
1

CS107 Lecture 13
Assembly: Control Flow

Slides by Jerry Cain and Lisa Yan, who leveraged prior work by Nick Troccoli, Julie Zelenski, Marty Stepp, Cynthia Lee, Chris Gregg, and others.

reading:

B&O 3.6

2

Reflections + Warm-up
Reflections: Share your CS107 midterm experience with your neighbor:
• What is one concept/skill you are comfortable with?
• What is one concept/skill you can work on for the final exam?
• Examples: logical operations, pointer arithmetic, generics,

understanding the spec, studying an assignment,
gdb, time management, …

Warm-up: What’s the difference between lea and mov?

!
movq -0x8(%rdi,%rsi,8), %rax leaq -0x8(%rdi,%rsi,8), %rax

3

Warm-up

movq -0x8(%rdi,%rsi,8), %rax

long last_elt(long arr[], long nelems)
{

return arr[nelems - 1];
}

leaq -0x8(%rdi,%rsi,8), %rax

long *last_ptr(long arr[], long nelems)
{

return arr + (nelems - 1);
}

0x7fe850%rdi

3%rsi

What’s the difference
between lea and mov?

lea makes use of indirect addressing to perform
arithmeEc with fewer instrucEons.

0x1234

0xCDEF

0xABCD

0x7fe860
0x7fe858
0x7fe850

0x1234%rax 0x7fe860%rax

4

Register Responsibilities
Some registers take on special responsibilities during program execution.
• %rax stores the return value
• %rdi stores the first parameter to a function
• %rsi stores the second parameter to a function
• %rdx stores the third parameter to a function
• %rip stores the address of the next instruction to execute
• %rsp stores the address of the current top of the stack

See the x86-64 Guide and Reference Sheet on the Resources webpage for more!

Review

https://web.stanford.edu/class/cs107/resources/x86-64-reference.pdf

https://web.stanford.edu/class/cs107/resources/x86-64-reference.pdf

5

Learning Assembly

Moving data
around

Arithmetic and
logical

operations
Control flow Function calls

2/10 2/17 Today 2/24
(get excited:

learn how instructions
execute in order)

6

Register Responsibilities
Some registers take on special responsibilities during program execution.
• %rax stores the return value
• %rdi stores the first parameter to a function
• %rsi stores the second parameter to a function
• %rdx stores the third parameter to a function
• %rip stores the address of the next instruction to execute
• %rsp stores the address of the current top of the stack

See the x86-64 Guide and Reference Sheet on the Resources webpage for more!

7

Plan For Today
• Control Flow
• Condition Codes
• Assembly Instructions

• Conditional branches: If statements
• Announcements
• Loops
• While loops
• For loops

8

Plan For Today
• Control Flow
• Condition Codes
• Assembly Instructions

• Conditional branches: If statements
• Announcements
• Loops
• While loops
• For loops

• Optimizations

9

Control Flow

What does it mean for a program
to execute?

10

Executing instructions
So far:
• Program values can be stored in memory or registers.
• Assembly instrucEons read/write values back and forth

between registers (on the CPU) and memory.
• Assembly instrucEons are also stored in memory.

Today:
• Who controls the instruc7ons?

How do we know what to do now or next?
Answer:
• The program counter (PC), %rip.

4004fd fa

4004fc eb

4004fb 01

4004fa fc

4004f9 45

4004f8 83

4004f7 00

4004f6 00

4004f5 00

4004f4 00

4004f3 fc

4004f2 45

4004f1 c7

4004f0 e5

4004ef 89

4004ee 48

4004ed 55

11

The program counter %rip

The program counter (PC), known as
%rip in x86-64, stores the address in
memory of the next instruction to be
executed.

00000000004004ed <loop>:

4004ed: 55 push %rbp

4004ee: 48 89 e5 mov %rsp,%rbp

4004f1: c7 45 fc 00 00 00 00 movl $0x0,-0x4(%rbp)

4004f8: 83 45 fc 01 addl $0x1,-0x4(%rbp)

4004fc: eb fa jmp 4004f8 <loop+0xb>

0x4004ed%rip

12

The program counter %rip

Special hardware sets the program
counter to the next instrucEon:
%rip += size of bytes of current instrucEon

00000000004004ed <loop>:

