
1

CS107: Lecture 14
Assembly: Function Call and Return

Slides by Nick Troccoli, who leveraged prior work by Julie Zelenski, Marty Stepp, Cynthia Lee, Chris Gregg, and others. Minor updates by Jerry Cain.

Reading: B&O 3.7

2

Learning Assembly

Moving data
around

Arithmetic and
logical

operations
Control flow Function calls

2/10 2/17 2/21 Today

Reference Sheet: cs107.stanford.edu/resources/x86-64-reference.pdf
See more guides on Resources page of course website!

3

Learning Goals
• Review what %rip represents and how it is updated.
• Learn how assembly calls functions and manages stack frames.
• Learn the rules of register use when calling functions.

4

Plan For Today
• Recap: Control Flow
• Calling Functions
• The Stack
• Passing Control
• Break: Announcements
• Passing Data
• Local Storage

• Register Restrictions
• Pulling it all together: recursion example

cp -r /afs/ir/class/cs107/samples/lectures/lect14 .

5

Plan For Today
• Recap: Control Flow
• Calling Functions
• The Stack
• Passing Control
• Break: Announcements
• Passing Data
• Local Storage

• Register Restrictions
• Pulling it all together: recursion example

6

Control
• In C, we have control flow statements like if, else, while, for, etc. to write

programs that are more expressive than just one instruction following another.
• This is conditional execution of statements: executing statements if one

condition is true, executing other statements if one condition is false, etc.
• How is this represented in assembly?
• A way to store conditions that we will check later
• Assembly instructions whose behavior is dependent on these conditions

7

Condition Codes
Alongside normal registers, the CPU also has single-bit condition code registers.
They store information about the most recent arithmetic or logical operation.

Most common condition codes:
• CF: Carry flag. The most recent operation generated a carry out of the most

significant bit. Used to detect overflow for unsigned operations.
• ZF: Zero flag. The most recent operation yielded zero.
• SF: Sign flag. The most recent operation yielded a negative value.
• OF: Overflow flag. The most recent operation caused a two’s-complement

overflow-either negative or positive.

8

Condition Code-Dependent Instructions
There are three common instruction types that rely on condition codes:
• set instructions that conditionally set a byte to 0 or 1
• new versions of mov instructions that conditionally move data
• jmp instructions that conditionally jump to a different instruction (there is also

an unconditional jump that always jumps)

9

Register Responsibilities
Some registers take on special responsibilities during program execution.
• %rax stores the return value
• %rdi stores the first parameter to a function
• %rsi stores the second parameter to a function
• %rdx stores the third parameter to a function
• %rip stores the address of the next instruction to execute
• %rsp stores the address of the current top element on the stack

See the x86-64 Guide and Reference Sheet on the Resources webpage for more!

10

Plan For Today
• Recap: Control Flow
• Calling Functions
• The Stack
• Passing Control
• Break: Announcements
• Passing Data
• Local Storage

• Register Restrictions
• Pulling it all together: recursion example

11

How do we call functions in
assembly?

12

Calling Functions In Assembly
To call a function in assembly, a few things need to happen:
• Pass Control – %rip must be adjusted to execute the callee’s instructions, and

then resume the caller’s instructions afterwards as if never interrupted.
• Pass Data – we need to pass parameters and extract a return value.
• Manage Memory – we must extend the stack segment (or rather, the portion

of the stack currently being used) to set aside space for local variables.

Terminology: caller function calls the callee function.

How does assembly
interact with the stack?

13

Plan For Today
• Recap: Control Flow
• Calling Functions
• The Stack
• Passing Control
• Break: Announcements
• Passing Data
• Local Storage

• Register Restrictions
• Pulling it all together: recursion example

14

%rsp
• %rsp is a special register that stores the address of the current “top” of the

stack (the bottom in our diagrams, since the stack grows downwards).

0x0

main()

Heap

print_last_n()

Data

Text (code)

%rsp

Main Memory

15

%rsp
• %rsp is a special register that stores the address of the current “top” of the

stack (the bottom in our diagrams, since the stack grows downwards).

0x0

main()

Heap

print_last_n()

Data

Text (code)

%rsp

Main Memory

read_line()

16

%rsp
• %rsp is a special register that stores the address of the current “top” of the

stack (the bottom in our diagrams, since the stack grows downwards).

