
1

CS107 Lecture 15
Managing the Heap

Slides by Jerry Cain and Lisa Yan, who leveraged prior work by Nick Troccoli, Julie Zelenski, Marty Stepp, Cynthia Lee, Chris Gregg, and others.

reading:
B&O 9.9, 9.11

2

CS107 Topic 7: How do the
core malloc/realloc/free

memory-allocation
operations work?

3

Running a program
• Creates new process
• Sets up address space/segments
• Read executable file, load instructions, global data

Mapped from file into gray segments
• Libraries loaded on demand

• Set up stack
Reserve stack segment, init %rsp, call main
• malloc written in C, will init self on use

Asks OS for large memory region,
parcels out to service requests

Heap

Stack

Main Memory

0x60000

Shared library text/data0x7ffff770000

0x7ffffffff0000

Global data

Text (machine code)
0x40000

4

The Stack

Stack memory ”goes
away” after function
call ends.

Automatically managed
at compile-time by gcc

Last lecture:
Stack management ==
moving %rsp around
(pushq, popq, mov)

Review

Heap

Stack

Main Memory

0x60000

Shared library text/data0x7ffff770000

0x7ffffffff0000

Global data

Text (machine code)
0x40000

5

Today: The Heap

Heap memory persists
until caller indicates it
no longer needs it.

Managed by C standard
library functions
(malloc, realloc, free)

This lecture:
How does heap
management work?

Heap

Stack

Main Memory

0x60000

Shared library text/data0x7ffff770000

0x7ffffffff0000

Global data

Text (machine code)
0x40000

6

Plan For Today
• Recap: the heap
• What is a heap allocator?
• Heap allocator requirements and goals
• Method 0: Bump Allocator
• Break: Announcements
• Method 1: Implicit Free List Allocator
• Method 2: Explicit Free List Allocator

7

Your role so far: Client
void *malloc(size_t size);

Returns a pointer to a block of heap memory of at least size bytes, or
NULL if an error occurred.

void free(void *ptr);
Frees the heap-allocated block starting at the specified address.

void *realloc(void *ptr, size_t size);
Changes the size of the heap-allocated block starting at the specified
address to be the new specified size. Returns the address of the new,
larger allocated memory region.

8

Your role now: Heap Hotel Concierge

http://screencrave.com/wp-content/uploads/2014/03/the-grand-budapest-hotel-
anderson-image-2.jpg

(aka Heap Allocator)

9

What is a heap allocator?
A heap allocator is a set of functions that fulfills
requests for heap memory.
• On initialization, a heap allocator is provided

the starting address and size of a large
contiguous block of memory (the heap).
• A heap allocator must manage this memory as

clients request or no longer need pieces of it.

0x60050

0x60048

0x60040

0x60038

0x60030

0x60028

0x60020

0x60018

0x60010

0x60008
8 bytes

0x60008heap_start

80heap_size

Allocator metadata

10

Brainstorming exercise

1. What might heap memory look like after
these requests?

2. What additional info might the allocator need
to track while servicing requests? Should we
store this in global data or in the heap itself?

3. What can an allocator not do?

0x60050

0x60048

0x60040

0x60038

0x60030

0x60028

0x60020

0x60018

0x60010

0x60008
8 bytes

void *a, *b, *c;
a = malloc(8);
b = malloc(4);
a = realloc(a, 40);
free(b);
c = malloc(24);

1
2
3
4
5
6

🤔

11

Plan For Today
• What is a heap allocator?
• Heap allocator requirements and goals
• Simple example: Bump Allocator
• Break: Announcements
• Data Structures: Implicit Free List, Explicit Free List
• Policy decisions/performance
• Designing your own heap allocator

12

Heap Allocator Functions

void *malloc(size_t size);

void free(void *ptr);

void *realloc(void *ptr, size_t size);

13

Heap Allocator Requirements
A heap allocator must…
1. Handle arbitrary request sequences

of allocations and frees
2. Immediately respond to requests

without delay
3. Keep track of which memory is

allocated and which is available
4. Decide which memory to provide to

fulfill an allocation request
5. Return addresses that are 8-byte-

aligned (must be multiples of 8).

Cannot reorder or accumulate allocation
requests.
Cannot assume all allocations will have a
matching free request.

Cannot allocate already-allocated memory
or modify allocated blocks. (more later)
Can manipulate and modify free memory.