4004ed: 55 push

4004ee: 48 89 e5 mov

4004f1: c7 45 fc 00 00 00 00 movl

4004f8: 83 45 fc 01 addl

4004fc: eb fa jmp

0x4004ed%rip

4004fd fa

4004fc eb

4004fb 01

4004fa fc

4004f9 45

4004f8 83

4004f7 00

4004f6 00

4004f5 00

4004f4 00

4004f3 fc

4004f2 45

4004f1 c7

4004f0 e5

4004ef 89

4004ee 48

4004ed 55

13

The program counter %rip

Special hardware sets the program
counter to the next instrucEon:
%rip += size of bytes of current instrucEon

00000000004004ed <loop>:

4004ed: 55 push

4004ee: 48 89 e5 mov

4004f1: c7 45 fc 00 00 00 00 movl

4004f8: 83 45 fc 01 addl

4004fc: eb fa jmp

0x4004ee%rip

4004fd fa

4004fc eb

4004fb 01

4004fa fc

4004f9 45

4004f8 83

4004f7 00

4004f6 00

4004f5 00

4004f4 00

4004f3 fc

4004f2 45

4004f1 c7

4004f0 e5

4004ef 89

4004ee 48

4004ed 55

14

The program counter %rip

Special hardware sets the program
counter to the next instruction:
%rip += size of bytes of current instruction

00000000004004ed <loop>:

4004ed: 55 push

4004ee: 48 89 e5 mov

4004f1: c7 45 fc 00 00 00 00 movl

4004f8: 83 45 fc 01 addl

4004fc: eb fa jmp

0x4004f1%rip

4004fd fa

4004fc eb

4004fb 01

4004fa fc

4004f9 45

4004f8 83

4004f7 00

4004f6 00

4004f5 00

4004f4 00

4004f3 fc

4004f2 45

4004f1 c7

4004f0 e5

4004ef 89

4004ee 48

4004ed 55

15

The program counter %rip

Special hardware sets the program
counter to the next instruction:
%rip += size of bytes of current instruction

00000000004004ed <loop>:

4004ed: 55 push

4004ee: 48 89 e5 mov

4004f1: c7 45 fc 00 00 00 00 movl

4004f8: 83 45 fc 01 addl

4004fc: eb fa jmp

0x4004f8%rip

4004fd fa

4004fc eb

4004fb 01

4004fa fc

4004f9 45

4004f8 83

4004f7 00

4004f6 00

4004f5 00

4004f4 00

4004f3 fc

4004f2 45

4004f1 c7

4004f0 e5

4004ef 89

4004ee 48

4004ed 55

16

The program counter %rip

Special hardware sets the program
counter to the next instruction:
%rip += size of bytes of current instruction

00000000004004ed <loop>:

4004ed: 55 push

4004ee: 48 89 e5 mov

4004f1: c7 45 fc 00 00 00 00 movl

4004f8: 83 45 fc 01 addl

4004fc: eb fa jmp

0x4004fc%rip

4004fd fa

4004fc eb

4004fb 01

4004fa fc

4004f9 45

4004f8 83

4004f7 00

4004f6 00

4004f5 00

4004f4 00

4004f3 fc

4004f2 45

4004f1 c7

4004f0 e5

4004ef 89

4004ee 48

4004ed 55

17

“Interfering” with %rip

1. How do we repeat instructions in a loop?

18

The jmp instruction

jmp is an unconditional jump that sets
the program counter to the jump target.

00000000004004ed <loop>:

4004ed: push %rbp

4004ee: mov %rsp,%rbp

4004f1: movl $0x0,-0x4(%rbp)

4004f8: addl $0x1,-0x4(%rbp)

4004fc: jmp 4004f8 <loop+0xb>

0x4004fc%rip

4004fd fa

4004fc eb

4004fb 01

4004fa fc

4004f9 45

4004f8 83

4004f7 00

4004f6 00

4004f5 00

4004f4 00

4004f3 fc

4004f2 45

4004f1 c7

4004f0 e5

4004ef 89

4004ee 48

4004ed 55

19

The jmp instruction

jmp is an unconditional jump that sets
the program counter to the jump target.

00000000004004ed <loop>:

4004ed: push %rbp

4004ee: mov %rsp,%rbp

4004f1: movl $0x0,-0x4(%rbp)

4004f8: addl $0x1,-0x4(%rbp)

4004fc: jmp 4004f8 <loop+0xb>

0x4004f8%rip

4004fd fa

4004fc eb

4004fb 01

4004fa fc

4004f9 45

4004f8 83

4004f7 00

4004f6 00

4004f5 00

4004f4 00

4004f3 fc

4004f2 45

4004f1 c7

4004f0 e5

4004ef 89

4004ee 48

4004ed 55

20

The jmp instruction

jmp is an unconditional jump that sets
the program counter to the jump target.

