CS107 Lecture 13

Assembly: Control Flow

reading:
B&O 3.6

Slides by Jerry Cain and Lisa Yan, who leveraged prior work by Nick Troccoli, Julie Zelenski, Marty Stepp, Cynthia Lee, Chris Gregg, and others. 1

Reflections + Warm-up

Reflections: Share your CS107 midterm experience with your neighbor:
* What is one concept/skill you are comfortable with?
* What is one concept/skill you can work on for the final exam?

* Examples: logical operations, pointer arithmetic, generics,
understanding the spec, studying an assignment,
gdb, time management, ...

Warm-up: What'’s the difference between 1lea and mov?

movq -0x8(%rdi,%rsi,8), %rax leaq -0x8(%rdi,%rsi,8), %rax

W2

What's the difference
between 1lea and mov?

movq -0x8(%rdi,%rsi,8), %rax

Y%rax 0x1234

long last elt(long arr[], long nelems)

{
}

return arr[nelems - 1];

%rdi Ox7fe850 Ox1234

OxCDEF

leaq -0x8(%rdi,%rsi,8), %rax

%rax Ox7fe860

long *1last _ptr(long arr[], long nelems)
{

¥

return arr + (nelems - 1);

lea makes use of indirect addressing to perform
arithmetic with fewer instructions.

Register Responsibilities

Some registers take on special responsibilities during program execution.
* %rax stores the return value
* %rdi stores the first parameter to a function

* %rsi stores the second parameter to a function

See the x86-64 Guide and Reference Sheet on the Resources webpage for more!

https://web.stanford.edu/class/cs107/resources/x86-64-reference.pdf

https://web.stanford.edu/class/cs107/resources/x86-64-reference.pdf

Learning Assembly

Arithmetic and
logical Control flow Function calls
operations

2/10 2/17 Today 2/24

(get excited:
learn how instructions
execute in order)

Moving data
around

Register Responsibilities

Some registers take on special responsibilities during program execution.

* %rip stores the address of the next instruction to execute < :

See the x86-64 Guide and Reference Sheet on the Resources webpage for more!

Plan For Today

* Control Flow
* Condition Codes
* Assembly Instructions

e Conditional branches: If statements
* Announcements

* Loops
* While loops
* For loops

Plan For Today

* Control Flow
* Condition Codes
* Assembly Instructions

What does it mean for a program
to execute?

So far:
* Program values can be stored in memory or registers.

* Assembly instructions read/write values back and forth
between registers (on the CPU) and memory.

* Assembly instructions are also stored in memory.

Today:

e Who controls the instructions?
How do we know what to do now or next?

Answer:
* The program counter (PC), %rip.

40041d
4004fc

4004b
4004fa
40049
40048
40047
400416
40045
40044
40043
40042
40041

fa

eb

01

fc

45

83

00

00

00

00

fc

45

c/

e5

89

48

55

10

The program counter %rip

00000000004004ed <loop>:
4004ed: 55 push %rbp

4004f1: 7 45 fc 00 00 00 00 movl $0x0, -0x4(%rbp)

400418 83 45 fc o1 addl $0x1,-0x4(%rbp)
4004fc: eb fa jmp 400418 <loop+0xb>

The program counter (PC), known as
%rip in x86-64, stores the address in
memory of the next instruction to be
executed.

%rip ©x4004ed

11

- B ole - 0 0 4004fd
4004fc
4004fb

00000000004004ed <loop>: 4004F3
4004ed: 55 push 40049
400418

4004f1: 7 45 fc 00 00 00 00 movl jggjz
400418 83 45 fc o1 addl 40045
4004fc:: eb fa jmp A004f4
400413

. 400412
Special hardware sets the program poonl

counter to the next instruction:

fa

eb

01

fc

45

83

00

00

00

00

fc

45

c/

%rip += size of bytes of current instruction

%rip Ox4004ed 1064ed

55

12

- B ole - 0 0 4004fd
4004fc
4004fb

00000000004004ed <loop>: 4004F3
4004ed: 55 push 40049
400418

4004f1: 7 45 fc 00 00 00 00 movl jggjz
400418 83 45 fc o1 addl 40045
4004fc:: eb fa jmp A004f4
400413