0x0

main()

Heap

print_last_n()

Data

Text (code)

%rsp

Main Memory

read_line()

fgets()

17

%rsp
• %rsp is a special register that stores the address of the current “top” of the

stack (the bottom in our diagrams, since the stack grows downwards).

0x0

main()

Heap

print_last_n()

Data

Text (code)

%rsp

Main Memory

read_line()

18

%rsp
• %rsp is a special register that stores the address of the current “top” of the

stack (the bottom in our diagrams, since the stack grows downwards).

0x0

main()

Heap

print_last_n()

Data

Text (code)

%rsp

Main Memory

Key idea: %rsp must
point to the same place
before a function is
called and after that
function returns, since
stack frames go away
when a function finishes.

19

push
• The push instruction pushes the data at the specified source onto the top of

the stack, adjusting %rsp accordingly.

Instruction Effect
pushq S R[%rsp] ⟵ R[%rsp] – 8;

M[R[%rsp]] ⟵ S

20

push
• The push instruction pushes the data at the specified source onto the top of

the stack, adjusting %rsp accordingly.

Instruction Effect
pushq S R[%rsp] ⟵ R[%rsp] – 8;

M[R[%rsp]] ⟵ S

21

push
• The push instruction pushes the data at the specified source onto the top of

the stack, adjusting %rsp accordingly.

Instruction Effect
pushq S R[%rsp] ⟵ R[%rsp] – 8;

M[R[%rsp]] ⟵ S

22

push
• The push instruction pushes the data at the specified source onto the top of

the stack, adjusting %rsp accordingly.

• This behavior is equivalent to the following, but pushq is a shorter instruction:
subq $8, %rsp
movq S, (%rsp)

• Sometimes, you’ll see instructions just explicitly decrement the stack pointer
to make room for future data.

Instruction Effect
pushq S R[%rsp] ⟵ R[%rsp] – 8;

M[R[%rsp]] ⟵ S

23

pop
• The pop instruction pops the topmost data from the stack and stores it in the

specified destination, adjusting %rsp accordingly.

• Note: this does not remove/clear out the data! It just increments %rsp to
indicate the next push can overwrite that location.

Instruction Effect
popq D D ⟵ M[R[%rsp]]

R[%rsp] ⟵ R[%rsp] + 8;

24

pop
• The pop instruction pops the topmost data from the stack and stores it in the

specified destination, adjusting %rsp accordingly.

• This behavior is equivalent to the following, but popq is a shorter instruction:
movq (%rsp), D
addq $8, %rsp

• Sometimes, you’ll see instructions just explicitly increment the stack pointer to
pop data.

Instruction Effect
popq D D ⟵ M[R[%rsp]]

R[%rsp] ⟵ R[%rsp] + 8;

25

Stack Example
Initially

%rax 0x123

%rdx 0

%rsp 0x108

Stack “bottom”

Stack “top”0x108

Increasing
addresses

pushq %rax
%rax 0x123

%rdx 0

%rsp 0x100

Stack “bottom”

Stack “top”

Increasing
addresses

popq %rdx
%rax 0x123

%rdx 0x123

%rsp 0x108

Stack “bottom”

0x108

Increasing
addresses

0x123

Stack “top”

0x108
0x100 0x100

0x123

26

Calling Functions In Assembly
To call a function in assembly, a few things need to happen:
• Pass Control – %rip must be adjusted to execute the callee’s instructions, and

then resume the caller’s instructions afterwards as if never interrupted.
• Pass Data – we need to pass parameters and extract a return value.
• Manage Memory – we must extend the stack segment (or rather, the portion

of the stack currently being used) to set aside space for local variables.

Terminology: caller function calls the callee function.

27

Plan For Today
• Recap: Control Flow
• Calling Functions
• The Stack
• Passing Control
• Break: Announcements
• Passing Data
• Local Storage

• Register Restrictions
• Pulling it all together: recursion example

28

Remembering Where We Left Off
Problem: %rip points to the
next instruction to execute. To
call a function, we must
remember the next caller
instruction to resume at after.
Solution: push the next value of
%rip onto the stack. Then call
the function. When it is
finished, put this value back
into %rip and continue
executing.

…

…

Stack

0xff20%rsp

main()

0x3021%rip

E.g. main() calls foo():

29

Remembering Where We Left Off
Problem: %rip points to the
next instruction to execute. To
call a function, we must
remember the next caller
instruction to resume at after.
Solution: push the next value of
%rip onto the stack. Then call
the function. When it is
finished, put this value back
into %rip and continue
executing.