00000000004004ed <loop>:

4004ed: push %rbp

4004ee: mov %rsp,%rbp

4004f1: movl $0x0,-0x4(%rbp)

4004f8: addl $0x1,-0x4(%rbp)

4004fc: jmp 4004f8 <loop+0xb>

0x4004fc%rip

4004fd fa

4004fc eb

4004fb 01

4004fa fc

4004f9 45

4004f8 83

4004f7 00

4004f6 00

4004f5 00

4004f4 00

4004f3 fc

4004f2 45

4004f1 c7

4004f0 e5

4004ef 89

4004ee 48

4004ed 55

21

The jmp instruction

jmp is an unconditional jump that sets
the program counter to the jump target.

00000000004004ed <loop>:

4004ed: push %rbp

4004ee: mov %rsp,%rbp

4004f1: movl $0x0,-0x4(%rbp)

4004f8: addl $0x1,-0x4(%rbp)

4004fc: jmp 4004f8 <loop+0xb>

0x4004f8%rip

4004fd fa

4004fc eb

4004fb 01

4004fa fc

4004f9 45

4004f8 83

4004f7 00

4004f6 00

4004f5 00

4004f4 00

4004f3 fc

4004f2 45

4004f1 c7

4004f0 e5

4004ef 89

4004ee 48

4004ed 55control_intro.c

22

“Interfering” with %rip

1. How do we repeat instructions in a loop?
jmp [target]
• Gives us an infinite loop
• A 1-step unconditional jump (always

jump when we execute this instruction)

What if we want a conditional jump?

23

“Interfering” with %rip

1. How do we repeat instructions in a loop?
2. How do we skip instructions

in an if/if-else statement?
3. How do we loop while

some condition is true?

Answer:
condition codes
+ conditional jumps!

24

Typical 2-instruction control flow
1. Compare two values to write condition codes

(implicit destination register)
cmp S1, S2

test S1, S2

2. Conditionally jump based on reading condition codes
(implicit source register)

je/jz, jne/jnz, jl, jg, …,

Condition codes are special registers that auto-store the
results of the most recent arith/logical operation.

in gdb:
%eflags

25

Condition codes
1. Compare two values to write condition codes

(implicit destination register)
cmp S1, S2

test S1, S2

Condition codes are single-bit registers, packed into %eflags for convenience.
If t is the result of cmp/test arithmetic operations:
• ZF = zero flag (t = 0)
• SF = sign flag (t < 0)
• CF = carry flag (there was a carry out of MSB*, i.e., unsigned overflow)
• OF = overflow flag (MSB* changed from 0 to 1, i.e., signed overflow)

*MSB: Most Significant Bit

S2 – S1

S2 & S1
Do not store result;
just set condition codes

26

Exercise: Condition codes

1. After the cmp instruction, which of the below condition codes are set?
• ZF = zero flag (t = 0)
• SF = sign flag (t < 0)
• CF = carry flag (unsigned overflow)
• OF = overflow flag (signed overflow)

2. After the cmp instruction, what is %edi?

0x5%edi00000000004004d6 <if_then>:

4004d6: 83 ff 06 cmp $0x6,%edi

4004d9: 75 03 jne 4004de <if_then+0x8>

400rdb: 83 c7 01 add $0x1,%edi

4004de: 8d 04 3f lea (%rdi,%rdi,1),%eax

4004e1: c3 retq

!

27

Exercise: Condition codes

1. After the cmp instruction, which of the below condition codes are set?
• ZF = zero flag (t = 0)
• SF = sign flag (t < 0)
• CF = carry flag (unsigned overflow)
• OF = overflow flag (signed overflow)

2. After the cmp instruction, what is %edi?

0x5%edi00000000004004d6 <if_then>:

4004d6: 83 ff 06 cmp $0x6,%edi

4004d9: 75 03 jne 4004de <if_then+0x8>

400rdb: 83 c7 01 add $0x1,%edi

4004de: 8d 04 3f lea (%rdi,%rdi,1),%eax

4004e1: c3 retq

%edi is unchanged

(fixed since lecture)

28

Step 1, Control flow: cmp, test
1. Compare two values to write condition codes

(implicit destination register)
cmp S1, S2 S2 – S1

test S1, S2 S2 & S1

Note the operand order!
cmp/test do not store the result (unlike sub/and)!
They just set condition codes.

Cool tip: testq %rax,%rax checks if %rax is positive, negative, or zero.

