CS107 Lecture 15
Managing the Heap

reading:
B&0 9.9, 9.11

Slides by Jerry Cain and Lisa Yan, who leveraged prior work by Nick Troccoli, Julie Zelenski, Marty Stepp, Cynthia Lee, Chris Gregg, and others. 1

CS107 Topic 7: How do the
core malloc/realloc/free

memory-allocation
operations work?

Running a program

* Creates new process Main Memory
OX7ffffffff0000

* Sets up address space/segments

* Read executable file, load instructions, global data

Mapped from file into gray segments .
Ox7 770000 Shared library text/data

e Libraries loaded on demand

* Set up stack
Reserve stack segment, init %rsp, call main 0x60000

Global data

 malloc written in C, will init self on use
Asks OS for large memory region, Oxa0000 Xt (machine code)
. I —
parcels out to service requests

The Stack

Main Memory

Ox7ffffffff0000

away” after function

call ends.
Ox7ffff770000

Automatically managed
at compile-time by gcc

Heap Last lecture:
RS S — Stack management ==
Global data

| moving %rsp around
Text (machine code)
OX 4000 e —— (pushq, POpPq, mov)

Today: The Heap

Main Memory

Ox7ffffffff0000

Shared library text/data

Ox7ffff770000

Heap

0x60000 e

Global data

Text (machine code)
OX 4000 e ——

:|_

Heap memory persists
until caller indicates it
no longer needs it.

Managed by C standard
library functions
(malloc, realloc, free)

This lecture:
How does heap
management work?

Plan For Today

* What is a heap allocator?

Your role so far: Client

void *malloc(size t size);

Returns a pointer to a block of heap memory of at least size bytes, or
NULL if an error occurred.

void free(void *ptr);
Frees the heap-allocated block starting at the specified address.

void *realloc(void *ptr, size t size);

Changes the size of the heap-allocated block starting at the specified
address to be the new specified size. Returns the address of the new,
larger allocated memory region.

Your role now: Heap Hotel Concierge

http://screencrave.com/wp-content/uploads/2014/03/the-grand-budapest-hotel- (a ka H e a p AI Iocato r) 8

anderson-image-2.jpg

What is a heap allocator?

A heap allocator is a set of functions that fulfills
requests for heap memory.

* On initialization, a heap allocator is provided
the starting address and size of a large
contiguous block of memory (the heap).

* A heap allocator must manage this memory as
clients request or no longer need pieces of it.

Allocator metadata

heap_start OX60008

heap size 80

1
2
3
4
5
6

Brainstorming exercise g

void *a, *b, *c;

a = malloc(8);

b = malloc(4);

a = realloc(a, 40);
fr ee(b),

c = malloc(24);

What might heap memory look like after
these requests?

What additional info might the allocator need
to track while servicing requests? Should we
store this in global data or in the heap itself?

What can an allocator not do?

Plan For Today

* Heap allocator requirements and goals

11

Heap Allocator Functions

void *malloc(size t size);
void free(void *ptr);

void *realloc(void *ptr, size t size);

12

Heap Allocator Requirements

A heap allocator must...

Handle arbitrary request sequences - |Cannot reorder or accumulate allocation

of allocations and frees requests.
Cannot assume all allocations will have a

matching free request.

Immediately respond to requests
without delay _

Keep track of which memory is

allocated and which is available Cannot allocate already-allocated memory
or modify allocated blocks. (more later)

Can manipulate and modify free memory.

Decide which memory to provide to
fulfill an allocation request

Return addresses that are 8-byte- - | Alignment requirement: for GNU
aligned (must be multiples of 8). malloc (libc malloc) on Linux

13

Heap Allocator Performance Goals

1. Utilization 2. Throughput

‘ (not too many holes in space) ‘ ‘ (speed of handling requests) ‘

Maximize memory utilization, or how
efficiently we make use of the limited
heap memory to satisfy requests.

