CS107: Lecture 14

Assembly: Function Call and Return

Reading: B&O 3.7

Slides by Nick Troccoli, who leveraged prior work by Julie Zelenski, Marty Stepp, Cynthia Lee, Chris Gregg, and others. Minor updates by Jerry Cain. 1

Learning Assembly

Arithmetic and
logical Control flow Function calls
operations

2/10 2/17 2/21 Today

Reference Sheet: cs107.stanford.edu/resources/x86-64-reference.pdf
See more guides on Resources page of course website! 5

Learning Goals

* Review what %rip represents and how it is updated.
* Learn how assembly calls functions and manages stack frames.
 Learn the rules of register use when calling functions.

Plan For Today

* Recap: Control Flow

* Calling Functions
* The Stack
e Passing Control
* Break: Announcements
* Passing Data
* Local Storage

* Register Restrictions
* Pulling it all together: recursion example

cp -r /afs/ir/class/csl107/samples/lectures/lectlsd .

Plan For Today

* Recap: Control Flow

* Calling Functions
* The Stack
e Passing Control
* Break: Announcements
* Passing Data
* Local Storage

* Register Restrictions
* Pulling it all together: recursion example

* In C, we have control flow statements like if, else, while, for, etc. to write
programs that are more expressive than just one instruction following another.

* This is conditional execution of statements: executing statements if one
condition is true, executing other statements if one condition is false, etc.

* How is this represented in assembly?
* A way to store conditions that we will check later
* Assembly instructions whose behavior is dependent on these conditions

Condition Codes

Alongside normal registers, the CPU also has single-bit condition code registers.
They store information about the most recent arithmetic or logical operation.

Most common condition codes:

* CF: Carry flag. The most recent operation generated a carry out of the most
significant bit. Used to detect overflow for unsigned operations.

e ZF: Zero flag. The most recent operation yielded zero.
* SF: Sign flag. The most recent operation yielded a negative value.

* OF: Overflow flag. The most recent operation caused a two’s-complement
overflow-either negative or positive.

Condition Code-Dependent Instructions

There are three common instruction types that rely on condition codes:
* set instructions that conditionally set a bytetoO or 1

* new versions of mov instructions that conditionally move data

* jmp instructions that conditionally jump to a different instruction (there is also
an unconditional jump that always jumps)

Register Responsibilities

Some registers take on special responsibilities during program execution.
* %rax stores the return value

* %rdi stores the first parameter to a function

* %rsi stores the second parameter to a function

* %rdx stores the third parameter to a function

* %rip stores the address of the next instruction to execute

* %rsp stores the address of the current top element on the stack

See the x86-64 Guide and Reference Sheet on the Resources webpage for more!

Plan For Today

* Recap: Control Flow

 Calling Functions
* The Stack
e Passing Control
* Break: Announcements
* Passing Data
* Local Storage

* Register Restrictions
* Pulling it all together: recursion example

10

How do we call functions in
assembly?

Calling Functions In Assembly

To call a function in assembly, a few things need to happen:

* Pass Control — %rip must be adjusted to execute the callee’s instructions, and
then resume the caller’s instructions afterwards as if never interrupted.

* Pass Data — we need to pass parameters and extract a return value.

 Manage Memory — we must extend the stack segment (or rather, the portion
of the stack currently being used) to set aside space for local variables.

How does assembly
interact with the stack?

Terminology: caller function calls the callee function.

12

Plan For Today

* Recap: Control Flow

 Calling Functions
* The Stack
e Passing Control
* Break: Announcements
* Passing Data
* Local Storage

* Register Restrictions
* Pulling it all together: recursion example

13

* %rsp is a special register that stores the address of the current “top” of the
stack (the bottom in our diagrams, since the stack grows downwards).

Main Memory

main()

print_last_n()

%rsp

Heap
e —

Data

Text (code)

0x0 14

* %rsp is a special register that stores the address of the current “top” of the
stack (the bottom in our diagrams, since the stack grows downwards).