⚠

⚠

⚠

29

Step 2, Control flow: Conditional jump
2. Conditionally jump based on reading condition codes

(implicit source register)
je target

• Target is a memory address—the address of instruction.
• We jump to target if specific condition codes are on (ZF, SF, CF, OF).

• Jumps are also known as branch instructions.

jump if ZF is 1

30

Exercise 1: Conditional jump

je target jump if ZF is 1

Let %edi store 0x10. Will we jump in the following cases?

1. cmp $0x10,%edi
je 40056f
add $0x1,%edi

2. test $0x10,%edi
je 40056f
add $0x1,%edi

0x10%edi

!

31

Exercise 1: Conditional jump

je target jump if ZF is 1

Let %edi store 0x10. Will we jump in the following cases?

1. cmp $0x10,%edi
je 40056f
add $0x1,%edi

2. test $0x10,%edi
je 40056f
add $0x1,%edi

0x10%edi

S2 - S1 == 0, so jump

S2 & S1 != 0, so don’t jump

32

Step 2, Control flow: conditional jump
2. Conditionally jump based on reading condition codes

(implicit source register)
Instruction Synonym Set Condition
je Label jz Equal / zero (ZF = 1)
jne Label jnz Not equal / not zero (ZF = 0)
js Label Negative (SF = 1)
jns Label Nonnegative (SF = 0)
jg Label jnle Greater (signed >) (SF = 0 and SF = OF)
jge Label jnl Greater or equal (signed >=) (SF = OF)
jl Label jnge Less (signed <) (SF != OF)
jle Label jng Less or equal (signed <=) (ZF = 1 or SF! = OF)
ja Label jnbe Above (unsigned >) (CF = 0 and ZF = 0)
jae Label jnb Above or equal (unsigned >=) (CF = 0)
jb Label jnae Below (unsigned <) (CF = 1)
jbe Label jna Below or equal (unsigned <=) (CF = 1 or ZF = 1)

33

Exercise 2: Conditional jump

1. What is the value of %rip after
executing the jne instruction?
A. 4004d9
B. 4004db
C. 4004de
D. Other

0x5%edi00000000004004d6 <if_then>:

4004d6: 83 ff 06 cmp $0x6,%edi

4004d9: 75 03 jne 4004de <if_then+0x8>

400rdb: 83 c7 01 add $0x1,%edi

4004de: 8d 04 3f lea (%rdi,%rdi,1),%eax

4004e1: c3 retq

!

2. What is the value of %eax
when we hit the retq instruction?
A. 4004e1
B. 0x2
C. 0xa
D. 0xc
E. Other

34

Condition code details and
other conditional ops

• Condition codes are set for many operations other than test and set, and
there are many details as to which instructions set what condition codes.
• There exist conditional operators other than jump: setx and cmov.

I want to cover more conceptually challenging material in today’s lecture, so the
following slides are here for your reference.

Please read B&O 3.6 for more information if you find it useful.

Reference

35

Details about condition codes
• Different combinaEons of condiEon codes can indicate different things.
• To check equality, we can cmp and look at the ZF flag (a = b means a – b = 0).
• To check sign of %eax, we can test %eax,%eax and look at the SF or ZF flag

• Previously-discussed arithmeEc and logical instrucEons update these flags.
lea does not (it was intended only for address computaEons).
• Logical operaEons (xor, etc.) set carry and overflow flags to zero.
• Shil operaEons set the carry flag to the last bit shiled out and set the

overflow flag to zero.
• For more complicated reasons, inc and dec set the overflow and zero flags, but

leave the carry flag unchanged.

Reference

36

set: Read condition codes
set instructions conditionally set a byte to 0 or 1.
• Reads current state of flags
• Destination is a single-byte sub-register (e.g., %al)
• Does not perturb other bytes of register
• Typically followed by movzbl to zero those bytes

int small(int x) {
return x < 16;

}

Reference

cmp $0xf,%edi
setle %al
movzbl %al, %eax
retq

37

set: Read condition codes
Instruction Synonym Set Condition (1 if true, 0 if false)
sete D setz Equal / zero

setne D setnz Not equal / not zero

sets D Nega9ve

setns D Nonnegative

setg D setnle Greater (signed >)

setge D setnl Greater or equal (signed >=)

setl D setnge Less (signed <)

setle D setng Less or equal (signed <=)

seta D setnbe Above (unsigned >)

setae D setnb Above or equal (unsigned >=)

setb D setnae Below (unsigned <)

setbe D setna Below or equal (unsigned <=)