…

…

0x3026

Stack

main()

0xff18%rsp

0x3021%rip

E.g. main() calls foo():

30

Remembering Where We Left Off
Problem: %rip points to the
next instruction to execute. To
call a function, we must
remember the next caller
instruction to resume at after.
Solution: push the next value of
%rip onto the stack. Then call
the function. When it is
finished, put this value back
into %rip and continue
executing.

…

…

0x3026

…

Stack

main()

foo()

0xff08%rsp

0x4058%rip

E.g. main() calls foo():

31

Remembering Where We Left Off
Problem: %rip points to the
next instruction to execute. To
call a function, we must
remember the next caller
instruction to resume at after.
Solution: push the next value of
%rip onto the stack. Then call
the function. When it is
finished, put this value back
into %rip and continue
executing.

…

…

0x3026

Stack

0xff18%rsp

0x4058%rip

main()

E.g. main() calls foo():

32

Remembering Where We Left Off
Problem: %rip points to the
next instruction to execute. To
call a function, we must
remember the next caller
instruction to resume at after.
Solution: push the next value of
%rip onto the stack. Then call
the function. When it is
finished, put this value back
into %rip and continue
executing.

…

…

Stack

main()

0xff20%rsp

0x3026%rip

E.g. main() calls foo():

33

Call And Return
The call instruction pushes the address of the instruction immediately following
the call instruction onto the stack and sets %rip to point to the beginning of the
specified function’s instructions.

call Label
call *Operand

The ret instruction pops this instruction address from the stack and stores it in
%rip.

ret
The stored %rip value for a function is called its return address. It is the address
of the instruction at which to resume the function’s execution. (not to be
confused with return value, which is the value returned from a function).

34

Calling Functions In Assembly
To call a function in assembly, a few things need to happen:
• Pass Control – %rip must be adjusted to execute the callee’s instructions, and

then resume the caller’s instructions afterwards as if never interrupted.
• Pass Data – we need to pass parameters and extract a return value.
• Manage Memory – we must extend the stack segment (or rather, the portion

of the stack currently being used) to set aside space for local variables.

Terminology: caller function calls the callee function.

35

Plan For Today
• Recap: Control Flow
• Calling Functions
• The Stack
• Passing Control
• Break: Announcements
• Passing Data
• Local Storage

• Register Restrictions
• Pulling it all together: recursion example

36

Mid-Lecture Check-In
We can now answer the following questions:

1. What does %rip store?
2. How does %rip update as we execute instructions?
3. When we call a function, where do we store the instruction to resume

executing at in the caller after we return?
4. When the callee is finished, %rip must be updated to the instruction to

resume at in the caller. What instruction does this?

37

Plan For Today
• Recap: Control Flow
• Calling Functions
• The Stack
• Passing Control
• Break: Announcements
• Passing Data
• Local Storage

• Register Restrictions
• Pulling it all together: recursion example

38

Parameters and Return
• There are special registers that store parameters and the return value.
• To call a function, we must put any parameters we are passing into the correct

registers. (%rdi, %rsi, %rdx, %rcx, %r8, %r9, in that order)
• Parameters beyond the first 6 are put on the stack.
• If the caller expects a return value, it looks in %rax after the callee completes.

39

Parameters and Return
...main()int main(int argc, char *argv[]) {

int i1 = 1;
int i2 = 2;
int i3 = 3;
int i4 = 4;
int result = func(&i1, &i2, &i3, &i4,

i1, i2, i3, i4);
…

}

int func(int *p1, int *p2, int *p3, int *p4,
int v1, int v2, int v3, int v4) {

…
}

40

Parameters and Return
...main()

0xffea08

0x40054f

%rsp

%rip

int main(int argc, char *argv[]) {
int i1 = 1;
int i2 = 2;
int i3 = 3;
int i4 = 4;
int result = func(&i1, &i2, &i3, &i4,

i1, i2, i3, i4);
…

}

int func(int *p1, int *p2, int *p3, int *p4,
int v1, int v2, int v3, int v4) {

…
}

0x40054f <+0>: sub $0x18,%rsp
0x400553 <+4>: movl $0x1,0xc(%rsp)
0x40055b <+12>: movl $0x2,0x8(%rsp)
0x400563 <+20>: movl $0x3,0x4(%rsp)
0x40056b <+28>: movl $0x4,(%rsp)
0x400572 <+35>: pushq $0x4

41

Parameters and Return
...