. 400412
Special hardware sets the program poonl

counter to the next instruction:

fa

eb

01

fc

45

83

00

00

00

00

fc

45

c/

%rip += size of bytes of current instruction

%rip Ox4004ee 40040d

55

13

00000000004004ed <loop>:
4004ed: 55

40041 : c7 45 fc 00 00 0O 00
400418 : 83 45 fc 01
4004fc: eb fa

Special hardware sets the program
counter to the next instruction:

%rip += size of bytes of current instruction

%rip 0x4004f1

push

mov1l
addl
Jjmp

4004+d
4004fc

40041b
4004fa
400419
400418
400417
400416
400415
400414
400413
400412
400411

4004ed

fa

eb

01

fc

45

83

00

00

00

00

fc

45

c/

55

14

00000000004004ed <loop>:
4004ed: 55

40041 : c7 45 fc 00 00 0O 00
400418 : 83 45 fc 01
4004fc: eb fa

Special hardware sets the program
counter to the next instruction:

%rip += size of bytes of current instruction

Yorip

push

mov1l
addl
Jjmp

Ox400418

4004+d
4004fc

40041b
4004fa
400419
400418
400417
400416
400415
400414
400413
400412
400411

4004ed

fa

eb

01

fc

45

83

00

00

00

00

fc

45

c/

55

15

00000000004004ed <loop>:
4004ed: 55

40041 : c7 45 fc 00 00 0O 00
400418 : 83 45 fc 01
4004fc: eb fa

Special hardware sets the program
counter to the next instruction:

%rip += size of bytes of current instruction

%rip Ox4004fc

push

mov1l
addl
Jjmp

4004+d
4004fc

40041b
4004fa
400419
400418
400417
400416
400415
400414
400413
400412
400411

4004ed

fa

eb

01

fc

45

83

00

00

00

00

fc

45

c/

55

16

“Interfering” with %rip

1. How do we repeat instructions in a loop?

00000000004004ed <loop>:
4004ed: push %rbp

400411 movl $0x0,-0x4(%rbp)
400418 addl $0x1,-0x4(%rbp)
4004fc: jmp 400418 <loop+0xb>

jmp is an unconditional jump that sets
the program counter to the jump target.

%rip Ox4004fc

4004+d
4004fc

40041b
4004fa
400419
400418
400417
400416
400415
400414
400413
400412
400411

4004ed

fa

eb

01

fc

45

83

00

00

00

00

fc

45

c/

55

18

- 0 0 4004Fd

4004fc

4004fb

00000000004004ed <loop>: 4004F3
4004ed: push %rbp 40049
40048

4004f1: movl $0x0, -0x4(%rbp) jggjz
40048 addl $0x1, -0x4(%rbp) AOBAES
4004fc: jmp 400418 <loop+0xb> 4004F4
40043

: : diti I that set 40042
Jjmp Is an unconditional jump that sets roonil

the program counter to the jump target.

%rip Ox400418 1004ed

fa

eb

01

fc

45

83

00

00

00

00

fc

45

c/

55

19

00000000004004ed <loop>:
4004ed: push %rbp

400411 movl $0x0,-0x4(%rbp)
400418 addl $0x1,-0x4(%rbp)
4004fc: jmp 400418 <loop+0xb>

jmp is an unconditional jump that sets
the program counter to the jump target.

%rip Ox4004fc

4004+d
4004fc

40041b
4004fa
400419
400418
400417
400416
400415
400414
400413
400412
400411

4004ed

fa

eb

01

fc

45

83

00

00

00

00

fc

45

c/

55

20

- 0 0 4004Fd

4004fc

4004fb

00000000004004ed <loop>: 4004F3
4004ed: push %rbp 40049
40048

4004f1: movl $0x0, -0x4(%rbp) jggjz
40048 addl $0x1, -0x4(%rbp) AOBAES
4004fc: jmp 400418 <loop+0xb> 4004F4
40043

: : diti I that set 40042
Jjmp Is an unconditional jump that sets roonil

the program counter to the jump target.