Reference

38

cmov: Conditional move
cmovx src,dst conditionally moves data in src to data in dst.
• Mov src to dst if condition x holds; no change otherwise
• src is memory address/register, dst is register
• May be more efficient than branch (i.e., jump)
• Often seen with C ternary operator: result = test ? then: else;

int max(int x, int y) {
return x > y ? x : y;

}

cmp %edi,%esi
mov %edi, %eax
cmovge %esi, %eax
retq

Reference

39

cmov: Conditional move
Instruction Synonym Move Condition
cmove S,R cmovz Equal / zero (ZF = 1)

cmovne S,R cmovnz Not equal / not zero (ZF = 0)

cmovs S,R Negative (SF = 1)

cmovns S,R Nonnegative (SF = 0)

cmovg S,R cmovnle Greater (signed >) (SF = 0 and SF = OF)

cmovge S,R cmovnl Greater or equal (signed >=) (SF = OF)

cmovl S,R cmovnge Less (signed <) (SF != OF)

cmovle S,R cmovng Less or equal (signed <=) (ZF = 1 or SF! = OF)

cmova S,R cmovnbe Above (unsigned >) (CF = 0 and ZF = 0)

cmovae S,R cmovnb Above or equal (unsigned >=) (CF = 0)

cmovb S,R cmovnae Below (unsigned <) (CF = 1)

cmovbe S,R cmovna Below or equal (unsigned <=) (CF = 1 or ZF = 1)

Reference

40

lab6’s conditional move
int signed_division(int x) {

return x / 4;

}

signed_division:

leal 3(%rdi), %eax

testl %edi, %edi

cmovns %edi, %eax

sarl $2, %eax

ret

Put x + 3 into %eax
Check the sign of x
If x is posiEve, put x into %eax
Divide %eax by 4

Reference

41

Condition code details and
other conditional ops

(end of reference slides)

Please read B&O 3.6 for more information if you find it useful.

Reference

42

Plan For Today
• Control Flow
• CondiPon Codes
• Assembly InstrucPons

• CondiEonal branches: If statements
• Announcements
• Loops
• While loops
• For loops

43

“Interfering” with %rip

1. How do we repeat instructions in a loop?
2. How do we skip instructions

in an if/if-else statement?
3. How do we loop while

some condition is true?

44

The code we’ve been working with
00000000004004d6 <if_then>:

4004d6: 83 ff 06 cmp $0x6,%edi

4004d9: 75 03 jne 4004de <if_then+0x8>

400rdb: 83 c7 01 add $0x1,%edi

4004de: 8d 04 3f lea (%rdi,%rdi,1),%eax

4004e1: c3 retq

This code can be translated into C function code
containing a branch statement (if)!

45

int if_then(int param1)
{
if (__________) {

_________;
}

return __________;
}

Practice: Fill In The Blank

00000000004004d6 <if_then>:
4004d6: cmp $0x6,%edi
4004d9: jne 4004de
4004db: add $0x1,%edi
4004de: lea (%rdi,%rdi,1),%eax
4004e1: retq

!

46

int if_then(int param1)
{
if (__________) {

_________;
}

return __________;
}

Practice: Fill In The Blank

param1++

param1 * 2

00000000004004d6 <if_then>:
4004d6: cmp $0x6,%edi
4004d9: jne 4004de
4004db: add $0x1,%edi
4004de: lea (%rdi,%rdi,1),%eax
4004e1: retq

param1 == 6

47

Plan For Today
• Control Flow
• Condition Codes
• Assembly Instructions

• Conditional branches: If statements
• Announcements
• Loops
• While loops
• For loops

48

Joke break

https://www.youtube.com/watch?v=D3EvpRHL_vk

Hacking Pokemon Blue into Pong
• Instructions are bytes in memory!
• Find an exploit that lets you change the

program counter:

• Write executable code by navigating the
world and moving around items

“8F is an item execuPng machine
code starPng from $D163
(Number of Pokemon) upon use."

https://www.youtube.com/watch%3Fv=D3EvpRHL_vk

49

Announcements
• Midterm scores will be on website gradebook after regrade deadline closes on

Monday 2/24, 11:59pm
• Note about makeup labs:
• If you cannot attend your assigned lab, you may go to a different lab that same week *if

space is available*.
• We want to note that we may have to turn people away who are making up a lab if there

is not enough space to accommodate them.
• If you need to attend a makeup, you should plan ahead accordingly to ensure you can

get lab credit for that week.