Main Memory

main()

print_last_n()

read_line()

%rsp

Heap

Data

Text (code)

0x0 15

* %rsp is a special register that stores the address of the current “top” of the
stack (the bottom in our diagrams, since the stack grows downwards).

Main Memory

I
main()

print_last_n()

read_line()

%rsp

fgets()

Heap
I —

Data
.

Text (code)
Qx(Q T—— 16

* %rsp is a special register that stores the address of the current “top” of the
stack (the bottom in our diagrams, since the stack grows downwards).

Main Memory

main()

print_last_n()

read_line()

%rsp

Heap

Data

Text (code)

0x0 17

* %rsp is a special register that stores the address of the current “top” of the
stack (the bottom in our diagrams, since the stack grows downwards).

%rsp

—

Main Memory

main()

print_last_n()

Heap
e —

Data

Text (code)

Key idea: %rsp must
point to the same place
before a function is
called and after that
function returns, since
stack frames go away

when a function finishes.

18

* The push instruction pushes the data at the specified source onto the top of
the stack, adjusting %rsp accordingly.

Instruction Effect

pushg S |[R[%rsp] <« R[%rsp] - 8;
M[R[%rsp]] «<— S

19

* The push instruction pushes the data at the specified source onto the top of
the stack, adjusting %rsp accordingly.

Instruction Effect
pushg S |R[%rsp] « R[%rsp] - 8;

20

* The push instruction pushes the data at the specified source onto the top of
the stack, adjusting %rsp accordingly.

Instruction Effect

pushg S
M[R[%rsp]] «<— S

21

* The push instruction pushes the data at the specified source onto the top of
the stack, adjusting %rsp accordingly.

Instruction

Effect

pushg S

R[%rsp] <« R[%rsp] - 8;
M[R[%rsp]] «<— S

* This behavior is equivalent to the following, but pushq is a shorter instruction:

subg $8, %rsp
movq S, (%rsp)

* Sometimes, you’ll see instructions just explicitly decrement the stack pointer
to make room for future data.

22

* The pop instruction pops the topmost data from the stack and stores it in the
specified destination, adjusting %rsp accordingly.

Instruction Effect

popg D |D «— M[R[%rsp]]
R[%rsp] <« R[%rsp] + 8;

* Note: this does not remove/clear out the data! It just increments %rsp to
indicate the next push can overwrite that location.

23

* The pop instruction pops the topmost data from the stack and stores it in the
specified destination, adjusting %rsp accordingly.

Instruction Effect

popg D |D «— M[R[%rsp]]
R[%rsp] <« R[%rsp] + 8;

* This behavior is equivalent to the following, but popq is a shorter instruction:
movq (%rsp), D
addq $8, %rsp
* Sometimes, you’ll see instructions just explicitly increment the stack pointer to
pop data.

24

Stack Example

Initially pushqg %rax popq %rdx
%Brax Ox123 %rax 0x123 %Brax 0x123
%Brdx 5] %rdx 5] %rdx 0x123
%rsp 0x108 %rsp 0x100 %rsp 0x108
Stack “bottom” Stack “bottom” Stack “bottom”
Increasing Increasing Increasing
addresses addresses addresses
0x108 Stack “top” 0x108 Ox123 0x108 Ox123
0x100 0x100

Stack “top” Stack “top’ 55

Calling Functions In Assembly

To call a function in assembly, a few things need to happen:

* Pass Control — %rip must be adjusted to execute the callee’s instructions, and
then resume the caller’s instructions afterwards as if never interrupted.

Terminology: caller function calls the callee function.