14

The primary cause of poor utilization is fragmentation. Fragmentation occurs
when otherwise unused memory is not available to satisfy allocation requests:

void *d = malloc(24); // NULL (out of heap space)

Client data

d

C 0x60028
b 0X60018
d OXx60008

Heap memory

Allocated

8 bytes

—

15

Utilization: Defragmenting

Could the heap manager pause and do a “defrag” operation at this point?
void *d = malloc(24);

Free
Allocated
Free ?
Client data AIIocated |
Free
d ________________________________
Allocated
C 0Xx60028
YES, great idea!
b Ox60018
a Px60008 (e.g., not efficient use of time)

NO, it can’t be done!

Allocated

YES, it can be done, but not a good idea for some reason

Utilization: Defragmenting

Could the heap manager pause and do a “defrag” operation at this point?
void *d = malloc(24);

Client data

d

C 0x60028 /1|
b 0x60018 /1 |
a Ox60008

Allocated

YES, great idea!

YES, it can be done, but not a good idea for some reason (%
(e.g., not efficient use of time)

NO, it can’t be done!

Allocated

Client still has pointers to allocated memory!

\2/

17

Heap Allocator Performance Goals

1. Utilization 2. Throughput

Maximize memory utilization, or how Maximize throughput, or the number
efficiently we make use of the limited of requests completed per unit time.

heap memory to satisfy requests. i.e., minimizing the average time to

satisfy a request.

These two goals are often in conflict with each other ©

18

Other Goals

Other desirable goals:
Locality (“similar” blocks allocated close in space)
Robust (handle client errors)
Ease of implementation/maintenance

19

Plan For Today

* Simple example: Bump Allocator

20

Bump Allocator Performance

1. Utilization 2. Throughput

Never reuses memory Ultra fast, short routines

Bump Allocator

ﬁ> void *a, *b, *c, *d;
a = malloc(8); Uy
b = malloc(4); 0xB0048 f
c = malloc(64);
.F
C

ree(b),
= malloc(8); EmpTT

Client data Bump allocator metadata ~ Ox60028 fommmemmmmmmmooem o

d

heap_start PX60008

C
b bytes used 0
d

heap_size 80

Bump Allocator

void *a, *b, *c, *d;
[> a = malloc(8); Uy
b = malloc(4); 0xB0048 f
c = malloc(64);
.F
C

ree(b),
= malloc(8); EmpTT

1
2
3
4
5
6

Client data Bump allocator metadata ~ Ox60028 fommmemmmmmmmooem o

d

heap_start PX60008

C
b bytes used 8
d

heap size 80 payload

0Xx60008

Bump Allocator

1 void *a, *b, *c, *d;
2 a = malloc(8);

3 b = malloc(4);

4 ¢ = malloc(64);

5 free(b),

6 ¢ = malloc(8);

Client data Bump allocator metadata

d

heap_start PX60008

C
b 0X60010 bytes used 16
a

0Xx60008

heap size 80

payload + pad
payload

<

8 bytes

—
24

Bump Allocator

1 void *a, *b, *c, *d;
2 a = malloc(8);
3 b = malloc(4);
ﬁ> 4 ¢ = malloc(64);
5 free(b),
6 c = malloc(8);
Client data Bump allocator metadata
d
C 0x60018 heap_start 0x60008
b Ox60010 bytes used 80 payload + pad
a OXx60008 heap size 20 payload

< 8 bytes >,

Bump Allocator

1 void *a, *b, *c, *d;
2 a = malloc(8);
3 b = malloc(4);
4 ¢ = malloc(64);
E$> S-Free(b), | (no-op) |
6 c = malloc(8);
Client data Bump allocator metadata
d
C 0x60018 heap_start 0x60008
b Ox60010 bytes used 80 payload + pad
a OXx60008 heap size 20 payload

< 8 byteS 26

Bump Allocator

1 void *aJ *b: *C) *d:
2 a = malloc(8);
3 b = malloc(4);
4 ¢ = malloc(64);
5 free(b),
[> 6 C = malloc(8)- returns NULL
g (heap out of space)
Client data Bump allocator metadata
d NULL
C Ox60018 heap start Ox60008
b 0X60010 bytes used 80 payload + pad
a Ox60018 heap size 20 payload

< 8bytes ™ »»7

Bump Allocator

* A bump allocator is a heap allocator design that simply:
* Allocates the next available memory address upon an allocate request.
* Does nothing on a free request.