Alignment requirement: for GNU
malloc (libc malloc) on Linux

14

Heap Allocator Performance Goals

1. Utilization

Maximize memory utilization, or how
efficiently we make use of the limited

heap memory to satisfy requests.

2. Throughput
(not too many holes in space) (speed of handling requests)

15

Utilization
The primary cause of poor u^liza^on is fragmentaMon. FragmentaMon occurs
when otherwise unused memory is not available to sa^sfy alloca^on requests:
void *d = malloc(24);

Free
Allocated

Free
Allocated

Free
Allocated

0x60030

0x60028

0x60020

0x60018

0x60010

0x60008
8 bytes

Client data

0x60008a
0x60018b
0x60028c

d

Heap memory

// NULL (out of heap space)

16

Utilization: Defragmenting
Could the heap manager pause and do a “defrag” operation at this point?
void *d = malloc(24);

Free
Allocated

Free
Allocated

Free
Allocated

0x60030

0x60028

0x60020

0x60018

0x60010

0x60008

?

Free
Free
Free

Allocated
Allocated
Allocated

0x60030

0x60028

0x60020

0x60018

0x60010

0x60008

Client data

0x60008a
0x60018b
0x60028c

d

🤔
A. YES, great idea!
B. YES, it can be done, but not a good idea for some reason

(e.g., not efficient use of time)
C. NO, it can’t be done!

17

Utilization: Defragmenting
Could the heap manager pause and do a “defrag” operation at this point?
void *d = malloc(24);

Free
Allocated

Free
Allocated

Free
Allocated

0x60030

0x60028

0x60020

0x60018

0x60010

0x60008

?

Free
Free
Free

Allocated
Allocated
Allocated

0x60030

0x60028

0x60020

0x60018

0x60010

0x60008

Client data

0x60008a
0x60018b
0x60028c

d

🤔
A. YES, great idea!
B. YES, it can be done, but not a good idea for some reason

(e.g., not efficient use of time)
C. NO, it can’t be done!

⚠

⚠

Client still has pointers to allocated memory!

18

Heap Allocator Performance Goals

1. U3liza3on
Maximize memory uMlizaMon, or how
efficiently we make use of the limited

heap memory to sa^sfy requests.

2. Throughput
Maximize throughput, or the number
of requests completed per unit time.
i.e., minimizing the average time to

satisfy a request.

These two goals are often in conflict with each other J

19

Other Goals

1. U3liza3on 2. Throughput

Other desirable goals:
Locality (“similar” blocks allocated close in space)

Robust (handle client errors)
Ease of implementation/maintenance

20

Plan For Today
• What is a heap allocator?
• Heap allocator requirements and goals
• Simple example: Bump Allocator
• Break: Announcements
• Data Structures: Implicit Free List, Explicit Free List
• Policy decisions/performance
• Designing your own heap allocator

21

Bump Allocator Performance

1. U3liza3on

😱

Never reuses memory

2. Throughput

⭐

Ultra fast, short rou^nes

22

Bump allocator metadataClient data

Bump Allocator
void *a, *b, *c, *d;
a = malloc(8);
b = malloc(4);
c = malloc(64);
free(b);
c = malloc(8);

1
2
3
4
5
6

0x60050

0x60048

0x60040

0x60038

0x60030

0x60028

0x60020

0x60018

0x60010

0x60008

0x60008heap_start

0bytes_used

80heap_sizea
b
c

8 bytes

d

23

Bump allocator metadataClient data

Bump Allocator
void *a, *b, *c, *d;
a = malloc(8);
b = malloc(4);
c = malloc(64);
free(b);
c = malloc(8);

1
2
3
4
5
6

0x60008heap_start

8bytes_used

80heap_size0x60008a
b
c

payload

0x60050

0x60048

0x60040

0x60038

0x60030

0x60028

0x60020

0x60018

0x60010

0x60008
8 bytes

d

24

Bump allocator metadataClient data

Bump Allocator
void *a, *b, *c, *d;
a = malloc(8);
b = malloc(4);
c = malloc(64);
free(b);
c = malloc(8);

1
2
3
4
5
6

0x60008heap_start

16bytes_used

80heap_size0x60008a
0x60010b

c
payload + pad

payload

0x60050

0x60048

0x60040

0x60038

0x60030

0x60028

0x60020

0x60018

0x60010

0x60008
8 bytes

d

25

Bump allocator metadataClient data

Bump Allocator
void *a, *b, *c, *d;
a = malloc(8);
b = malloc(4);
c = malloc(64);
free(b);
c = malloc(8);