26

Plan For Today

* Recap: Control Flow

 Calling Functions
* The Stack
e Passing Control
* Break: Announcements
* Passing Data
* Local Storage

* Register Restrictions
* Pulling it all together: recursion example

27

Remembering Where We Left Off

Problem: %rip points to the E.g. main() calls foo(): Stack
next instruction to execute. To
call a function, we must
remember the next caller
instruction to resume at after.

main()

%rip onto the stack. Then call
the function. When it is
finished, put this value back
into %rip and continue %rsp | oxff20
executing.

Solution: push the next value of l

%rip | 0x3021

28

Remembering Where We Left Off

Problem: %rip points to the E.g. main() calls foo(): Stack
next instruction to execute. To
call a function, we must
remember the next caller
instruction to resume at after.

main()

Solution: push the next value of
%rip onto the stack. Then call 0x3026

the function. When it is l

finished, put this value back
into %rip and continue %rsp | oxifis
executing.

%rip | 0x3021

29

Remembering Where We Left Off

Problem: %rip points to the E.g. main() calls foo(): Stack
next instruction to execute. To
call a function, we must
remember the next caller

. _ main()
instruction to resume at after.
Solution: push the next value of
%rip onto the stack. Then call 0x3026
the function. When it is
foo()

finished, put this value back
into %rip and continue

_ %rsp | Oxffo8
executing. l

%rip | 0x4058

30

Remembering Where We Left Off

Problem: %rip points to the E.g. main() calls foo(): Stack
next instruction to execute. To
call a function, we must
remember the next caller
instruction to resume at after.

main()

Solution: push the next value of
%rip onto the stack. Then call 0x3026

the function. When it is l

finished, put this value back
into %rip and continue %rsp | oxifis
executing.

%rip | 0x4058

31

Remembering Where We Left Off

Problem: %rip points to the E.g. main() calls foo(): Stack
next instruction to execute. To
call a function, we must
remember the next caller
instruction to resume at after.

main()

%rip onto the stack. Then call
the function. When it is
finished, put this value back
into %rip and continue %rsp | oxff20
executing.

Solution: push the next value of l

%rip | 0x3026

32

Call And Return

The call instruction pushes the address of the instruction immediately following
the call instruction onto the stack and sets %rip to point to the beginning of the
specified function’s instructions.

call Label
call *Operand

The ret instruction pops this instruction address from the stack and stores it in
%rip.

ret
The stored %rip value for a function is called its return address. It is the address

of the instruction at which to resume the function’s execution. (not to be

confused with return value, which is the value returned from a function). -

Calling Functions In Assembly

To call a function in assembly, a few things need to happen:

* Pass Data — we need to pass parameters and extract a return value.

Terminology: caller function calls the callee function.

34

Plan For Today

* Recap: Control Flow

* Calling Functions
* The Stack
e Passing Control
* Break: Announcements
* Passing Data
* Local Storage

* Register Restrictions
* Pulling it all together: recursion example

35

Mid-Lecture Check-In

We can now answer the following questions:

What does %rip store?
How does %rip update as we execute instructions?

3. When we call a function, where do we store the instruction to resume
executing at in the caller after we return?

4. When the callee is finished, %rip must be updated to the instruction to
resume at in the caller. What instruction does this?

36

Plan For Today

* Recap: Control Flow

 Calling Functions
* The Stack
e Passing Control
* Break: Announcements
* Passing Data
* Local Storage

* Register Restrictions
* Pulling it all together: recursion example

37

Parameters and Return

* There are special registers that store parameters and the return value.

* To call a function, we must put any parameters we are passing into the correct
registers. (%rdi, %rsi, %rdx, %rcx, %r8, %r9, in that order)

* Parameters beyond the first 6 are put on the stack.
* If the caller expects a return value, it looks in %rax after the callee completes.