* Throughput: each malloc and free execute only a handful of instructions:
* It is easy to find the next location to use.
* Free does nothing!

 Utilization: we use each memory block at most once.
No freeing at all, so no memory is ever reused. ®

* We provide a bump allocator implementation as part of assign7 as a code
reading exercise.

Next up: Strike a better balance

of utilization/throughput performance.
28

Plan For Today

* Break: Announcements

29

Announcements

* We are working to process any outstanding regrade requests.
* Reminder of Collaboration Policy for assign6 and beyond

30

Joke break

SHOOTING STARS

suo% suoori P

SHOOT
SHOOT SHoot
SHOOT

SHOOT SHOOT
SHOOT
®

Working with multiple files
In assign?7

bbbbbb

Tips for assign?7) 0.

View/edit multiple buffers (vim) More gdb tui mode

:split horizontal split

:vsplit vertical split layout split # C code, assembly, gdb
Ctrl-w <arrow> change to buffer layout src # C code and gdb

: g quit current buffer focus cmd # arrows work in gdb
Search file focus src # arrows work in C code
/asdf find next match of key focus asm # arrows work in assembly
norN next or previous match

Emacs: ctrl-x a # exit

https://web.stanford.edu/class/cs107/
resources/emacs refcard.pdf

Ctrl-l or refresh # refresh layout

33

https://web.stanford.edu/class/cs107/resources/emacs_refcard.pdf

Plan For Today

e Data Structures: Implicit Free List, Explicit Free List

34

Managing block information

TOWN
HALL
e Often not used in practice

* Need global memory or large bookkeeping area in heap GIobaI data
* Tools like Valgrind or special case allocators

Option 1: Separate housekeeping

* Free/in-use information maintained in list/table

Option 2: Block header

* Block information stored in heap memory that
precedes payload

* Most common approach in current use Heap memory

In your assignment: Use block headers with 500B of global data

35

Implicit Free List Allocator

* Key idea: in order to reuse blocks, we need a way to track which blocks are
allocated and which are free.

* We could store this information in a separate global data structure, but this is
inefficient.

* Instead: let’s allocate extra space before each block for a header storing its
payload size and whether it is allocated or free.

* When we allocate a block, we look through the blocks to find a free one, and
we update its header to reflect its allocated size and that it is now allocated.

* When we free a block, we update its header to reflect it is now free.
* The header should be 8 bytes (or larger).

36

Implicit Free List: Design idea

void *a = malloc(4);

Padding (optional)

d OX60010 —t——u = UYYTE
Payload
By storing the block size of each Header §83)
allocated/free block, we implicitly block size
have a linked list of free blocks. allocated/free status

37

Implicit Free List Allocator

1 void *a = malloc(4);
2 void *b = malloc(8);
3 void *c = malloc(4);
4 free(b);

5 void *d = malloc(8);
6 free(a);

7 void *e = malloc(24);

38

Implicit Free List Allocator

ﬁ> 1 void *a = malloc(4);
2 void *b = malloc(8);
3 void *c = malloc(4);
4 free(b);
5 void *d = malloc(8);
6 free(a);
7 void *e = malloc(24);

a OX60010 -

Implicit Free List Allocator

1 void *a = malloc(4);
[> 2 void *b = malloc(8);

3 void *c = malloc(4);

4 free(b);

5 void *d = malloc(8);

6 free(a);

7 void *e = malloc(24);

b OX60020

a OX60010 40

Implicit Free List Allocator

1 void *a = malloc(4);
2 void *b = malloc(8);
3 void *c = malloc(4);
4 free(b);
5 void *d = malloc(8);
6 free(a);