0xffe9f0

main()

0xffe9f0

0x400553

%rsp

%rip

int main(int argc, char *argv[]) {
int i1 = 1;
int i2 = 2;
int i3 = 3;
int i4 = 4;
int result = func(&i1, &i2, &i3, &i4,

i1, i2, i3, i4);
…

}

int func(int *p1, int *p2, int *p3, int *p4,
int v1, int v2, int v3, int v4) {

…
}

0x40054f <+0>: sub $0x18,%rsp
0x400553 <+4>: movl $0x1,0xc(%rsp)
0x40055b <+12>: movl $0x2,0x8(%rsp)
0x400563 <+20>: movl $0x3,0x4(%rsp)
0x40056b <+28>: movl $0x4,(%rsp)
0x400572 <+35>: pushq $0x4

42

Parameters and Return
...

0xffe9fc 1

0xffe9f0

main()

0xffe9f0

0x40055b

%rsp

%rip

int main(int argc, char *argv[]) {
int i1 = 1;
int i2 = 2;
int i3 = 3;
int i4 = 4;
int result = func(&i1, &i2, &i3, &i4,

i1, i2, i3, i4);
…

}

int func(int *p1, int *p2, int *p3, int *p4,
int v1, int v2, int v3, int v4) {

…
}

0x40054f <+0>: sub $0x18,%rsp
0x400553 <+4>: movl $0x1,0xc(%rsp)
0x40055b <+12>: movl $0x2,0x8(%rsp)
0x400563 <+20>: movl $0x3,0x4(%rsp)
0x40056b <+28>: movl $0x4,(%rsp)
0x400572 <+35>: pushq $0x4

43

Parameters and Return
...

0xffe9fc 1
0xffe9f8 2

0xffe9f0

main()

0xffe9f0

0x400563

%rsp

%rip

int main(int argc, char *argv[]) {
int i1 = 1;
int i2 = 2;
int i3 = 3;
int i4 = 4;
int result = func(&i1, &i2, &i3, &i4,

i1, i2, i3, i4);
…

}

int func(int *p1, int *p2, int *p3, int *p4,
int v1, int v2, int v3, int v4) {

…
}

0x40054f <+0>: sub $0x18,%rsp
0x400553 <+4>: movl $0x1,0xc(%rsp)
0x40055b <+12>: movl $0x2,0x8(%rsp)
0x400563 <+20>: movl $0x3,0x4(%rsp)
0x40056b <+28>: movl $0x4,(%rsp)
0x400572 <+35>: pushq $0x4

44

Parameters and Return
...

0xffe9fc 1
0xffe9f8 2
0xffe9f4 3
0xffe9f0

main()

0xffe9f0

0x40056b

%rsp

%rip

int main(int argc, char *argv[]) {
int i1 = 1;
int i2 = 2;
int i3 = 3;
int i4 = 4;
int result = func(&i1, &i2, &i3, &i4,

i1, i2, i3, i4);
…

}

int func(int *p1, int *p2, int *p3, int *p4,
int v1, int v2, int v3, int v4) {

…
}

0x400553 <+4>: movl $0x1,0xc(%rsp)
0x40055b <+12>: movl $0x2,0x8(%rsp)
0x400563 <+20>: movl $0x3,0x4(%rsp)
0x40056b <+28>: movl $0x4,(%rsp)
0x400572 <+35>: pushq $0x4
0x400574 <+37>: pushq $0x3

45

Parameters and Return
...

0xffe9fc 1
0xffe9f8 2
0xffe9f4 3
0xffe9f0 4

main()

0xffe9f0

0x400572

%rsp

%rip

int main(int argc, char *argv[]) {
int i1 = 1;
int i2 = 2;
int i3 = 3;
int i4 = 4;
int result = func(&i1, &i2, &i3, &i4,

i1, i2, i3, i4);
…

}

int func(int *p1, int *p2, int *p3, int *p4,
int v1, int v2, int v3, int v4) {

…
}

0x40055b <+12>: movl $0x2,0x8(%rsp)
0x400563 <+20>: movl $0x3,0x4(%rsp)
0x40056b <+28>: movl $0x4,(%rsp)
0x400572 <+35>: pushq $0x4
0x400574 <+37>: pushq $0x3
0x400576 <+39>: mov $0x2,%r9d

46

Parameters and Return
...