• Assignment 6 released today J

50

Preparing for assign6
• atm.c Security and Robustness
• Binary Bomb

Binary Bomb is like an escape game:
• Secret codes (assembly instructions)
• Fun tools (gdb, objdump)
• Unlock each level to continue
• Catharsis with successful escape
• Time limit (due M 3/2, grace W 3/4) the mythcomputers

and con>nue your
wholesome CS educa>on!

• Please start early.
• Please use gdb.
• Read the textbook (B&O) if you find it useful.

51

Tips for assign6
• Registers do not have addresses. They are not located in memory.
• Draw pictures clearly depicting what is in memory and what is in registers.
• Deadlisting (reading assembly without executing anything) will be tedious.
• Use gdb.

• lea does not access memory; it performs arithmetic and stores the result.
• test/cmp s1,s2 work like and/sub s1,s2. However, test/cmp do not

store the result anywhere; they only update condition codes.
• test/cmp + conditional jump can often be translated into a single C control

statement.
• testq %rax, %rax checks if %rax is positive, negative, or zero.

⭐⭐⭐

52

Plan For Today
• Control Flow
• Condition Codes
• Assembly Instructions

• Conditional branches: If statements
• Announcements
• Loops
• While loops
• For loops

53

Common If-Else Construction

if (arg > 3) {
ret = 10;

} else {
ret = 0;

}

ret++;

Test

Jump to else-body if test fails
If-body
Jump to past else-body

Else-body

Past else body

If-Else In C If-Else In Assembly pseudocode

⭐

54

Practice: Fill in the Blank

if (_________) {
________;

} else {
_______;

}
_____;

Test

Jump to else-body if test fails
If-body
Jump to past else-body

Else-body

Past else body

If-Else In C

If-Else In Assembly pseudocode

!

400552 <+0>: cmp $0x3,%edi

400555 <+3>: jle 0x40055e <if_else+12>

400557 <+5>: mov $0xa,%eax

40055c <+10>: jmp 0x400563 <if_else+17>

40055e <+12>: mov $0x0,%eax

400563 <+17>: add $0x1,%eax

ifelse.c

55

Practice: Fill in the Blank

if (_________) {
________;

} else {
_______;

}
_____;

Test

Jump to else-body if test fails
If-body
Jump to past else-body

Else-body

Past else body

If-Else In C

If-Else In Assembly pseudocode

400552 <+0>: cmp $0x3,%edi

400555 <+3>: jle 0x40055e <if_else+12>

400557 <+5>: mov $0xa,%eax

40055c <+10>: jmp 0x400563 <if_else+17>

40055e <+12>: mov $0x0,%eax

400563 <+17>: add $0x1,%eax

ifelse.c

arg > 3
ret = 10;

ret = 0;

ret++;

56

“Interfering” with %rip

1. How do we repeat instruc<ons in a loop?
2. How do we skip instruc<ons

in an in-else statement?
3. How do we loop while

some condi<on is true?

57

Plan For Today
• Control Flow
• Condition Codes
• Assembly Instructions

• Conditional branches: If statements
• Announcements
• Loops
• While loops
• For loops

58

While loops and assembly
00000000004004d6 <loop>:
4004d6 <+0>: mov $0x0,%eax
4004db <+5>: jmp 4004e0 <loop+0xa>
4004dd <+7>: add $0x1,%eax
4004e0 <+10>: cmp $0x63,%eax
4004e3 <+13>: jle 4004dd <loop+0x7>
4004e5 <+15>: repz retq

void loop() {
int i = 0;
while (i < 100) {
i++;

}
}

!

1. Which register is C code’s i?
2. What is the uncondiEonal jmp instrucEon doing?
3. What are the cmp and jle instrucEons doing?

(jle: jump less equal; signed <=)

59

while_loop

while_loop.c

60

While loops and assembly: Recap
00000000004004d6 <loop>:
4004d6 <+0>: mov $0x0,%eax
4004db <+5>: jmp 4004e0 <loop+0xa>
4004dd <+7>: add $0x1,%eax
4004e0 <+10>: cmp $0x63,%eax
4004e3 <+13>: jle 4004dd <loop+0x7>
4004e5 <+15>: repz retq

void loop() {
int i = 0;
while (i < 100) {
i++;

}
}

1. Jumps to while
loop condiEonal

2. If %eax – 0x63 <= 0 (i.e., %eax <= 99),
then jump to execute loop body.
Else, execute next instrucEon (i.e., exit loop)