7 void *e = malloc(24);

C 0Xx60030

b OX60020

a 0x60010 i

Implicit Free List Allocator

1 void *a = malloc(4);
2 void *b = malloc(8);
3 void *c = malloc(4);

ﬁ> 4 free(b);
5 void *d = malloc(8);
6 free(a);
7 void *e = malloc(24);

C 0Xx60030

b OX60020

a 0x60010 i

Implicit Free List Allocator

1 void *a = malloc(4);
2 void *b = malloc(8);
3 void *c = malloc(4);
4 free(b);

[j> 5 void *d = malloc(8);
6 free(a);

7 void *e = malloc(24);

d 0X60020
C 0X60030
b 0X60020
a 0X60010 4a

Implicit Free List Allocator

1 void *a = malloc(4);
2 void *b = malloc(8);
3 void *c = malloc(4);
4 free(b);

5 void *d = malloc(8);

[> 6 free(a);
7 void *e = malloc(24);

d 0X60020
C 0X60030
b 0X60020
a 0X60010 44

Implicit Free List Allocator

malloc(4);
malloc(8);
malloc(4);

1 void *a

2 void *b

3 vold *c

4 free(b);
5 void *d = malloc(8);

6 free(a);

7 void *e = malloc(24);

0x60040

0Xx60020

0Xx60030

0Xx60020

O O N QO M

Ox60010 45

Implicit Free List: Header design

1. Should we store the block size as (A) payload size,
or (B) header + payload size?

2. How can we store both a block size
and a used/free status in 8B?

Header (8B)
block size
allocated/free statt \??9

46

Implicit Free List: Header design

1. Should we store the block size as (A) payload size,
or (B) header + payload size?

| Up to you! | Your decision affects how you
traverse the list (be careful of off-by-one)

2. How can we store both a block size
and a used/free status in 8B?

8-byte alighment = block sizes = multiples of 8!
Header (8B)

block size
allocated/free status

64 3 0
Block size POX

alloc/free 47

Designing malloc()

Suppose we use a first-fit placement policy to choose the free block:

For each allocation request:
e Start at the beginning of the heap
* Find the first available block that is free and fits the request size

1. Throughput: What is the A. Constant
worst-case runtime of Linear in number of allocated and free blocks

first-fit placement? Linear in number of free blocks
. Other

OO ®

2. What are some alternatives to
first-fit that might improve memory -
utilization or throughput? -

48

Designing malloc()

Suppose we use a first-fit placement policy to choose the free block:

For each allocation request:
e Start at the beginning of the heap
* Find the first available block that is free and fits the request size

1. Throughput: What is the A. Constant
worst-case runtime of Linear in number of allocated and free blocks
first-fit placement? C. Linear in number of free blocks
D. Other
2. What are some alternatives to [Up to you! |

first-fit that might improve memory

(we’ll come back to this)
utilization or throughput?

49

Implicit Free List Summary

For all blocks, Header (8B)

e Have a header that
stores size and status. 64 3 0

e Our list links all blocks, ‘ Block size ‘ @@AX \

allocated (A) and free (F). '

alloc/free

Keeping track of free blocks:
* Improves memory utilization (vs bump allocator)
* Decreases throughput (worst case allocation request has O(A + F) time)

* Increases design complexity ©
Next up: Keep track of only free (F) blocks with

explicit free lists. Worst-case O(F) time!
50

Plan For Today

e Data Structures: Implicit Free List, Explicit Free List

51

Explicit Free List Design

Goal: A doubly-linked list of free blocks:

* Pointer to the previous free block ——» NULL
. free
e Pointer to the next free block Toc |
alloc
alloc

Allocation run-time is now
linear in number of free blocks. YR

alloc

This explicit list of free blocks increases
request throughput, with some costs
(design and internal fragmentation)

NULL < froe

52

Explicit Free List: Header Design

For each block, where should we include these pointers?