0xffe9fc 1
0xffe9f8 2
0xffe9f4 3
0xffe9f0 4

0xffe9e8
4

main()

0xffe9e8

0x400574

%rsp

%rip

int main(int argc, char *argv[]) {
int i1 = 1;
int i2 = 2;
int i3 = 3;
int i4 = 4;
int result = func(&i1, &i2, &i3, &i4,

i1, i2, i3, i4);
…

}

int func(int *p1, int *p2, int *p3, int *p4,
int v1, int v2, int v3, int v4) {

…
}

0x400563 <+20>: movl $0x3,0x4(%rsp)
0x40056b <+28>: movl $0x4,(%rsp)
0x400572 <+35>: pushq $0x4
0x400574 <+37>: pushq $0x3
0x400576 <+39>: mov $0x2,%r9d
0x40057c <+45>: mov $0x1,%r8d

47

Parameters and Return
...

0xffe9fc 1
0xffe9f8 2
0xffe9f4 3
0xffe9f0 4

0xffe9e8
4

0xffe9e0
3

main()

0xffe9e0

0x400576

%rsp

%rip

int main(int argc, char *argv[]) {
int i1 = 1;
int i2 = 2;
int i3 = 3;
int i4 = 4;
int result = func(&i1, &i2, &i3, &i4,

i1, i2, i3, i4);
…

}

int func(int *p1, int *p2, int *p3, int *p4,
int v1, int v2, int v3, int v4) {

…
}

0x40056b <+28>: movl $0x4,(%rsp)
0x400572 <+35>: pushq $0x4
0x400574 <+37>: pushq $0x3
0x400576 <+39>: mov $0x2,%r9d
0x40057c <+45>: mov $0x1,%r8d
0x400582 <+51>: lea 0x10(%rsp),%rcx

48

Parameters and Return
...

0xffe9fc 1
0xffe9f8 2
0xffe9f4 3
0xffe9f0 4

0xffe9e8
4

0xffe9e0
3

main()

0xffe9e0

0x40057c

%rsp

%rip

int main(int argc, char *argv[]) {
int i1 = 1;
int i2 = 2;
int i3 = 3;
int i4 = 4;
int result = func(&i1, &i2, &i3, &i4,

i1, i2, i3, i4);
…

}

int func(int *p1, int *p2, int *p3, int *p4,
int v1, int v2, int v3, int v4) {

…
}

0x400572 <+35>: pushq $0x4
0x400574 <+37>: pushq $0x3
0x400576 <+39>: mov $0x2,%r9d
0x40057c <+45>: mov $0x1,%r8d
0x400582 <+51>: lea 0x10(%rsp),%rcx
0x400587 <+56>: lea 0x14(%rsp),%rdx

49

Parameters and Return
...

0xffe9fc 1
0xffe9f8 2
0xffe9f4 3
0xffe9f0 4

0xffe9e8
4

0xffe9e0
3

main()

0xffe9e0

0x40057c

%rsp

%rip

int main(int argc, char *argv[]) {
int i1 = 1;
int i2 = 2;
int i3 = 3;
int i4 = 4;
int result = func(&i1, &i2, &i3, &i4,

i1, i2, i3, i4);
…

}

int func(int *p1, int *p2, int *p3, int *p4,
int v1, int v2, int v3, int v4) {

…
}

0x400572 <+35>: pushq $0x4
0x400574 <+37>: pushq $0x3
0x400576 <+39>: mov $0x2,%r9d
0x40057c <+45>: mov $0x1,%r8d
0x400582 <+51>: lea 0x10(%rsp),%rcx
0x400587 <+56>: lea 0x14(%rsp),%rdx

50

Parameters and Return
...

0xffe9fc 1
0xffe9f8 2
0xffe9f4 3
0xffe9f0 4

0xffe9e8
4

0xffe9e0
3

main()

0xffe9e0

0x40057c

%rsp

%rip

int main(int argc, char *argv[]) {
int i1 = 1;
int i2 = 2;
int i3 = 3;
int i4 = 4;
int result = func(&i1, &i2, &i3, &i4,

i1, i2, i3, i4);
…

}

int func(int *p1, int *p2, int *p3, int *p4,
int v1, int v2, int v3, int v4) {

…
}

0x400572 <+35>: pushq $0x4
0x400574 <+37>: pushq $0x3
0x400576 <+39>: mov $0x2,%r9d
0x40057c <+45>: mov $0x1,%r8d
0x400582 <+51>: lea 0x10(%rsp),%rcx
0x400587 <+56>: lea 0x14(%rsp),%rdx

2

%r9d

51

Parameters and Return
...