%rip Ox400418 1004ed

| control_intro.c

fa

eb

01

fc

45

83

00

00

00

00

fc

45

c/

55

21

“Interfering” with %rip

1. How do we repeat instructions in a loop?

jmp [target]

e Gives us an infinite loop

A 1l-step unconditional jump (always
jump when we execute this instruction)

What if we want a conditional jump?

22

“Interfering” with %rip

2. How do we skip instructions

in an if/if-else statement? Answer:
. — condition codes
3. How do we loop while + conditional jumps!

some condition is true?

23

Typical 2-instruction control flow

Compare two values to write condition codes
(implicit destination register)

cmp S1, S2
test S1, S2

Conditionally jump based on reading condition codes
(implicit source register)

je/jz, jne/jnz, jl, jg, ...,

Condition codes are special registers that auto-store the in gdb:
results of the most recent arith/logical operation. %eflags

24

Condition codes

Compare two values to write condition codes
(implicit destination register)

cmp S1, S2 S2 - S1 Do not store result;
test S1, S2 S2 & S1 just set condition codes

Condition codes are single-bit registers, packed into %eflags for convenience.
If T is the result of cmp/test arithmetic operations:

e ZF =zero flag (t = 0)

 SF =sign flag (t < 9)

e CF =carry flag (there was a carry out of MSB¥*, i.e., unsigned overflow)
e OF = overflow flag (MSB* changed from O to 1, i.e., signed overflow)

*MSB: Most Significant Bit 25

Exercise: Condition codes

00000000004004d6 <if then>:

. %edi Ox5
4004d6: 83 ff 86 cmp $0x6,%edi = x

1. After the cmp instruction, which of the below condition codes are set?
e ZF =zeroflag (t = 9)
* SF =signflag (t < 9)
* CF = carry flag (unsigned overflow)
* OF = overflow flag (signed overflow)

2. After the cmp instruction, what is %edi?

26

Exercise: Condition codes

00000000004004d6 <if then>:

. %edi Ox5
4004d6: 83 ff 86 cmp $0x6,%edi = x

1. After the cmp instruction, which of the below condition codes are set?
e ZF =zeroflag (t = 9)
 SF =signflag (t < 9)
* CF = carry flag (unsigned overflow) (fixedsince lecture)
* OF = overflow flag (signed overflow)

2. After the cmp instruction, what is %ed1? %edi is unchanged

27

Step 1, Control flow: cmp, test A

1. Compare two values to write condition codes
(implicit destination register)

cmp S1, S2 S2 - S1
test S1, S2 S2 & S1

I Note the operand order!

cmp/test do not store the result (unlike sub/and)!
They just set condition codes.

Cool tip: testg %rax,srax checks if %rax is positive, negative, or zero.

28

Step 2, Control flow: Conditional jump

2. Conditionally jump based on reading condition codes
(implicit source register)
je target jump if ZF is 1

* Target is a memory address—the address of instruction.
* We jump to target if specific condition codes are on (ZF, SF, CF, OF).

* Jumps are also known as branch instructions.

29

Exercise 1: Conditional jump

je target jump if ZF is 1

Let %ed1i store 0x10. Will we jump in the following cases? %edi

1. cmp $0x10,%edi
je 40056F
add $0x1,%edi

2. test $0x10,%edi
je 40056f p
add $ox1,%edi s

30

Exercise 1: Conditional jump

je target jump if ZF is 1

Let %ed1i store 0x10. Will we jump in the following cases? %edi

1. cmp $0x10,%edi _
je 40056F S2-S1==0, so jump

add $0x1,%edi

2. test $0x10,%edi
je 40056f S2 & S1 =0, so don’t jump
add $0x1,%edi

31

Step 2, Control flow: conditional jump

Conditionally jump based on reading condition codes
(implicit source register)