61

gdb tips

layout split

info reg

p $eax

p $eflags

b *0x400546

b *0x400550 if $eax > 98

ni

si

⭐⭐⭐

View C, assembly, and gdb (lab6)
Print all registers

Print register value
Print all condition codes currently set

Set breakpoint at assembly instruction
Set conditional breakpoint

Next assembly instruction
Step into assembly instruction (will step
into function calls)

(ctrl-x a: exit,
ctrl-l: resize)

62

Common While Loop Construction
00000000004004d6 <loop>:
4004d6 <+0>: mov $0x0,%eax
4004db <+5>: jmp 4004e0 <loop+0xa>
4004dd <+7>: add $0x1,%eax
4004e0 <+10>: cmp $0x63,%eax
4004e3 <+13>: jle 4004dd <loop+0x7>
4004e5 <+15>: repz retq

void loop() {
int i = 0;
while (i < 100) {
i++;

}
}

Jump to test
Body
Test
Jump to body if success

while (test) {
body

}

Assembly pseudocodeC pseudocode

⭐

63

Plan For Today
• Control Flow
• Condition Codes
• Assembly Instructions

• Conditional branches: If statements
• Announcements
• Loops
• While loops
• For loops

64

Common For Loop Construction

for (init; test; update) {
body

}

C For loop
Init
Jump to test

Body
Update

Test
Jump to body if success

Assembly pseudocode

init
while(test) {

body
update

}

C Equivalent While Loop

For loops and while loops are
treated (essenEally) the same
when compiled down to assembly.

⭐

65

Back to Our First Assembly
int sum_array(int arr[], int nelems) {

int sum = 0;
for (int i = 0; i < nelems; i++) {

sum += arr[i];
}
return sum;

}

00000000004005b6 <sum_array>:
4005b6: mov $0x0,%edx
4005bb<+5>: mov $0x0,%eax
4005c0<+10>: jmp 4005cb <sum_array+21>
4005c2<+12>: movslq %edx,%rcx
4005c5<+15>: add (%rdi,%rcx,4),%eax
4005c8<+18>: add $0x1,%edx
4005cb<+21>: cmp %esi,%edx
4005cd<+23>: jl 4005c2 <sum_array+12>
4005cf<+25>: repz retq

1. Which register is C code’s sum?
2. Which register is C code’s i?
3. Which assembly instrucEon is C

code’s sum += arr[i]?
4. What are the cmp and jl

instrucEons doing?
(jl: jump less; signed <)

!

66

sum_array

sum_array.c

67

gdb tips
p/x $rdi

p/t $rsi

x $rdi

x/4bx $rdi

x/4wx $rdi

⭐⭐⭐
Print register value in hex
Print register value in binary

Examine the byte stored at this address
Examine 4 bytes starEng at this address
Examine 4 ints starEng at this address

68

Plan For Today
• Control Flow
• Condition Codes
• Assembly Instructions

• Conditional branches: If statements
• Announcements
• Loops
• While loops
• For loops

• Optimizations

69

Optimizations you’ll see
nop

• nop/nopl are “no-op” instrucEons – they do nothing!
• Intent: Make funcEons align on address boundaries that are nice mulEples of 8.

mov %ebx,%ebx

• Zeros out the top 32 register bits
(because a mov on an e-register zeros out rest of 64 bits).

xor %ebx,%ebx

• OpEmizes for performance as well as code size (read more here):
b8 00 00 00 00 mov $0x0,%eax
31 c0 xor %eax,%eax

https://stackoverflow.com/questions/33666617/what-is-the-best-way-to-set-a-register-to-zero-in-x86-assembly-xor-mov-or-and/33668295

70

Loop optimization in GCC

for (init; test; update) {
body

}

C For loop

Init
Jump to test

Body
Update

Test
Jump to body if success

GCC assembly pseudocode
Init
Test
Jump past loop is fails
Body
Update

Jump to Test

Possible alternaAve?

?

71

Loop optimization in GCC

for (int i = 0; i < n; i++) {
;

}

C For loop

Init
Jump to test

Body
Update

Test
Jump to body if success

GCC assembly pseudocode
Init
Test
Jump past loop is fails
Body
Update

Jump to Test

Possible alternaAve?

!

Are the number of instrucEons executed
in the lel greater, less than, or equal to
those executed on the right if…
1. n = 0?
2. n = 1000?