0xffe9fc 1
0xffe9f8 2
0xffe9f4 3
0xffe9f0 4

0xffe9e8
4

0xffe9e0
3

main()

0xffe9e0

0x400582

%rsp

%rip

int main(int argc, char *argv[]) {
int i1 = 1;
int i2 = 2;
int i3 = 3;
int i4 = 4;
int result = func(&i1, &i2, &i3, &i4,

i1, i2, i3, i4);
…

}

int func(int *p1, int *p2, int *p3, int *p4,
int v1, int v2, int v3, int v4) {

…
}

0x400574 <+37>: pushq $0x3
0x400576 <+39>: mov $0x2,%r9d
0x40057c <+45>: mov $0x1,%r8d
0x400582 <+51>: lea 0x10(%rsp),%rcx
0x400587 <+56>: lea 0x14(%rsp),%rdx
0x40058c <+61>: lea 0x18(%rsp),%rsi

2

%r9d

1

%r8d

52

Parameters and Return
...

0xffe9fc 1
0xffe9f8 2
0xffe9f4 3
0xffe9f0 4

0xffe9e8
4

0xffe9e0
3

main()

0xffe9e0

0x400587

%rsp

%rip

int main(int argc, char *argv[]) {
int i1 = 1;
int i2 = 2;
int i3 = 3;
int i4 = 4;
int result = func(&i1, &i2, &i3, &i4,

i1, i2, i3, i4);
…

}

int func(int *p1, int *p2, int *p3, int *p4,
int v1, int v2, int v3, int v4) {

…
}

0x400576 <+39>: mov $0x2,%r9d
0x40057c <+45>: mov $0x1,%r8d
0x400582 <+51>: lea 0x10(%rsp),%rcx
0x400587 <+56>: lea 0x14(%rsp),%rdx
0x40058c <+61>: lea 0x18(%rsp),%rsi
0x400591 <+66>: lea 0x1c(%rsp),%rdi

2

%r9d

1

%r8d

0xffe9f0

%rcx

53

Parameters and Return
...

0xffe9fc 1
0xffe9f8 2
0xffe9f4 3
0xffe9f0 4

0xffe9e8
4

0xffe9e0
3

main()

0xffe9e0

0x40058c

%rsp

%rip

int main(int argc, char *argv[]) {
int i1 = 1;
int i2 = 2;
int i3 = 3;
int i4 = 4;
int result = func(&i1, &i2, &i3, &i4,

i1, i2, i3, i4);
…

}

int func(int *p1, int *p2, int *p3, int *p4,
int v1, int v2, int v3, int v4) {

…
}

0x40057c <+45>: mov $0x1,%r8d
0x400582 <+51>: lea 0x10(%rsp),%rcx
0x400587 <+56>: lea 0x14(%rsp),%rdx
0x40058c <+61>: lea 0x18(%rsp),%rsi
0x400591 <+66>: lea 0x1c(%rsp),%rdi
0x400596 <+71>: callq 0x400546 <func>

2

%r9d

1

%r8d

0xffe9f0

%rcx

0xffe9f4

%rdx

54

Parameters and Return
...

0xffe9fc 1
0xffe9f8 2
0xffe9f4 3
0xffe9f0 4

0xffe9e8
4

0xffe9e0
3

main()

0xffe9e0

0x400591

%rsp

%rip

int main(int argc, char *argv[]) {
int i1 = 1;
int i2 = 2;
int i3 = 3;
int i4 = 4;
int result = func(&i1, &i2, &i3, &i4,

i1, i2, i3, i4);
…

}

int func(int *p1, int *p2, int *p3, int *p4,
int v1, int v2, int v3, int v4) {

…
}

0x400582 <+51>: lea 0x10(%rsp),%rcx
0x400587 <+56>: lea 0x14(%rsp),%rdx
0x40058c <+61>: lea 0x18(%rsp),%rsi
0x400591 <+66>: lea 0x1c(%rsp),%rdi
0x400596 <+71>: callq 0x400546 <func>

2

%r9d

1

%r8d

0xffe9f0

%rcx

0xffe9f4

%rdx

0xffe9f8

%rsi

55

Parameters and Return
...