1
2
3
4
5
6

0x60008heap_start

80bytes_used

80heap_size0x60008a
0x60010b
0x60018c

payload

payload + pad

payload

0x60050

0x60048

0x60040

0x60038

0x60030

0x60028

0x60020

0x60018

0x60010

0x60008
8 bytes

d

26

Bump allocator metadataClient data

Bump Allocator
void *a, *b, *c, *d;
a = malloc(8);
b = malloc(4);
c = malloc(64);
free(b);
c = malloc(8);

1
2
3
4
5
6

0x60008heap_start

80bytes_used

80heap_size0x60008a
0x60010b
0x60018c

payload

payload + pad

payload

0x60050

0x60048

0x60040

0x60038

0x60030

0x60028

0x60020

0x60018

0x60010

0x60008
8 bytes

(no-op)

d

27

Bump allocator metadataClient data

Bump Allocator
void *a, *b, *c, *d;
a = malloc(8);
b = malloc(4);
c = malloc(64);
free(b);
c = malloc(8);

1
2
3
4
5
6

0x60008heap_start

80bytes_used

80heap_size

payload

payload + pad

payload

0x60050

0x60048

0x60040

0x60038

0x60030

0x60028

0x60020

0x60018

0x60010

0x60008
8 bytes

0x60018a
0x60010b
0x60018c

returns NULL
(heap out of space)

NULLd

28

Bump Allocator
• A bump allocator is a heap allocator design that simply:

• Allocates the next available memory address upon an allocate request.
• Does nothing on a free request.

• Throughput: each malloc and free execute only a handful of instructions:
• It is easy to find the next location to use.
• Free does nothing!

• Utilization: we use each memory block at most once.
No freeing at all, so no memory is ever reused. L
• We provide a bump allocator implementation as part of assign7 as a code

reading exercise.
Next up: Strike a better balance

of utilization/throughput performance.

29

Plan For Today
• What is a heap allocator?
• Heap allocator requirements and goals
• Simple example: Bump Allocator
• Break: Announcements
• Data Structures: Implicit Free List, Explicit Free List
• Policy decisions/performance
• Designing your own heap allocator

30

Announcements
• We are working to process any outstanding regrade requests.
• Reminder of Collaboration Policy for assign6 and beyond

31

Joke break

32

Working with multiple files
in assign7

bump.c

33

Tips for assign7
View/edit multiple buffers (vim)
:split horizontal split
:vsplit vertical split
Ctrl-w <arrow> change to buffer
:q quit current buffer
Search file
/asdf find next match of key
n or N next or previous match
Emacs:
https://web.stanford.edu/class/cs107/
resources/emacs_refcard.pdf

More gdb tui mode

layout split # C code, assembly, gdb
layout src # C code and gdb
focus cmd # arrows work in gdb
focus src # arrows work in C code
focus asm # arrows work in assembly

ctrl-x a # exit
Ctrl-l or refresh # refresh layout

⭐⭐⭐

https://web.stanford.edu/class/cs107/resources/emacs_refcard.pdf

34

• What is a heap allocator?
• Heap allocator requirements and goals
• Simple example: Bump Allocator
• Break: Announcements
• Data Structures: Implicit Free List, Explicit Free List
• Policy decisions/performance
• Designing your own heap allocator

Plan For Today

35

Managing block information
Option 1: Separate housekeeping
• Free/in-use information maintained in list/table
• Often not used in practice
• Need global memory or large bookkeeping area in heap
• Tools like Valgrind or special case allocators

Option 2: Block header
• Block information stored in heap memory that

precedes payload
• Most common approach in current use

In your assignment: Use block headers with 500B of global data

Heap memory

Global data

36

Implicit Free List Allocator
• Key idea: in order to reuse blocks, we need a way to track which blocks are

allocated and which are free.
• We could store this information in a separate global data structure, but this is

inefficient.
• Instead: let’s allocate extra space before each block for a header storing its

payload size and whether it is allocated or free.
• When we allocate a block, we look through the blocks to find a free one, and

we update its header to reflect its allocated size and that it is now allocated.
• When we free a block, we update its header to reflect it is now free.
• The header should be 8 bytes (or larger).