38

Parameters and Return

int main(int argc, char *argv[]) { rna]l]() t::
int i1 = 1; l,
int i2 = 2;
int i3 = 3;
int i4 = 4;

int result = func(&il, &i2, &i3, &i4,
il, i2, i3, i4);

}

int func(int *pl, int *p2, int *p3, int *p4,
int v1, int v2, int v3, int v4) {

39

Parameters and Return

int main(int argc, char *argv[]) { rna]l]() t::
int i1 = 1; l,
int i2 = 2;
int i3 = 3;
int i4 = 4;

int result = func(&il, &i2, &i3, &i4,
il, i2, i3, i4);

} » %rsp
Oxffea08

int func(int *pl, int *p2, int *p3, int *p4,

int vl, int v2, int v3, int v4 .
J J J) { %r‘lp

} 0x40054f

0x40054f <+0>: sub $0x18,%rsp

Ox400553 <+4>: movl $0x1,0xc(%rsp)
Ox40055b <+12>: movl $0x2,0x8(%rsp)
Ox400563 <+20>: movl $0x3,0x4(%rsp)

D ARDRELCKH 21900 o mns] d¢onA (Ynen) 40

Parameters and Return

int main(int argc, char *argv[]) {

int i1 = 1;
int i2 = 2;
int i3 = 3; main()
int i4 = 4;
int result = func(&il, &i2, &i3, &i4,
11, 12, 13, 14); oxffeofo
} ‘1, %rsp
Oxffe9f0
int func(int *pl, int *p2, int *p3, int *p4,
int v1, int v2, int v3, int v4) { %rip
(o]
} 0x400553
0x40054f <+0>: sub $0x18,%rsp
Ox400553 <+4>: movl $0x1,0xc(%rsp)

0x40055b <+12>: movl $0x2,0x8(%rsp)
Ox400563 <+20>: movl $0x3,0x4(%rsp)

D ARDRELCKH 21900 o mns] d¢onA (Ynen) 41

Parameters and Return

int main(int argc, char *argv[]) {

int il = 1; Oxffe9fc 1
int i2 = 2;
int i3 = 3; main()
int i4 = 4;
int result = func(&il, &i2, &i3, &i4,
11, 12, 13, 14); oxffeofo
) ‘1, %rsp
Oxffe9f0
int func(int *p1, int *p2, int *p3, int *p4,
int v1, int v2, int v3, int v4) { %rip
(o]
} 0x40055b

Ox400553 <+4>: movl $0x1,0xc(%rsp)
0x40055b <+12>: movl $0x2,0x8(%rsp)
Ox400563 <+20>: movl $0x3,0x4(%rsp)

D ARDRELCKH 21900 o mns] d¢onA (Ynen) 42

Parameters and Return

int main(int argc, char *argv[]) {

int il = 1; Oxffe9fc
int i2 = 2;
int i3 = 3; main() oxffeofs 2
int i4 = 4;
int result = func(&il, &i2, &i3, &i4,
11, 12, 13, 14); oxffeofo
) ‘1, %rsp
Oxffe9f0
int func(int *p1, int *p2, int *p3, int *p4,
int v1, int v2, int v3, int v4) { %rip
(o]
} 0x400563

Ox40055b <+12>: movl $0x2,0x8(%rsp)
Ox400563 <+20>: movl $0x3,0x4(%rsp)

D ARDRELCKH 21900 o mns] d¢onA (Ynen) 43

Parameters and Return

int main(int argc, char *argv[]) {

int i1 = 1; oxffeofc
int i2 = 2;
int i3 = 3; maj_n() Oxffe9f8
int i4 = 4;
int result = func(&i1, &i2, &i3, &i4, oxffeof4
11, 12, 13, 14); oxffeofo
) ‘1, %rsp
Oxffe9f0
int func(int *pl, int *p2, int *p3, int *p4,
int v1, int v2, int v3, int v4) { %rip
(o]
} 0x40056b

0x400563 <+20>: movl $0x3,0x4(%rsp)
Ox40056b <+28>: movl $0x4, (%rsp)