Instruction Synonym Set Condition

je Label jz Equal / zero (ZF = 1)

jne Label jnz Not equal / not zero (ZF = 0)

js Label Negative (SF = 1)

jns Label Nonnegative (SF = 0)

jg Label jnle Greater (signed >) (SF = 0 and SF = OF)

jge Label jnl Greater or equal (signed >=) (SF = OF)

jl Label jnge Less (signed <) (SF != OF)

jle Label jng Less or equal (signed <=) (ZF = 1 or SF! = OF)
ja Label jnbe Above (unsigned >) (CF =0 and ZF = 0)

jae Label jnb Above or equal (unsigned >=) (CF = 0)

jb Label jnae Below (unsigned <) (CF = 1)

jbe Label jna Below or equal (unsigned <=) (CF=1or ZF =1) -

Exercise 2: Conditional jump

00000000004004d6 <if then>:

4004d6: 83 ff 06 cmp $0x6,%edi oed! %>
4004d9: 75 03 jne 4004de <if then+0x8>
400rdb: 83 c7 01 add $0x1, %edi
4004de: 8d 04 3f lea (%rdi,%rdi,1),%eax
4004el: c3 retq
1. What is the value of %rip after 2. What is the value of %eax
executing the jne instruction? when we hit the retq instruction?
A. 4004d9 A. 4004el
5. 4004db B. 0Ox2
C. 4004ae C. Oxa —~
D. Other D. OXc s
£. Other ‘

33

Condition code details and

Reference

other conditional ops

e Condition codes are set for many operations other than test and set, and
there are many details as to which instructions set what condition codes.

* There exist conditional operators other than jump: setx and cmov.

| want to cover more conceptually challenging material in today’s lecture, so the
following slides are here for your reference.

Please read B&O 3.6 for more information if you find it useful.

34

Details about condition codes reference

* Different combinations of condition codes can indicate different things.
* To check equality, we can cmp and look at the ZF flag (a = b meansa—b =0).
* To check sign of %eax, we can test %eax,%eax and look at the SF or ZF flag

* Previously-discussed arithmetic and logical instructions update these flags.
lea does not (it was intended only for address computations).

* Logical operations (xor, etc.) set carry and overflow flags to zero.

* Shift operations set the carry flag to the last bit shifted out and set the
overflow flag to zero.

* For more complicated reasons, inc and dec set the overflow and zero flags, but
leave the carry flag unchanged.

35

set: Read condition codes reference

set instructions conditionally set a byte to O or 1.

e Reads current state of flags

e Destination is a single-byte sub-register (e.g., %al)
* Does not perturb other bytes of register
 Typically followed by movzbl to zero those bytes

cmp $0xf,%edi
setle %al

movzbl %al, %eax
retqg

int small(int x) {
return x < 16;

}

36

set: Read condition codes reference

Instruction Synonym Set Condition (1 if true, O if false)
sete D setz Equal / zero

setne D setnz Not equal / not zero

sets D Negative

setns D Nonnegative

setg D setnle Greater (signed >)

setge D setnl Greater or equal (signed >=)
setl D setnge Less (signed <)

setle D setng Less or equal (signed <=)
seta D setnbe Above (unsigned >)

setae D setnb Above or equal (unsigned >=)
setb D sethae Below (unsigned <)

setbe D setha Below or equal (unsigned <=)

37

cmov: Conditional move Reference

cmovx src,dst conditionally moves data in src to data in dst.