72

Optimizing Instruction Counts
• Both versions have the same static instruction count (# of written instructions).
• But they have different dynamic instruction counts (# of executed instructions

when program is run).
• If n = 0, right (possible alternative) is best b/c fewer instructions
• If n is large, left (gcc is best) is best b/c fewer instructions

• The compiler may emit a static instruction count that is several times longer
than an alternative, but it may be more efficient if loop executes many times.

• Does the compiler know that a loop will execute many times? (in general, no)
• So what if our code had loops that always execute a small number of times?

How do we know when gcc makes a bad decision?
• (take EE108, EE180, CS316 for more!)

73

Bonus assembly exercises

74

Practice: Parameters
00000000004005ac <sum_example1>:

4005bd: 8b 45 e8 mov %esi,%eax
4005c3: 01 d0 add %edi,%eax
4005cc: c3 retq

Which of the following is most likely to have generated the above assembly?
// A)
void sum_example1() {

int x;
int y;
int sum = x + y;

}

// B)
int sum_example1(int x, int y) {

return x + y;
}

// C)
void sum_example1(int x, int y) {

int sum = x + y;
}

!

75

Practice: Parameters
00000000004005ac <sum_example1>:

4005bd: 8b 45 e8 mov %esi,%eax
4005c3: 01 d0 add %edi,%eax
4005cc: c3 retq

Which of the following is most likely to have generated the above assembly?
// A)
void sum_example1() {

int x;
int y;
int sum = x + y;

}

// B)
int sum_example1(int x, int y) {

return x + y;
}

// C)
void sum_example1(int x, int y) {

int sum = x + y;
}

B

76

Practice: Intermediates/registers
0000000000400578 <sum_example2>:

400578: 8b 47 0c mov 0xc(%rdi),%eax
40057b: 03 07 add (%rdi),%eax
40057d: 2b 47 18 sub 0x18(%rdi),%eax
400580: c3 retq

int sum_example2(int arr[]) {

int sum = 0;

sum += arr[0];

sum += arr[3];

sum -= arr[6];

return sum;

}

1. What memory locaPon, register, or
immediate above represents the C code’s
sum variable?

2. What memory locaPon, register, or
immediate in the assembly code above
represents the C code’s 6 (as in arr[6])?!

bonus.c

77

Practice: Intermediates/registers
0000000000400578 <sum_example2>:

400578: 8b 47 0c mov 0xc(%rdi),%eax
40057b: 03 07 add (%rdi),%eax
40057d: 2b 47 18 sub 0x18(%rdi),%eax
400580: c3 retq

int sum_example2(int arr[]) {

int sum = 0;

sum += arr[0];

sum += arr[3];

sum -= arr[6];

return sum;

}

1. What memory location, register, or
immediate above represents the C code’s
sum variable?

2. What memory location, register, or
immediate in the assembly code above
represents the C code’s 6 (as in arr[6])?

0x18

%eax

78

Practice: while loop
loop:

movl $1, %eax
jmp .L2

.L3
leaq (%rdi,%rsi), %rdx
imulq %rdx, %rax
addq $1, %rdi

.L2
cmpq %rsi, %rdi
jl .L3

rep; ret

long loop(long a, long b) {
long result = _______;
while (_________) {
result = __________;
a = _________;

}
return result;

}

bonus.c

A label for this instruction location.

• Used in place of instruction
addresses in assembly files (.s).

• These labels get compiled to
addresses in object files (.o).

79

Practice: while loop
C Code What does this assembly code translate to?

// a in %rdi, b in %rsi

loop:

movl $1, %eax

jmp .L2

.L3

leaq (%rdi,%rsi), %rdx

imulq %rdx, %rax

addq $1, %rdi

.L2

cmpq %rsi, %rdi

jl .L3

rep; ret

long loop(long a, long b) {
long result = _______;
while (_________) {
result = __________;
a = _________;

}
return result;

}

Assembly pseudocode
Jump to test
Body
Test
Jump to body if success

!What does this assembly code translate to?

80

Practice: while loop
C Code What does this assembly code translate to?

// a in %rdi, b in %rsi

loop:

movl $1, %eax

jmp .L2

.L3

leaq (%rdi,%rsi), %rdx

imulq %rdx, %rax

addq $1, %rdi

.L2

cmpq %rsi, %rdi

jl .L3

rep; ret

long loop(long a, long b) {
long result = _______;
while (_________) {
result = __________;
a = _________;

}
return result;

}

Assembly pseudocode
Jump to test
Body
Test
Jump to body if success What does this assembly code translate to?

1
a < b

a + 1
result*(a+b);