D ARRE7D »2 31 DE N\ o niuchn ¢ A 44

Parameters and Return

int main(int argc, char *argv[]) {

int i1 = 1; oxffeofc 1
int i2 = 2;
int i3 = 3; main() oxffeofs 2
int i4 = 4;
int result = func(&i1, &i2, &i3, &i4, oxffeof4 3
11, 12, 13, 14); oxffeofo 4
} ‘1, %rsp
Oxffe9f0
int func(int *pl, int *p2, int *p3, int *p4,
int v1, int v2, int v3, int v4) { %rip
(o]
} 0x400572

0x40056b <+28>: movl $0x4, (%rsp)
0x400572 <+35>: pushqg $0x4

D ARRE7A 23 D77\ o niuchn dov2 45

Parameters and Return

int main(int argc, char *argv[]) {
int i1 = 1; oxffeofc 1
int i2 = 2;
int i3 = 3; main() oxffeofs 2
int i4 = 4;
int result = func(&il, &i2, &i3, &i4, oxffeofs 3
11, 12, 13, 14); oxffeofo 4
} %rsp
4 OxffeQe8
int func(int *pl, int *p2, int *p3, int *p4, Oxffe9e8
int v1, int v2, int v3, int v4) { ‘1’ %rip
(o]
} 0x400574
Ox400572 <+35>: pushg $06x4
0x400574 <+37>: pushg $0x3
OvARACT7L 120N mAan s ¢ Ynad 46

Parameters and Return

int main(int argc, char *argv[]) {
int i1 = 1; oxffeofc 1
int i2 = 2;
int i3 = 3; main() oxffeofs 2
int i4 = 4;
int result = func(&il, &i2, &i3, &i4, Oxfttedf4 3
11, 12, 13, 14); oxffeofe 4
} %rsp
4 Oxffe9e0
int func(int *pl, int *p2, int *p3, int *p4, Oxffe9e8
int v1, int v2, int v3, int v4) { %rip
(o]
} 3 0x400576
Oxffe9e0
0x400574 <+37>: pushg $0x3
Ox400576 <+39>: mov $0x2,%r9d
D ARRE 7~ 231 AE N o mmnaz d¢ov1 Ynod 47

Parameters and Return

int main(int argc, char *argv[]) {
int i1 = 1; oxffeofc 1
int i2 = 2;
int i3 = 3; main() oxffeofs 2
int i4 = 4;
int result = func(&il, &i2, &i3, &i4, Oxftfeota 3
11, 12, 13, 14); oxFfe9ofo 4
} %rsp
4 Oxffe9el
int func(int *pl, int *p2, int *p3, int *p4, Oxffe9e8
int v1, int v2, int v3, int v4) { %rip
(o]
} 3 0x40057¢
Oxffe9e0
0x400576 <+39>: mov $0x2,%rad
Ox40057Cc <+45>: mov $0x1,%r8d
D ARREQND , 1 £\ o 1A~ DALY nenN Y 48

Parameters and Return

int main(int argc, char *argv[]) {
int i1 = 1; oxffeofc 1
int i2 = 2;
int i3 = 3; main() oxffeofs 2
int i4 = 4;
int result = func(&il, &i2, &i3, &i4, oxffeofs 3
11, 12, 13, 14); oxffeofe 4
}
4
int func(int *pl, int *p2, int *p3, int *p4, Oxffe9e8
int v1, int v2, int v3, int v4) {
} 3 %rsp
Oxffe9ed H Oxffe9e0
‘1' %rip
0x400576 <+39>: mov $0x2,%rad
Ox40057Cc <+45>: mov $0x1,%r8d 0x40057¢
D ARREQND , 1 £\ o 1A~ DALY nenN Y ‘ 49

