembly, and gdb (lab6)

info reg Print all registers

p $eax Print register value

p $eflags Print all condition codes currently set

b *0x400546 Set breakpoint at assembly instruction
b *0x400550 if $eax > 98 Set conditional breakpoint

ni Next assembly instruction

si Step into assembly instruction (will step

into function calls) 61



Common While Loop Construction W

while (1 < 100) { 4004db <+5>: Jjmp 4004e0 <loop+0xa>

i++; 4004dd <+7>: add $0x1,%eax
} 4004e0 <+10>: cmp $0x63,%eax

4004e3 <+13>: jle 4004dd <loop+0x7>

C pseudocode Assembly pseudocode

while (test) { Jump to test
body Body

} Test

Jump to body if success
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Plan For Today

* For loops



Common For Loop Construction

C For loop Assembly pseudocode
for (init; test; update) { Init
body Jump to test
} Body
Update
Test

Jump to body if success

C Equivalent While Loop
init
while(test) { For loops and while loops are

body treated (essentially) the same
update

1 when compiled down to assembly.
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Back to Our First Assembly

int sum_array(int arr[], int nelems) { |1  \Which register is C code’s sum?
int sum = 0; : : : .
for (int i = @; i < nelems; i++) { |2- Which registeris Ccode’s 1?

} sum += arr[i]; 3. Which assembly instruction is C
return sum: code’s sum += arr[i]?
} 4. What are the cmp and j1

instructions doing?
00000000004005b6 <sum_array>: 5

4005b6: mov $0x0, %edx (31: jump less; signed <)
4005bb<+5>: mov $0x0, %eax

4005c0<+10>: jmp 4005cb <sum_array+21>
4005c2<+12>: movslg %edx,%rcx
4005c5<+15>: add (%rdi,%rcx,4),%eax

4005c8<+18>:  add $0x1, %edx =N
4005cb<+21>:  cmp %esi,%edx
4005cd<+23>: jl 4005c2 <sum_array+12> -

4005ct<+25>: repz retq 65
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gdb tips ). 0. 0.1

p/X $rdi
p/t $rsi

X $rdi
x/4bx $rdi
X/4wx $rdi

Print register value in hex
Print register value in binary

Examine the byte stored at this address
Examine 4 bytes starting at this address
Examine 4 ints starting at this address
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Plan For Today

* Optimizations
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Optimizations you’ll see

nop
* nop/nopl are “no-op” instructions — they do nothing!
* Intent: Make functions align on address boundaries that are nice multiples of 8.

mov %ebx, %ebx

e Zeros out the top 32 register bits
(because a mov on an e-register zeros out rest of 64 bits).

xor %ebx,%ebx

e Optimizes for performance as well as code size (read more here):

b8 00 00 00 00 mov $0x0,%eax
31 cO XOr %eax,neax
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https://stackoverflow.com/questions/33666617/what-is-the-best-way-to-set-a-register-to-zero-in-x86-assembly-xor-mov-or-and/33668295

Loop optimization in GCC

C For loop
for (init; test; update) {

body
}

?

GCC assembly pseudocode Possible alternative?
Init Init
Jump to test Test
Body Jump past loop is fails
Update Body
Test Update

Jump to body if success Jump to Test
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Loop optimization in GCC

C For loop Are the number of instructions executed
for (int i = 0; i < n; i++) { in the left greater, less than, or equal to
; those executed on the right if...
) 1. n=07
2. n=10007?
GCC assembly pseudocode Possible alternative?
Init Init
Jump to test Test
Body Jump past loop is fails
Update Body
Test Update (?:«

Jump to body if success Jump to Test

/1



Optimizing

Instruction Counts

* Both versions have the same static instruction count (# of written instructions).

e But they have different dynamic instruction counts (# of executed instructions

when program is run).

* If n=0, right (possible alternative) is best b/c fewer instructions
* If nis large, left (gcc is best) is best b/c fewer instructions

* The compiler may emit a static

instruction count that is several times longer

than an alternative, but it may be more efficient if loop executes many times.