0xffe9fc 1
0xffe9f8 2
0xffe9f4 3
0xffe9f0 4

0xffe9e8
4

0xffe9e0
3

main()

0xffe9e0

0x400596

%rsp

%rip

int main(int argc, char *argv[]) {
int i1 = 1;
int i2 = 2;
int i3 = 3;
int i4 = 4;
int result = func(&i1, &i2, &i3, &i4,

i1, i2, i3, i4);
…

}

int func(int *p1, int *p2, int *p3, int *p4,
int v1, int v2, int v3, int v4) {

…
}

0x400587 <+56>: lea 0x14(%rsp),%rdx
0x40058c <+61>: lea 0x18(%rsp),%rsi
0x400591 <+66>: lea 0x1c(%rsp),%rdi
0x400596 <+71>: callq 0x400546 <func>
0x40059b <+76>: add $0x10,%rsp

2

%r9d

1

%r8d

0xffe9f0

%rcx

0xffe9f4

%rdx

0xffe9fc

%rdi
0xffe9f8

%rsi

56

Parameters and Return
...

0xffe9fc 1
0xffe9f8 2
0xffe9f4 3
0xffe9f0 4

0xffe9e8
4

0xffe9e0
3

main()

0xffe9e0

0x40059b

%rsp

%rip

int main(int argc, char *argv[]) {
int i1 = 1;
int i2 = 2;
int i3 = 3;
int i4 = 4;
int result = func(&i1, &i2, &i3, &i4,

i1, i2, i3, i4);
…

}

int func(int *p1, int *p2, int *p3, int *p4,
int v1, int v2, int v3, int v4) {

…
}

0x40058c <+61>: lea 0x18(%rsp),%rsi
0x400591 <+66>: lea 0x1c(%rsp),%rdi
0x400596 <+71>: callq 0x400546 <func>
0x40059b <+76>: add $0x10,%rsp
…

2

%r9d

1

%r8d

0xffe9f0

%rcx

0xffe9f4

%rdx

0xffe9fc

%rdi
0xffe9f8

%rsi

57

Parameters and Return
...

0xffe9fc 1
0xffe9f8 2
0xffe9f4 3
0xffe9f0 4

0xffe9e8
4

0xffe9e0
3

0x40059b

main()

0xffe9d8

0x40059b

%rsp

%rip

int main(int argc, char *argv[]) {
int i1 = 1;
int i2 = 2;
int i3 = 3;
int i4 = 4;
int result = func(&i1, &i2, &i3, &i4,

i1, i2, i3, i4);
…

}

int func(int *p1, int *p2, int *p3, int *p4,
int v1, int v2, int v3, int v4) {

…
}

0x40058c <+61>: lea 0x18(%rsp),%rsi
0x400591 <+66>: lea 0x1c(%rsp),%rdi
0x400596 <+71>: callq 0x400546 <func>
0x40059b <+76>: add $0x10,%rsp
…

2

%r9d

1

%r8d

0xffe9f0

%rcx

0xffe9f4

%rdx

0xffe9fc

%rdi
0xffe9f8

%rsi

58

Parameters and Return
...

0xffe9fc 1
0xffe9f8 2
0xffe9f4 3
0xffe9f0 4

0xffe9e8
4

0xffe9e0
3

0x40059b

main()

0xffe9d8

0x40059b

%rsp

%rip

int main(int argc, char *argv[]) {
int i1 = 1;
int i2 = 2;
int i3 = 3;
int i4 = 4;
int result = func(&i1, &i2, &i3, &i4,

i1, i2, i3, i4);
…

}

int func(int *p1, int *p2, int *p3, int *p4,
int v1, int v2, int v3, int v4) {

…
}

0x40058c <+61>: lea 0x18(%rsp),%rsi
0x400591 <+66>: lea 0x1c(%rsp),%rdi
0x400596 <+71>: callq 0x400546 <func>
0x40059b <+76>: add $0x10,%rsp
…

2

%r9d

1

%r8d

0xffe9f0

%rcx

0xffe9f4

%rdx

0xffe9fc

%rdi
0xffe9f8

%rsi

59

Plan For Today
• Recap: Control Flow
• Calling Functions
• The Stack
• Passing Control
• Break: Announcements
• Passing Data
• Local Storage

• Register Restrictions
• Pulling it all together: recursion example

60

Calling Functions In Assembly
To call a function in assembly, a few things need to happen:
• Pass Control – %rip must be adjusted to execute the callee’s instructions, and

then resume the caller’s instructions afterwards as if never interrupted.
• Pass Data – we need to pass parameters and extract a return value.
• Manage Memory – we must extend the stack segment (or rather, the portion

of the stack currently being used) to set aside space for local variables.