Parameters and Return

int main(int argc, char *argv[]) {
int i1 = 1; oxffeofc 1
int i2 = 2;
int i3 = 3; main() oxffeofs 2
int i4 = 4;
int result = func(&il, &i2, &i3, &i4, oxffeofa 3
11, 12, 13, 14); oxffeofe 4
}
4 0
int func(int *pl, int *p2, int *p3, int *p4, oxffe9e8 %r3d
int v1, int v2, int v3, int v4) { 2
} 3 %rsp
Oxffe9ed H Oxffe9e0
‘1' %rip
0x400576 <+39>: mov $0x2,%rad
Ox40057c <+45>: mov $0x1,%r8d 0x40057¢
OvARACEQY 1 E1N 1lan DALY nen Yo ‘ 50

Parameters and Return

int main(int argc, char *argv[]) {
int i1 = 1; oxffeofc 1
int i2 = 2;
int i3 = 3; main() oxffeofs 2
int i4 = 4;
int result = func(&il, &i2, &i3, &i4, oxffeofs 3
11, 12, 13, 14); oxffeofo 4 %r8d
} 1
4 o
int func(int *pl, int *p2, int *p3, int *p4, oxffe9e8 %r9d
int v1, int v2, int v3, int v4) { 2
} 3 %rsp
Oxffe9ed H Oxffe9e0
‘1' %rip
Ox40057c <+45>: mov $0x1,%rs8d
0x400582 <+51>: lea Ox10(%rsp),%rcx 0x400582
D ARREQ7 LN o 1A~ DvAALY nenN Yndy ‘ 51

Parameters and Return

int main(int argc, char *argv[]) {
int i1 = 1; oxffeofc 1
int i2 = 2;
int i3 = 3; rnajj1() Oxffe9f8 2 %rcx
int i4 = 4;
Oxffe9f0
int result = func(&il, &i2, &i3, &i4, Oxftfeota 3 Xe
i1l, 12, 13, 14)3 OxFfe9fo 4 %r8d
} 1
4 o
int func(int *pl, int *p2, int *p3, int *p4, oxffe9e8 %rd
int v1, int v2, int v3, int v4) { 2
} 3 %rsp
Oxffe9ed H Oxffe9e0
‘1' %rip
0x400582 <+51>: lea ox10e(%rsp),%rcx 0x400587
Ox400587 <+56>: lea Ox14(%rsp) ,%rdx
D ARREQ -~ ~, 1 £\ o 1A~ D19 /(Y rnenN Yl ‘ 52

Parameters and Return

int main(int argc, char *argv[]) { — %rdx
int i1 = 1; oxFfeofc 1 Oxffe9f
int i2 = 2;
int i3 = 3; rnajj1() Oxffe9f8 2 %rcx
int i4 = 4;
Oxffe9fo
int result = func(&il, &i2, &i3, &i4, Oxftfeota 3 X
i1l, 12, 13, 14)3 OxFfe9fo 4 %r8d
} 1
4 o
int func(int *pl, int *p2, int *p3, int *p4, Oxffe9e8 %r9d
int v1, int v2, int v3, int v4) { 2
} 3 %rsp
Oxffe9ed H Oxffe9e0
‘1' %rip
Ox400587 <+56>: lea ox14(%rsp),%rdx 0x40058¢
0x40058c <+61>: lea Ox18(%rsp),%rsi
OvARACQ1 L6 1lan Ol Y nen Ynds ‘ 53

Parameters and Return

int main(int argc, char *argv[]) {

int i1 = 1;
int i2 = 2;
int i3 = 3;
int i4 = 4;

int result = func(&il1l, &i2, &i3, &i4,
il, i2, i3, i4);

}

int func(int *pl, int *p2, int *p3, int *p4,
int v1, int v2, int v3, int v4) {

0x40058c <+61>: lea Ox18(%rsp),%rsi
0x400591 <+66>: lea Ox1lc(%rsp),%rdi
D ARREQLE 217711\ o ~al11lnA DvARDCANE 2£0ine S

main()