* Does the compiler know that a

* So what if our code had loops t
How do we know when gcc ma

oop will execute many times? (in general, no)
nat always execute a small number of times?

kes a bad decision?

* (take EE108, EE180, CS316 for more!)
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Bonus assembly exercises



Practice: Parameters

0000000PPB4005ac <sum examplel>:

4005bd: 8b 45 eS8 mov %esi,%eax
4005c3: 01 do add %edi,%eax
4005cc: c3 retq

Which of the following is most likely to have generated the above assembly?
// B)

/] A)
void sum_examplel() { int sum_examplel(int x, int y) {
int x; return x + y;
int y; }
int sum = X + y;
}
/] C)
void sum_examplel(int x, int y) { K? v
=

int sum = x + y;
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Practice: Parameters

0000000PPB4005ac <sum examplel>:

4005bd: 8b 45 eS8 mov %esi,%eax
4005c3: 01 do add %edi,%eax
4005cc: c3 retq

Which of the following is most likely to have generated the above assembly?
// B)

/] A)

void sum_examplel() { int sum _examplel(int x, int y) {
int x; return x + y;
int y; }
int sum = X + y;

}

// C)

void sum_examplel(int x, int y) { E3

int sum = x + y;

}
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Practice: Intermediates/registers

0000000400578 <sum example2>:

400578: 8b 47 Oc mov ©Oxc(%rdi),%eax
40057b: 03 07 add (%rdi),%eax
40057d: 2b 47 18 sub ©x18(%rdi),%eax
400580: C3 retq
int sum_example2(int arr[]) { 1. What memory location, register, or
int sum = @; immediate above represents the C code’s
sum += arr[0]; sum variable?
sum += arr[3];
sum -= arr[6]; 2. What memory location, register, or
return sum; immediate in the assembly code above

represents the C code’s 6 (as in arr[6])? \??D

bonus.c
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Practice: Intermediates/registers

0000000400578 <sum example2>:

400578: 8b 47 Oc mov ©Oxc(%rdi),%eax
40057b: 03 07 add (%rdi),%eax
40057d: 2b 47 18 sub ©x18(%rdi),%eax
400580: C3 retq
int sum_example2(int arr[]) { 1. What memory location, register, or
int sum = @; immediate above represents the C code’s
sum += arr[0]; sum variable?
sum += arr[3]; %eax
sum -= arr[6]; 2. What memory location, register, or
return sum; immediate in the assembly code above
} represents the C code’s 6 (as in arr[6])?

ox18



Practice: while loop

long loop(long a, long b) { loop:

long result = ; movl $1, %eax
while ( ) { jmp . L2
result = ; .L3
a = ; leag (%rdi,%rsi), %rdx

imulg %rdx, %rax
addg $1, %rdi

}

return result;

A label for this instruction location. %rsi, %rdi
e Used in place of instruction .

addresses in assembly files (.s). rep; ret
* These labels get compiled to

addresses in object files (.0).

>
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Practice: while loop

C Code What does this assembly code translate to?
long loop(long a, long b) { // a 1in %rdi, b in %rsi
long result = ; loop: )
while ( ) { rpovl $1, %eax
1t = . Jmp .L2
resu = ) L3
a = > leag (%rdi,%rsi), %rdx
} imulg %rdx, %rax
return result; addg $1, %rdi
} .L2
cmpq %rsi, »rdi
Assembly pseudocode jl .L3
Jump to test rep; ret
Body (70 &)
Test K1~
Jump to body if success What does this assembly code translate to? ‘




Practice: while loop

C Code What does this assembly code translate to?
long loop(long a, long b) { // a 1in %rdi, b in %rsi
long result = 1 loop: o
while ( a <b ) { vt By e
result = presult*(a+b); |3 '
a= a+1 ; leaq (%rdi,%rsi), %rdx
} imulg %rdx, %rax
return result; addg $1, %rdi
} .L2
cmpq %rsi, »rdi
Assembly pseudocode jl .L3
Jump to test rep; ret
Body
Test
Jump to body if success What does this assembly code translate to?
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