Terminology: caller function calls the callee function.

61

Local Storage
• So far, we’ve often seen local variables stored directly in registers, rather than

on the stack as we’d expect. This is for optimization reasons.
• There are three common reasons that local data must be in memory:
• We’ve run out of registers
• The ‘&’ operator is used on it, so we must generate an address for it
• They are arrays or structs (need to use address arithmetic)

62

Local Storage
long caller() {

long arg1 = 534;
long arg2 = 1057;
long sum = swap_add(&arg1, &arg2);
...

}
caller:

subq $16, %rsp // 16 bytes for stack frame
movq $534, (%rsp) // store 534 in arg1
movq $1057, 8(%rsp) // store 1057 in arg2
leaq 8(%rsp), %rsi // compute &arg2 as second arg
movq %rsp, %rdi // compute &arg1 as first arg
call swap_add // call swap_add(&arg1, &arg2)

63

Plan For Today
• Recap: Control Flow
• The Instruction Pointer (%rip)
• Calling Functions
• The Stack
• Passing Control
• Break: Announcements
• Passing Data
• Local Storage

• Register Restrictions
• Pulling it all together: recursion example

64

Register Restrictions
• There is only one copy of registers for all programs and instructions.
• Therefore, there are some rules that callers and callees must follow when

using registers so they do not interfere with one another.
• There are two types of registers: caller-owned and callee-owned

65

Caller/Callee

main

function1

function2

Caller/callee is
terminology that
refers to a pair of
functions. A single
function may be
both a caller and
callee
simultaneously (e.g.
function1 at right).

calls

calls

main is the caller,
and function1 is
the callee.

function1 is
the caller, and
function2 is
the callee.

66

Register Restrictions

• Callee must save the existing value
and restore it when done.

• Caller can store values and assume
they will be preserved across
function calls.

• Callee does not need to save the
existing value.

• Caller’s values could be overwritten
by a callee! The caller may consider
saving values elsewhere before
calling functions.

Caller-Owned Callee-Owned

67

Caller-Owned Registers

main

function1

calls

main can use caller-owned
registers and know that
function1 will not permanently
modify their values.

If function1 wants to use any
caller-owned registers, it must
save the existing values and
restore them before returning.

68

Caller-Owned Registers

function1:
push %rbp
push %rbx
...
pop %rbx
pop %rbp
retq

main

function1

calls

69

Callee-Owned Registers

main can use callee-owned
registers but calling function1
may permanently modify their
values.

If function1 wants to use any
callee-owned registers, it can do
so without saving the existing
values.

main

function1

calls

70

Callee-Owned Registers

main

function1

calls

main:
...
push %r10
push %r11
callq function1
pop %r11
pop %r10
...

71

A Day In the Life of function1

main

function1

function2

calls

calls

Caller-owned registers:
• function1 must save/restore existing values

of any that are used by main.
• function1 can assume that calling

function2 will not permanently change their
values.

Callee-owned registers:
• function1 does not need to save/restore

existing values of any that are used by main.
• calling function2 may permanently change

their values.

72

Plan For Today
• Recap: Control Flow
• Calling Functions
• The Stack
• Passing Control
• Break: Announcements
• Passing Data
• Local Storage

• Register Restrictions
• Pulling it all together: recursion example

73

Example: Recursion
• Let’s look at an example of recursion at the assembly level.
• We’ll use everything we’ve learned about registers, the stack, function calls,

parameters, and assembly instructions!
• We’ll also see how helpful GDB can be when tracing through assembly.

factorial.c and factorial

74

Plan For Today
• Recap: Control Flow
• Calling Functions
• The Stack
• Passing Control
• Break: Announcements
• Passing Data
• Local Storage

• Register Restrictions
• Pulling it all together: recursion example

That’s it for assembly! Next time: managing the heap