%rsi

Oxffe9of8

Oxffe9fc

Oxffe9f8

Oxffeof4

Oxffeofo

Oxffe9e8

Oxffe9eld

A ITWIN|R

%rdx

Oxffe9f4

%rcx

Oxffe9f0

%r8d

1

%rod

%rip

0x400591

‘[54

Parameters and Return

int main(int argc, char *argv[]) {

int i1 = 1;
int i2 = 2;
int i3 = 3;
int i4 = 4;

int result = func(&il1l, &i2, &i3, &i4,
il, i2, i3, i4);

}

int func(int *pl, int *p2, int *p3, int *p4,
int v1, int v2, int v3, int v4) {

0x400591 <+66>: lea oxlc(%rsp),%rdi
Ox400596 <+71>: callg 0©x400546 <func>
D ARDREQNW 2176 o AaAdAA ¢ 10 Ynen

main()

%rsi

Oxffe9fc
Oxffeofs8
Oxffeof4

Oxffeofo

Oxffe9e8

Oxffe9eld

»rdi

Oxffe9of8

Oxffe9fc

%rdx

Oxffe9f4

%rcx

Oxffe9f0

A ITWIN|R

%r8d

1

%rod

%rip

0x400596

‘fss

Parameters and Return

int main(int argc, char *argv[]) {

int i1 = 1;
int i2 = 2;
int i3 = 3;
int i4 = 4;

int result = func(&il1l, &i2, &i3, &i4,
il, i2, i3, i4);

}

int func(int *pl, int *p2, int *p3, int *p4,
int v1, int v2, int v3, int v4) {

0x400596 <+71>: callg 06x400546 <func>
0x40059b <+76>: add $0x10,%rsp

main()

%rsi

Oxffe9fc
Oxffeofs8
Oxffeof4

Oxffeofo

Oxffe9e8

Oxffe9eld

»rdi

Oxffe9of8

Oxffe9fc

A ITWIN|R

%rdx

Oxffe9f4

%rcx

Oxffe9f0

%r8d

1

%rod

%rip

0x40059b

‘fse

Parameters and Return

int main(int argc, char *argv[]) {

int i1 = 1;
int i2 = 2;
int i3 = 3;
int i4 = 4;

int result = func(&il1l, &i2, &i3, &i4,
il, i2, i3, i4);

}

int func(int *pl, int *p2, int *p3, int *p4,
int v1, int v2, int v3, int v4) {

0x400596 <+71>: callg 06x400546 <func>
0x40059b <+76>: add $0x10,%rsp

main()

%rsi

Oxffe9fc
Oxffeofs8
Oxffeof4

Oxffeofo

Oxffe9e8

Oxffe9eld

»rdi

Oxffe9of8

Oxffe9fc

%rdx

Oxffe9f4

%rcx

Oxffe9f0

A ITWIN|R

%r8d

1

%rod

2

%rsp

Ox40059b

Oxffe9d8

%rip

v

0x40059b

‘f57

Parameters and Return

int main(int argc, char *argv[]) {

int i1 = 1;
int i2 = 2;
int i3 = 3;
int i4 = 4;

int result = func(&il1l, &i2, &i3, &i4,
il, i2, i3, i4);

}

int func(int *pl, int *p2, int *p3, int *p4,
int v1, int v2, int v3, int v4) {

0x400596 <+71>: callg 06x400546 <func>
0x40059b <+76>: add $0x10,%rsp

main()

%rsi

Oxffe9fc
Oxffeofs8
Oxffeof4

Oxffeofo

Oxffe9e8

Oxffe9eld

»rdi

Oxffe9of8

Oxffe9fc

%rdx

Oxffe9f4

%rcx

Oxffe9f0

A ITWIN|R

%r8d

1

%rod

2

%rsp

Ox40059b

Oxffe9d8

%rip

v

0x40059b

‘fss

Plan For Today

* Recap: Control Flow

 Calling Functions
* The Stack
e Passing Control
* Break: Announcements
* Passing Data
* Local Storage

* Register Restrictions
* Pulling it all together: recursion example

59

Calling Functions In Assembly

To call a function in assembly, a few things need to happen:

 Manage Memory — we must extend the stack segment (or rather, the portion
of the stack currently being used) to set aside space for local variables.