New header Separate headers for Insert into free Other
for all blocks free/allocated blocks block payload

old payload

block size/status block size/free block size/free

If we choose option C, does this change our minimum payload size? -

No Yes K}\/
(keep 8B header + 8B payload) (change to 8B header + 16B payload)

~~
A O

53

Explicit Free List: Header Design

For each block, where should we include these pointers?

New header Separate headers for Insert into free Other
for all blocks free/allocated blocks block payload

old payload

block size/status block size/free block size/free

If we choose option C, does this change our minimum payload size?

No Yes
(keep 8B header + 8B payload) (change to 8B header + 16B payload)

54

Explicit Free List: List Design

1. freeinserts a new block into the
explicit free list. What will be the
worst-case runtime of free?

2. How do you want to organize your explicit free list?
(compare utilization/throughput)

A. Address-order (each block’s address
is less than successor block’s address)

B. Last-in first-out (LIFO)/like a stack, where
newly freed blocks are at the beginning of the list

C. Other (e.g., by size, etc.) ()

55

Explicit Free List: List Design

1. freeinserts a new block into the -+ Need a linear search through list to
explicit free list. What will be the determine prev/next addresses
worst-case runtime of free? « Want constant time? Check out

textbook’s boundary tag/footer solution!

2. How do you want to organize your explicit free list?

(compare utilization/throughput) | Up to you |
A. Address-order (each block’s address Better memory util,
is less than successor block’s address) Linear free
B. Last-in first-out (LIFO)/like a stack, where Constant free (push

newly freed blocks are at the beginning of the list recent block onto stack)
C. Other (e.g., by size, etc.)

(more at end of lecture)

56

Implicit vs. Explicit: Summary

Implicit Free List Explicit Free List
* 8B header for size + alloc/free status * 8B header for size + alloc/free status

* Free block payloads store prev/next
free block pointers

* Allocation requests are worst-case * Allocation requests are worst-case
linear in total number of blocks linear in number of free blocks
* Implicitly address-order e Can choose block ordering

* Potentially more internal

. fragmentation (min block size larger
In assignment 7: 5 (ger)

e First build an implicit free list.
* Then, build your final, high-performing allocator using an explicit free list.

Plan For Today

* Policy decisions/performance

58

Policy decisions

1. Placement policy: How to pick which free block from available options
2. Splitting policy: What to do with excess space when allocating

3. Coalescing policy: How to recycle a freed block?

Also: implementing an efficient realloc Many of these policy
decisions are| up to you! |

59

Placement policy

How do we choose a free block to use for
an allocation request, e.g., malloc()?

* First fit: search the list from beginning each
time and choose first free block that fits.

* Next fit: instead of starting at the beginning,
continue where previous search left off.

— Easier to implement

* Best fit: examine every free block and choose
the one with the smallest size that fits. What are the pros/cons

for each approach?
Throughput vs. Utilization?

More on B&O p. 849

60

A reasonable allocation request splits a free
block into an allocated block and a free block void *ptr = malloc(8);
with remaining space:

Not all cases are this friendly...

61

Splitting Policy

Problem: Some blocks are just too small.
void *ptr = malloc(8);

16, alloc 8, alloc

Which splitting policy would you Vj \
take here? What are the tradeoffs? "

Splitting Policy

Problem: Some blocks are just too small.
void *ptr = malloc(8);

16, alloc 8, alloc

Internal fragmentation: External fragmentation:

unused bytes b/c of padding unused free blocks 63

1 void *a = malloc(8);
2 void *b = malloc(8);
3 void *c = malloc(8);
4 free(a);
5 free(c);
6 free(b);
7 void *d

malloc(24); // NULL

* The last request will fail because we have enough
memory space, but it is fragmented into free
blocks sized from earlier requests!