* Mov src to dst if condition x holds; no change otherwise

* src is memory address/register, dst is register

* May be more efficient than branch (i.e., jump)

e Often seen with C ternary operator: result = test ? then: else;

. . . cm %edi,sesi
int max(int x, int y) { mos Vedi, %eax
o] k) o

return x > P X Y .
y Y cmovge %esi, %eax

) retg

38

Instruction

cmov: Conditional move

Synonym

Move Condition

cmove S,R cmovz Equal / zero (ZF = 1)

cmovhe S,R cmovnz Not equal / not zero (ZF = 0)

cmovs S,R Negative (SF=1)

cmovnhs S,R Nonnegative (SF = 0)

cmovg S,R cmovnle Greater (signed >) (SF = 0 and SF = OF)
cmovge S,R cmovnl Greater or equal (signed >=) (SF = OF)
cmovl S,R cmovnge Less (signed <) (SF != OF)

cmovle S,R cmovng Less or equal (signed <=) (ZF = 1 or SF! = OF)
cmova S,R cmovnbe Above (unsigned >) (CF = 0 and ZF = 0)
cmovae S,R cmovnb Above or equal (unsigned >=) (CF = 0)
cmovb S,R cmovnae Below (unsigned <) (CF = 1)

cmovbe S,R cmovna Below or equal (unsigned <=) (CF=1 or ZF = 1)

Reference

39

lab6’s conditional move Reference

int signed division(int x) {
return x / 4;

}
signed division:
leal 3(%rdi), %eax Put x + 3 into %eax
testl %edl, %»edi Check the sign of x
cmovns %edi, 7%eax If x is positive, put x into %eax
sarl $2, %eax Divide %eax by 4

ret

40

Condition code details and

Reference

other conditional ops

(end of reference slides)

Please read B&O 3.6 for more information if you find it useful.

41

Plan For Today

e Conditional branches: If statements

42

“Interfering” with %rip

2. How do we skip instructions
in an if/if-else statement?

The code we've been working with

00000000004004d6 <if then>:
4004d6: 83 ff 06 cmp $0x6,%edi
4004d9: 75 03 jne 4004de <if then+0x8>
400rdb: 83 c7 01 add $0x1, %edi
4004de: 8d 04 3f 1lea (%rdi,%rdi,1),%eax
4004el: c3 retq

This code can be translated into C function code
containing a branch statement (1f)!

44

Practice: Fill In The Blank

int if then(int paraml) 0©00000000004004d6 <if then>:

{ 4004d6:
if () { 4004d9:
; 4004db:
} 4004de:
4004el.
return 5
}

cmp $0x6,%edi

jne 4004de

add $0x1,%edi

lea (%rdi,%rdi,1),%eax
retg

45

Practice: Fill In The Blank

int if then(int paraml) 0©00000000004004d6 <if then>:

{ 4004d6:
if (paraml == 6) { 4004d9:
paraml++; 4004db :

} 4004de:
4004el.:

return paraml * 2;

¥

cmp $0x6,%edi

jne 4004de

add $0x1,%edi

lea (%rdi,%rdi,1),%eax
retg

46

Plan For Today

* Anhouncements

47

Joke break

Hacking Pokemon Blue into Pong
* Instructions are bytes in memory!
* Find an exploit that lets you change the
program counter:
“8F is an item executing machine
code starting from SD163
(Number of Pokemon) upon use."
* Write executable code by navigating the
world and moving around items

https://www.youtube.com/watch%3Fv=D3EvpRHL_vk

Announcements

* Midterm scores will be on website gradebook after regrade deadline closes on
Monday 2/24, 11:59pm

* Note about makeup labs:

* If you cannot attend your assigned lab, you may go to a different lab that same week *if
space is available*.

* We want to note that we may have to turn people away who are making up a lab if there
is not enough space to accommodate them.

* |f you need to attend a makeup, you should plan ahead accordingly to ensure you can
get lab credit for that week.

* Assighment 6 released today ©

49

Preparing for assign6

* atm.c Security and Robustness
* Binary Bomb

Binary Bomb is like an escape game:
 Secret codes (assembly instructions)
* Fun tools (gdb, objdump)

* Unlock each level to continue

e Catharsis with successful escape
* Time limit (due M 3/2, grace W 3/4)

* Please start early.
* Please use gdb.

* Read the textbook (B&O) if you find it useful.

-~
’

4-’;"
z";‘;.»'