Terminology: caller function calls the callee function.

60

Local Storage

 So far, we've often seen local variables stored directly in registers, rather than
on the stack as we’d expect. This is for optimization reasons.

* There are three common reasons that local data must be in memory:
* We've run out of registers
* The ‘& operator is used on it, so we must generate an address for it
e They are arrays or structs (need to use address arithmetic)

61

Local Storage

long caller() {

long argl = 534;
long arg2 = 1057;
long sum = swap add(&argl, &arg2);
}
caller:
subg $16, %rsp // 16 bytes for stack frame
movqg $534, (%rsp) // store 534 in argl

mova
leac

mova
call

$1057, 8(%rsp) //

8(%rsp), %rsi
%rsp, z%rdi
swap add

//
//
//

store 1057 in arg2

compute &arg2 as second arg
compute &argl as first arg
call swap add(&argl, &arg2)

62

Plan For Today

* Recap: Control Flow
* The Instruction Pointer (%rip)

* Calling Functions

The Stack

Passing Control

Break: Announcements
Passing Data

* Local Storage

* Register Restrictions
* Pulling it all together: recursion example

63

Register Restrictions

* There is only one copy of registers for all programs and instructions.

* Therefore, there are some rules that callers and callees must follow when
using registers so they do not interfere with one another.

* There are two types of registers: caller-owned and callee-owned

64

Caller/Callee

Caller/callee is
terminology that
refers to a pair of
functions. A single
function may be
both a caller and functionl
callee
simultaneously (e.g.
functionl at right).

main is the caller,
and functionl is
the callee.

functionl is

: the caller, and
function2 function2 is

the callee.

65

Register Restrictions

Caller-Owned Callee-Owned

e Callee must save the existing value * Callee does not need to save the
and restore it when done. existing value.

 Caller can store values and assume Caller’s values could be overwritten
they will be preserved across by a callee! The caller may consider
function calls. saving values elsewhere before

calling functions.

66

Caller-Owned Registers

main can use caller-owned
registers and know that
functionl will not permanently

modify their values.

If function1 wants to use any
caller-owned registers, it must
save the existing values and
restore them before returning.

67

Caller-Owned Registers

functionl:
push %rbp
push 7%rbx
pop %rbx
pop %rbp
retq

68

Callee-Owned Registers

main can use callee-owned
registers but calling functionl
may permanently modify their
values.

If function1 wants to use any
callee-owned registers, it can do
so without saving the existing
values.

69

Callee-Owned Registers

main:

push %rile

push %rll

callg functionl
pop %rll

pop %rlo

70

A Day In the Life of functionl

functionl

function?2

Caller-owned registers:

 functionl must save/restore existing values
of any that are used by main.

 functionl can assume that calling
function2 will not permanently change their
values.

Callee-owned registers:

« functionl does not need to save/restore
existing values of any that are used by main.

« calling function2 may permanently change
their values.

/&1

Plan For Today

* Recap: Control Flow

* Calling Functions
* The Stack
e Passing Control
* Break: Announcements
* Passing Data
* Local Storage

* Register Restrictions
* Pulling it all together: recursion example

72

Example: Recursion

* Let’s look at an example of recursion at the assembly level.

* We'll use everything we’ve learned about registers, the stack, function calls,
parameters, and assembly instructions!

* We'll also see how helpful GDB can be when tracing through assembly.

>

factorial.c and factorial 73

Plan For Today

* Recap: Control Flow

* Calling Functions
* The Stack
e Passing Control
* Break: Announcements
* Passing Data
* Local Storage

* Register Restrictions
* Pulling it all together: recursion example

That’s it for assembly! Next time: managing the heap

74