37

Implicit Free List: Design idea

void *a = malloc(4);

By storing the block size of each
allocated/free block, we implicitly
have a linked list of free blocks.

Header (8B)
block size

allocated/free status

Padding (optional)

0x60008

0x60010

0x60014

0x60018
…

Payload

0x60010a

38

Implicit Free List Allocator
void *a = malloc(4);
void *b = malloc(8);
void *c = malloc(4);
free(b);
void *d = malloc(8);
free(a);
void *e = malloc(24);

1
2
3
4
5
6
7

72, free

0x60050

0x60048

0x60040

0x60038

0x60030

0x60028

0x60020

0x60018

0x60010

0x60008

39

Implicit Free List Allocator
void *a = malloc(4);
void *b = malloc(8);
void *c = malloc(4);
free(b);
void *d = malloc(8);
free(a);
void *e = malloc(24);

56, free

a (4) + pad (4)

8, alloc

0x60050

0x60048

0x60040

0x60038

0x60030

0x60028

0x60020

0x60018

0x60010

0x60008

1
2
3
4
5
6
7

0x60010a

40

Implicit Free List Allocator
void *a = malloc(4);
void *b = malloc(8);
void *c = malloc(4);
free(b);
void *d = malloc(8);
free(a);
void *e = malloc(24);

40, free

b (8)

8, alloc

a (4) + pad (4)

8, alloc

0x60050

0x60048

0x60040

0x60038

0x60030

0x60028

0x60020

0x60018

0x60010

0x60008

1
2
3
4
5
6
7

0x60010a
0x60020b

41

Implicit Free List Allocator
void *a = malloc(4);
void *b = malloc(8);
void *c = malloc(4);
free(b);
void *d = malloc(8);
free(a);
void *e = malloc(24);

24, free

c (4) + pad (4)

8, alloc

b (8)

8, alloc

a (4) + pad (4)

8, alloc

0x60050

0x60048

0x60040

0x60038

0x60030

0x60028

0x60020

0x60018

0x60010

0x60008

1
2
3
4
5
6
7

0x60010a
0x60020b
0x60030c

42

Implicit Free List Allocator
void *a = malloc(4);
void *b = malloc(8);
void *c = malloc(4);
free(b);
void *d = malloc(8);
free(a);
void *e = malloc(24);

24, free

c (4) + pad (4)

8, alloc

8, free

a (4) + pad (4)

8, alloc

0x60050

0x60048

0x60040

0x60038

0x60030

0x60028

0x60020

0x60018

0x60010

0x60008

1
2
3
4
5
6
7

0x60010a
0x60020b
0x60030c

43

Implicit Free List Allocator
void *a = malloc(4);
void *b = malloc(8);
void *c = malloc(4);
free(b);
void *d = malloc(8);
free(a);
void *e = malloc(24);

24, free

c (4) + pad (4)

8, alloc

d (8)

8, alloc

a (4) + pad (4)

8, alloc

0x60050

0x60048

0x60040

0x60038

0x60030

0x60028

0x60020

0x60018

0x60010

0x60008

1
2
3
4
5
6
7

0x60010a
0x60020b
0x60030c
0x60020d

44

Implicit Free List Allocator
void *a = malloc(4);
void *b = malloc(8);
void *c = malloc(4);
free(b);
void *d = malloc(8);
free(a);
void *e = malloc(24);

24, free

c (4) + pad (4)

8, alloc

d (8)

8, alloc

8, free

0x60050

0x60048

0x60040

0x60038

0x60030

0x60028

0x60020

0x60018

0x60010

0x60008

1
2
3
4
5
6
7

0x60010a
0x60020b
0x60030c
0x60020d

45

Implicit Free List Allocator
void *a = malloc(4);
void *b = malloc(8);
void *c = malloc(4);
free(b);
void *d = malloc(8);
free(a);
void *e = malloc(24);

e (24)

24, alloc

c (4) + pad (4)

8, alloc

d (8)

8, alloc

8, free

0x60050

0x60048

0x60040

0x60038

0x60030

0x60028

0x60020

0x60018

0x60010

0x60008

1
2
3
4
5
6
7

0x60010a
0x60020b
0x60030c
0x60020d
0x60040e

46

Implicit Free List: Header design

Header (8B)
block size

allocated/free status

Padding (optional)

0x60008

0x60010

0x60014

0x60018
…

Payload

1. Should we store the block size as (A) payload size,
or (B) header + payload size?

2. How can we store both a block size
and a used/free status in 8B?

🤔

47

Implicit Free List: Header design
1. Should we store the block size as (A) payload size,

or (B) header + payload size?