Escape

?crom they ©

“O 0 8
P z ”’Wh

was been sef op s, 'OUZ‘@
\“m peluse If g -na 2o rs

4 andco"

wholesome CS education!
50

Tips for assign6) 0.0 ¢

* Registers do not have addresses. They are not located in memory.

* Draw pictures clearly depicting what is in memory and what is in registers.
* Deadlisting (reading assembly without executing anything) will be tedious.
e Use gdb.

» 1lea does not access memory; it performs arithmetic and stores the result.

e test/cmp sl1,s2 worklike and/sub sl1,s2. However, test/cmp do not
store the result anywhere; they only update condition codes.

e test/cmp + conditional jump can often be translated into a single C control
statement.

e testqg %rax, %raxchecksif%raxis positive, negative, or zero.

51

Plan For Today

e Conditional branches: If statements

52

Common If-Else Construction

If-Else In C If-Else In Assembly pseudocode
if (arg > 3) { Test
ret = 10; Jump to else-body if test fails
If-body
} elset{_ 0 Jump to past else-body
ret =9, Else-body
} Past else body

ret++;

53

Practice: Fill in the Blank

If-Else In C 400552 <+0>: cmp $0x3,%edi
if () { 400555 <+3>: Jjle 0Ox40055e <if_else+12>
. 400557 <+5>: mov $0xa, %eax
? 40055c <+10>: jmp ©Ox400563 <if else+17>
} else { 40055e <+12>: mov $0x0, %eax
’ 400563 <+17>: add $0x1,%eax
}
>
If-Else In Assembly pseudocode
Test
Jump to else-body if test fails
If-body
Jump to past else-body PN
Else-body -

Past else body -

54

ifelse.c

Practice: Fill in the Blank

If-Else In C 400552 <+0>: cmp $0x3,%edi
if (arg > 3) { 400555 <+3>: Jle @x46@:55e <if_else+12>
ret = 10; 400557 <+5>: mov $0xa, %eax .
40055c <+10>: jmp ©Ox400563 <if else+l7>
} else { 40055e <+12>: mov $0x0, %eax
ret = 9; 400563 <+17>: add $0x1,%eax
}
ret++;
If-Else In Assembly pseudocode
Test
Jump to else-body if test fails
If-body
Jump to past else-body
Else-body

Past else body

ifelse.c

55

“Interfering” with %rip

3. How do we loop while
some condition is true?

Plan For Today

* Loops
* While loops
* For loops

57

While loops and assembly

void loop() { 00000000004004d6 <loop>:
int 1 = 0; 4004d6 <+0>: mov $0x0,%eax
while (i < 100) { 4004db <+5>: Jjmp 4004e0 <loop+0xa>
i++; 4004dd <+7>: add $0x1,%eax
} 4004e0 <+10>: cmp $0x63,%eax
} 4004e3 <+13>: jle 4004dd <loop+0x7>

4004e5 <+15>: repz retg

1. Which register is C code’s 17?

What is the unconditional jmp instruction doing?

3. What are the cmp and jle instructions doing? K?)
(j1le: jump less equal; signed <=)

58

™

while_loop

while loop.c

While loops and assembly: Recap

void loop() { 00000000004004d6 <loop>:
int 1 = 0; 4004d6 <+0>: mov $0x0,%eax
while (i < 100) 4004db <+5>: Jjmp 4004e0 <loop+0xa>
i++; 4004dd <+7>: add $0x1,%eax
} 4004e0 <+10>: cmp $0x63,%eax
} 4004e3 <+13>: jle 4004dd <loop+0x7>

4004e5 <+15>: repz retg

1. Jumps to while

. 2. If %eax — 0x63 <=0 (i.e., %eax <= 99),
loop conditional k

then jump to execute loop body.
Else, execute next instruction (i.e., exit loop)