* We need to coalesce (i.e., combine adjacent) free

blocks to avoid this external fragmentation. y

1 void *a malloc(8);
2 void *b = malloc(8);
3 void *c = malloc(8);

4 free(a);
5 free(c);
6 free(b);
7 void *d = malloc(24); // NULL 8, alloc
1. When can you coalesce 2. Line 6: When freeing block 0x60020,
adjacent free blocks? which blocks would you coalesce?
A.Line 4 C.Line 6 A. Previous block (header 0x60008)

B. Next block (header 0x60028) (?)

—_

B.Line 5 D.Line 7 C.Both Aand B -

65

1 void *a malloc(8);
2 void *b = malloc(8);
3 void *c = malloc(8);

4 free(a);
5 free(c);
6 free(b);
7 void *d = malloc(24); // NULL 8, alloc
1. When can you coalesce 2. Line 6: When freeing block 0x60020,
adjacent free blocks? which blocks would you coalesce?
A, Line 4 C. Line6 Immediate A. Previous block (header 0x60008)

B. Next block (header 0x60028)
~E_Line 5 D.Line 7 Deferred C.Both Aand B

66

How to make operations fast? W

malloc is generally * More quickly identify which blocks are appropriate
about search to consider

* The fewer blocks examined, the better. Be less picky
about which block to use
* Placement policy/Splitting policy

free is mostly * |deal data structures modified in constant-time
about update * Postpone work until clearly needed
(immediate vs. deferred coalesce)

realloc * Move to a new block: malloc/free/copy payload
* Big win if avoid copy payload data and just
resize in-place

67

Realloc can grow or
shrink the data size.

void *realloc(void *ptr, size t size);

Changes the size of the heap-allocated block starting at the specified
address to be the new specified size. Returns the address of the new,

larger allocated memory region.
68

When can we realloc in-place?

void *a = malloc(6); a | oxs0010

1. realloc(a, 8);
2. realloc(a, 2);

3. realloc(a, 32);

4. realloc(a, 64);

&

69

When can we realloc in-place?

void *a = malloc(6); a | oxs0010

1. realloc(a, 8); Yes

2. realloc(a, 2); Yes

16, free

3. realloc(a, 32); VYes (coalesce adjacent free)

8, alloc

4. realloc(a, 64); No!need to move datal

Thoughts for you:
* What is necessary to allow resize in-place? Is it worth it to anticipate that?
 How prominent is realloc in the mix of operations?

70

Going beyond: Explicit list w/size buckets

 Explicit lists are much faster than implicit lists.
* However, a first-fit placement policy is still linear in total # of free blocks.
* What about an explicit free list sorted by size (e.g., as a tree)?

* What about several explicit free lists bucketed by size? (below)

Heap
. « - memory
Heap metadata / [
: N
small /
medium
large B
jumbo

Read B&O Section 9.9.14!

/1

Plan For Today

* Designing your own heap allocator

72

Tips for assign7) 0.

Read B&O textbook.

» Offers some starting tips for implementing your heap allocators.
* Make sure to cite any design ideas you discover.

Honor Code/collaboration

* All non-textbook code is off-limits.

* Please do not discuss discuss code-level specifics with others.

* Your code should be designed, written, and debugged by you
independently.

Helper hours
* We will provide good debugging techniques and strategies!
* Come and discuss design tradeoffs! s

Assignment 7: Implicit Allocator

* Must have headers that track block information (size, status in-use or free).

You must use an 8 byte header size, storing the status using the free bits.
(note: this is larger than the 4 byte headers specified in the book)

* Must have free blocks that are recycled and reused for subsequent malloc
requests if possible.

* Must have a malloc implementation that searches the heap for free blocks via
an implicit free list (i.e. traverses block-by-block). Placement policy up to you.

* Does not need to have coalescing of free blocks

* Does not need to support in-place realloc

74

Assignment 7: Explicit Allocator

* Must have headers that track block information like in implicit (size, status in-
use or free) — you can copy from your implicit version

* Must have an explicit free list managed as a doubly-linked list, using the first
16 bytes of each free block’s payload for next/prev pointers.

* Must have a malloc implementation that searches the explicit list of free
blocks.

* Must coalesce a free block in free() whenever possible with its immediate right
neighbor (immediate coalescing)

* Must do in-place realloc whenever possible.

75