2. How can we store both a block size
and a used/free status in 8B?

Your decision affects how you
traverse the list (be careful of off-by-one)

8-byte alignment à block sizes = multiples of 8!

Block size 00X

alloc/free

0364 Header (8B)
block size

allocated/free status

Padding (optional)

0x60008

0x60010

0x60014

0x60018
…

Payload

Up to you!

48

Designing malloc()
Suppose we use a first-fit placement policy to choose the free block:
For each allocation request:
• Start at the beginning of the heap
• Find the first available block that is free and fits the request size

1. Throughput: What is the
worst-case runtime of
first-fit placement?

2. What are some alternatives to
first-fit that might improve memory
utilization or throughput?

A. Constant
B. Linear in number of allocated and free blocks
C. Linear in number of free blocks
D. Other

🤔

49

Designing malloc()
Suppose we use a first-fit placement policy to choose the free block:
For each allocation request:
• Start at the beginning of the heap
• Find the first available block that is free and fits the request size

1. Throughput: What is the
worst-case runtime of
first-fit placement?

2. What are some alternatives to
first-fit that might improve memory
utilization or throughput?

A. Constant
B. Linear in number of allocated and free blocks
C. Linear in number of free blocks
D. Other

(we’ll come back to this)
Up to you!

50

Implicit Free List Summary
For all blocks,
• Have a header that

stores size and status.
• Our list links all blocks,

allocated (A) and free (F).

Keeping track of free blocks:
• Improves memory utilization (vs bump allocator)
• Decreases throughput (worst case allocation request has O(A + F) time)
• Increases design complexity J

Header (8B)

Block size 00X

alloc/free

0364

Next up: Keep track of only free (F) blocks with
explicit free lists. Worst-case O(F) time!

51

• What is a heap allocator?
• Heap allocator requirements and goals
• Simple example: Bump Allocator
• Break: Announcements
• Data Structures: Implicit Free List, Explicit Free List
• Policy decisions/performance
• Designing your own heap allocator

Plan For Today

52

Explicit Free List Design
Goal: A doubly-linked list of free blocks:
• Pointer to the previous free block
• Pointer to the next free block

Allocation run-time is now
linear in number of free blocks.

This explicit list of free blocks increases
request throughput, with some costs
(design and internal fragmentation) free

alloc

free

alloc
alloc
alloc
free

NULL

NULL

53

1. For each block, where should we include these pointers?

2. If we choose option C, does this change our minimum payload size?
A. No

(keep 8B header + 8B payload)

Explicit Free List: Header Design

🤔B. Yes
(change to 8B header + 16B payload)

A. New header
for all blocks

B. Separate headers for
free/allocated blocks

C. Insert into free
block payload

D. Other

payload

next free block ptr

prev free block ptr

block size/status

payload
next free block ptr

prev free block ptr

block size/free

payload

block size/alloc old payload
next free block ptr

prev free block ptr

block size/free

54

1. For each block, where should we include these pointers?

2. If we choose option C, does this change our minimum payload size?
A. No

(keep 8B header + 8B payload)

Explicit Free List: Header Design

B. Yes
(change to 8B header + 16B payload)

A. New header
for all blocks

B. Separate headers for
free/allocated blocks

C. Insert into free
block payload

D. Other

payload

next free block ptr

prev free block ptr

block size/status

payload
next free block ptr

prev free block ptr

block size/free

payload

block size/alloc old payload
next free block ptr

prev free block ptr

block size/free

55

Explicit Free List: List Design
1. free inserts a new block into the

explicit free list. What will be the
worst-case runtime of free?

2. How do you want to organize your explicit free list?
(compare utilization/throughput)

A. Address-order (each block’s address
is less than successor block’s address)

B. Last-in first-out (LIFO)/like a stack, where
newly freed blocks are at the beginning of the list

C. Other (e.g., by size, etc.) 🤔

Up to you!

56

Explicit Free List: List Design
1. free inserts a new block into the

explicit free list. What will be the
worst-case runtime of free?

2. How do you want to organize your explicit free list?
(compare utilization/throughput)

A. Address-order (each block’s address
is less than successor block’s address)

B. Last-in first-out (LIFO)/like a stack, where
newly freed blocks are at the beginning of the list

C. Other (e.g., by size, etc.)

Up to you!