60

gdb tips). 0. 0.1

(ctrl-x a: exit,

layout split (ir1-1: resize) View C, assembly, and gdb (lab6)

info reg Print all registers

p $eax Print register value

p $eflags Print all condition codes currently set

b *0x400546 Set breakpoint at assembly instruction
b *0x400550 if $eax > 98 Set conditional breakpoint

ni Next assembly instruction

si Step into assembly instruction (will step

into function calls) 61

Common While Loop Construction W

while (1 < 100) { 4004db <+5>: Jjmp 4004e0 <loop+0xa>

i++; 4004dd <+7>: add $0x1,%eax
} 4004e0 <+10>: cmp $0x63,%eax

4004e3 <+13>: jle 4004dd <loop+0x7>

C pseudocode Assembly pseudocode

while (test) { Jump to test
body Body

} Test

Jump to body if success

62

Plan For Today

* For loops

Common For Loop Construction

C For loop Assembly pseudocode
for (init; test; update) { Init
body Jump to test
} Body
Update
Test

Jump to body if success

C Equivalent While Loop
init
while(test) { For loops and while loops are

body treated (essentially) the same
update

1 when compiled down to assembly.

64

Back to Our First Assembly

int sum_array(int arr[], int nelems) { |1 \Which register is C code’s sum?
int sum = 0; : : : .
for (int i = @; i < nelems; i++) { |2- Which registeris Ccode’s 1?

} sum += arr[i]; 3. Which assembly instruction is C
return sum: code’s sum += arr[i]?
} 4. What are the cmp and j1

instructions doing?
00000000004005b6 <sum_array>: 5

4005b6: mov $0x0, %edx (31: jump less; signed <)
4005bb<+5>: mov $0x0, %eax

4005c0<+10>: jmp 4005cb <sum_array+21>
4005c2<+12>: movslg %edx,%rcx
4005c5<+15>: add (%rdi,%rcx,4),%eax

4005c8<+18>: add $0x1, %edx =N
4005cb<+21>: cmp %esi,%edx
4005cd<+23>: jl 4005c2 <sum_array+12> -

4005ct<+25>: repz retq 65

sum_array

sum_array.c

gdb tips). 0. 0.1

p/X $rdi
p/t $rsi

X $rdi
x/4bx $rdi
X/4wx $rdi

Print register value in hex
Print register value in binary

Examine the byte stored at this address
Examine 4 bytes starting at this address
Examine 4 ints starting at this address

67

Plan For Today

* Optimizations

68

Optimizations you’ll see

nop
* nop/nopl are “no-op” instructions — they do nothing!
* Intent: Make functions align on address boundaries that are nice multiples of 8.

mov %ebx, %ebx

e Zeros out the top 32 register bits
(because a mov on an e-register zeros out rest of 64 bits).

xor %ebx,%ebx

e Optimizes for performance as well as code size (read more here):

b8 00 00 00 00 mov $0x0,%eax
31 cO XOr %eax,neax

69

https://stackoverflow.com/questions/33666617/what-is-the-best-way-to-set-a-register-to-zero-in-x86-assembly-xor-mov-or-and/33668295

Loop optimization in GCC

C For loop
for (init; test; update) {

body
}

?

GCC assembly pseudocode Possible alternative?
Init Init
Jump to test Test
Body Jump past loop is fails
Update Body
Test Update

Jump to body if success Jump to Test

70

Loop optimization in GCC

C For loop Are the number of instructions executed
for (int i = 0; i < n; i++) { in the left greater, less than, or equal to
; those executed on the right if...
) 1. n=07
2. n=10007?
GCC assembly pseudocode Possible alternative?
Init Init
Jump to test Test
Body Jump past loop is fails
Update Body
Test Update (?:«

Jump to body if success Jump to Test

/1

Optimizing

Instruction Counts

* Both versions have the same static instruction count (# of written instructions).

e But they have different dynamic instruction counts (# of executed instructions

when program is run).

* If n=0, right (possible alternative) is best b/c fewer instructions
* If nis large, left (gcc is best) is best b/c fewer instructions

* The compiler may emit a static

instruction count that is several times longer

than an alternative, but it may be more efficient if loop executes many times.