• Need a linear search through list to
determine prev/next addresses

• Want constant time? Check out
textbook’s boundary tag/footer solution!

Better memory util,
Linear free

Constant free (push
recent block onto stack)

(more at end of lecture)

Up to you!

57

Implicit vs. Explicit: Summary
Implicit Free List
• 8B header for size + alloc/free status

• Allocation requests are worst-case
linear in total number of blocks
• Implicitly address-order

Explicit Free List
• 8B header for size + alloc/free status
• Free block payloads store prev/next

free block pointers

• Allocation requests are worst-case
linear in number of free blocks
• Can choose block ordering
• Potentially more internal

fragmentation (min block size larger)In assignment 7:
• First build an implicit free list.
• Then, build your final, high-performing allocator using an explicit free list.

58

• What is a heap allocator?
• Heap allocator requirements and goals
• Simple example: Bump Allocator
• Break: Announcements
• Data Structures: Implicit Free List, Explicit Free List
• Policy decisions/performance
• Designing your own heap allocator

Plan For Today

59

Policy decisions

1. Placement policy: How to pick which free block from available options

2. Splitting policy: What to do with excess space when allocating

3. Coalescing policy: How to recycle a freed block?

Also: implementing an efficient realloc
Up to you!

Many of these policy
decisions are

60

Placement policy
How do we choose a free block to use for
an allocation request, e.g., malloc()?
• First fit: search the list from beginning each

time and choose first free block that fits.
• Next fit: instead of starting at the beginning,

continue where previous search left off.
• Best fit: examine every free block and choose

the one with the smallest size that fits. What are the pros/cons
for each approach?
Throughput vs. Utilization?
More on B&O p. 849

Easier to implement

Up to you!

61

Splitting
A reasonable allocation request splits a free
block into an allocated block and a free block
with remaining space:

Not all cases are this friendly…

32, free

0x60028

0x60020

0x60018

0x60010

0x60008

16, free

8, alloc

0x60028

0x60020

0x60018

0x60010

0x60008

void *ptr = malloc(8);

62

Splitting Policy
Problem: Some blocks are just too small.

0, free

8, alloc

0x6018

0x6010

0x6008
-

A. B.

Up to you!

16, free

0x6018
0x6010
0x6008

pad

16, alloc

0x6018

0x6010

0x6008

-

🤔Which splitting policy would you
take here? What are the tradeoffs?

void *ptr = malloc(8);

63

Splitting Policy
Problem: Some blocks are just too small.

0, free

8, alloc

0x6018

0x6010

0x6008
-

A. B.

Up to you!

16, free

0x6018
0x6010
0x6008

pad

16, alloc

0x6018

0x6010

0x6008

void *ptr = malloc(8);

Internal fragmentation:
unused bytes b/c of padding

External fragmentation:
unused free blocks

-

64

Coalescing

• The last request will fail because we have enough
memory space, but it is fragmented into free
blocks sized from earlier requests!
• We need to coalesce (i.e., combine adjacent) free

blocks to avoid this external fragmentation.

void *a = malloc(8);
void *b = malloc(8);
void *c = malloc(8);
free(a);
free(c);
free(b);
void *d = malloc(24); // NULL

1
2
3
4
5
6
7

c (8)
8, alloc

b (8)
8, alloc

a (8)
8, alloc

0x60030

0x60028

0x60020

0x60018

0x60010

0x60008

8, free

8, free

8, free

65

Coalescing
c (8)

8, alloc
b (8)

8, alloc
a (8)

8, alloc

0x60030

0x60028

0x60020

0x60018

0x60010

0x60008

🤔
A. Line 4

B. Line 5

void *a = malloc(8);
void *b = malloc(8);
void *c = malloc(8);
free(a);
free(c);
free(b);
void *d = malloc(24); // NULL

1
2
3
4
5
6
7

1. When can you coalesce
adjacent free blocks?

2. Line 6: When freeing block 0x60020,
which blocks would you coalesce?

A. Previous block (header 0x60008)
B. Next block (header 0x60028)
C. Both A and B

C. Line 6

D.Line 7

66

Coalescing

A. Line 4

B. Line 5

void *a = malloc(8);
void *b = malloc(8);
void *c = malloc(8);
free(a);
free(c);
free(b);
void *d = malloc(24); // NULL

1
2
3
4
5
6
7

1. When can you coalesce
adjacent free blocks?

2. Line 6: When freeing block 0x60020,
which blocks would you coalesce?

A. Previous block (header 0x60008)
B. Next block (header 0x60028)
C. Both A and B

C. Line 6

D.Line 7

Immediate

Deferred

c (8)
8, alloc

b (8)
8, alloc

a (8)
8, alloc

0x60030

0x60028

0x60020

0x60018

0x60010

0x60008

67

How to make operations fast?
• More quickly identify which blocks are appropriate

to consider
• The fewer blocks examined, the better. Be less picky

about which block to use
• Placement policy/Splitting policy

• Ideal data structures modified in constant-time
• Postpone work until clearly needed

(immediate vs. deferred coalesce)

• Move to a new block: malloc/free/copy payload
• Big win if avoid copy payload data and just

resize in-place

⭐
malloc is generally
about search

free is mostly
about update

realloc

68

realloc

void *malloc(size_t size);
Returns a pointer to a block of heap memory of at least size bytes, or
NULL if an error occurred.

void free(void *ptr);
Frees the heap-allocated block starting at the specified address.

void *realloc(void *ptr, size_t size);
Changes the size of the heap-allocated block starting at the specified
address to be the new specified size. Returns the address of the new,
larger allocated memory region.

Realloc can grow or
shrink the data size.

69

When can we realloc in-place?
void *a = malloc(6);

1. realloc(a, 8);

2. realloc(a, 2);

3. realloc(a, 32);

4. realloc(a, 64);

8, alloc

16, free

8, alloc

0x60038

0x60030

0x60028

0x60020

0x60018

0x60010

0x60008

0x60010a

🤔

70

When can we realloc in-place?
void *a = malloc(6);

1. realloc(a, 8);

2. realloc(a, 2);

3. realloc(a, 32);

4. realloc(a, 64);

Thoughts for you:
• What is necessary to allow resize in-place? Is it worth it to anticipate that?
• How prominent is realloc in the mix of operations?

Yes

Yes

Yes (coalesce adjacent free)

No! need to move data!

8, alloc

16, free

8, alloc

0x60038

0x60030

0x60028

0x60020

0x60018

0x60010

0x60008

0x60010a

71

Heap metadata

Going beyond: Explicit list w/size buckets
• Explicit lists are much faster than implicit lists.
• However, a first-fit placement policy is still linear in total # of free blocks.
• What about an explicit free list sorted by size (e.g., as a tree)?
• What about several explicit free lists bucketed by size? (below)

small
medium

large
jumbo

Heap
memory

Read B&O Section 9.9.14!

72

• What is a heap allocator?
• Heap allocator requirements and goals
• Simple example: Bump Allocator
• Break: Announcements
• Data Structures: Implicit Free List, Explicit Free List
• Policy decisions/performance
• Designing your own heap allocator

Plan For Today

73

Tips for assign7
Read B&O textbook.
• Offers some starting tips for implementing your heap allocators.
• Make sure to cite any design ideas you discover.
Honor Code/collaboration
• All non-textbook code is off-limits.
• Please do not discuss discuss code-level specifics with others.
• Your code should be designed, written, and debugged by you

independently.
Helper hours
• We will provide good debugging techniques and strategies!
• Come and discuss design tradeoffs!

⭐⭐⭐

74

Assignment 7: Implicit Allocator
• Must have headers that track block information (size, status in-use or free).

You must use an 8 byte header size, storing the status using the free bits.
(note: this is larger than the 4 byte headers specified in the book)

• Must have free blocks that are recycled and reused for subsequent malloc
requests if possible.
• Must have a malloc implementation that searches the heap for free blocks via

an implicit free list (i.e. traverses block-by-block). Placement policy up to you.

• Does not need to have coalescing of free blocks
• Does not need to support in-place realloc

75

Assignment 7: Explicit Allocator
• Must have headers that track block information like in implicit (size, status in-

use or free) – you can copy from your implicit version
• Must have an explicit free list managed as a doubly-linked list, using the first

16 bytes of each free block’s payload for next/prev pointers.
• Must have a malloc implementation that searches the explicit list of free

blocks.

• Must coalesce a free block in free() whenever possible with its immediate right
neighbor (immediate coalescing)
• Must do in-place realloc whenever possible.