* Does the compiler know that a

* So what if our code had loops t
How do we know when gcc ma

oop will execute many times? (in general, no)
nat always execute a small number of times?

kes a bad decision?

* (take EE108, EE180, CS316 for more!)

72

Bonus assembly exercises

Practice: Parameters

0000000PPB4005ac <sum examplel>:

4005bd: 8b 45 eS8 mov %esi,%eax
4005c3: 01 do add %edi,%eax
4005cc: c3 retq

Which of the following is most likely to have generated the above assembly?
// B)

/] A)
void sum_examplel() { int sum_examplel(int x, int y) {
int x; return x + y;
int y; }
int sum = X + y;
}
/] C)
void sum_examplel(int x, int y) { K? v
=

int sum = x + y;
74

Practice: Parameters

0000000PPB4005ac <sum examplel>:

4005bd: 8b 45 eS8 mov %esi,%eax
4005c3: 01 do add %edi,%eax
4005cc: c3 retq

Which of the following is most likely to have generated the above assembly?
// B)

/] A)

void sum_examplel() { int sum _examplel(int x, int y) {
int x; return x + y;
int y; }
int sum = X + y;

}

// C)

void sum_examplel(int x, int y) { E3

int sum = x + y;

}
75

Practice: Intermediates/registers

0000000400578 <sum example2>:

400578: 8b 47 Oc mov ©Oxc(%rdi),%eax
40057b: 03 07 add (%rdi),%eax
40057d: 2b 47 18 sub ©x18(%rdi),%eax
400580: C3 retq
int sum_example2(int arr[]) { 1. What memory location, register, or
int sum = @; immediate above represents the C code’s
sum += arr[0]; sum variable?
sum += arr[3];
sum -= arr[6]; 2. What memory location, register, or
return sum; immediate in the assembly code above

represents the C code’s 6 (as in arr[6])? \??D

bonus.c

76

Practice: Intermediates/registers

0000000400578 <sum example2>:

400578: 8b 47 Oc mov ©Oxc(%rdi),%eax
40057b: 03 07 add (%rdi),%eax
40057d: 2b 47 18 sub ©x18(%rdi),%eax
400580: C3 retq
int sum_example2(int arr[]) { 1. What memory location, register, or
int sum = @; immediate above represents the C code’s
sum += arr[0]; sum variable?
sum += arr[3]; %eax
sum -= arr[6]; 2. What memory location, register, or
return sum; immediate in the assembly code above
} represents the C code’s 6 (as in arr[6])?

ox18

Practice: while loop

long loop(long a, long b) { loop:

long result = ; movl $1, %eax
while () { jmp . L2
result = ; .L3
a = ; leag (%rdi,%rsi), %rdx

imulg %rdx, %rax
addg $1, %rdi

}

return result;

A label for this instruction location. %rsi, %rdi
e Used in place of instruction .

addresses in assembly files (.s). rep; ret
* These labels get compiled to

addresses in object files (.0).

>
bonus.c 78

Practice: while loop

C Code What does this assembly code translate to?
long loop(long a, long b) { // a 1in %rdi, b in %rsi
long result = ; loop:)
while () { rpovl $1, %eax
1t = . Jmp .L2
resu =) L3
a = > leag (%rdi,%rsi), %rdx
} imulg %rdx, %rax
return result; addg $1, %rdi
} .L2
cmpq %rsi, »rdi
Assembly pseudocode jl .L3
Jump to test rep; ret
Body (70 &)
Test K1~
Jump to body if success What does this assembly code translate to? ‘

Practice: while loop

C Code What does this assembly code translate to?
long loop(long a, long b) { // a 1in %rdi, b in %rsi
long result = 1 loop: o
while (a <b) { vt By e
result = presult*(a+b); |3 '
a= a+1 ; leaq (%rdi,%rsi), %rdx
} imulg %rdx, %rax
return result; addg $1, %rdi
} .L2
cmpq %rsi, »rdi
Assembly pseudocode jl .L3
Jump to test rep; ret
Body
Test
Jump to body if success What does this assembly code translate to?

80

