
1

CS107: Lecture 16
Optimization

Slides by Nick Troccoli, who leveraged prior work by Julie Zelenski, Marty Stepp, Cynthia Lee, Chris Gregg, and others. Minor updates by Jerry Cain.

Reading: B&O 5

2

CS107 Topic 7: How do the
core malloc/realloc/free

memory-allocation
operations work?

3

Learning Goals
• Understand the various optimization channels available in gcc.
• Understand how we can profile our code to identify hotspots where gcc can’t.

4

Plan For Today
• What is optimization?
• gcc Optimization
• Limitations of gcc Optimization
• Break: Announcements
• Caching

5

Plan For Today
• What is optimization?
• gcc Optimization
• Limitations of gcc Optimization
• Break: Announcements
• Caching

6

Optimization
• Optimization is the task of making your more efficient along some metric—

typically time and/or memory.
• You’ve already optimized code in prior classes if you’ve chosen an O(n log n) sorting

algorithm over an O(n^2) one.
• In CS107, optimization more often means minimizing constants factors hidden by

asymptotic notation.

• We shouldn’t care too much about optimizing code that isn’t executed all that
often. The gains just aren’t all that big.
• We should care about optimizing code that is repeatedly executed. The gains

can be substantial.

7

Optimization
Most of what you need to do can be summarized by:

• If doing something seldom and only on small inputs, do whatever is simplest to code,
understand, and debug. It’s much more important it be correct and not at all
important it be clever and efficient.

• If doing something a lot and/or on large inputs, make the primary algorithm’s Big-O
cost as low as possible.

• Let gcc do its magic from there
• As a last resort, identify hotspots and aggressively optimize there.

8

Plan For Today
• What is optimization?
• gcc Optimization
• Limitations of gcc Optimization
• Break: Announcements
• Caching

9

GCC Optimization
• Today, we’ll be comparing two levels of optimization in the gcc compiler:
• gcc –O0 // mostly a literal translation from C to asm
• gcc –O2 // enables nearly all reasonable optimizations
• (we use –Og, like –O0 but relies on registers more than the stack)

• There are other more aggressive levels of optimization, e.g.:
• -O3 // more aggressive than O2, trade size for speed
• -Os // optimize for size
• -Ofast // disregard standards compliance (!!)

• Exhaustive list of gcc optimization-related flags:
• https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html

https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html

10

Example: Matrix Multiplication
Here’s a standard matrix multiply, a triply-nested for loop:

void mmm(double a[][DIM], double b[][DIM], double c[][DIM], int n) {
for (int i = 0; i < n; i++) {

for (int j = 0; j < n; j++) {
for (int k = 0; k < n; k++) {

c[i][j] += a[i][k] * b[k][j];
}

}
}

}

./mult // -O0 (no optimization)
matrix multiply 25^2: cycles 0.44M
matrix multiply 50^2: cycles 3.13M
matrix multiply 100^2: cycles 24.80M

./mult_opt // -O2 (with optimization)
matrix multiply 25^2: cycles 0.11M (opt)
matrix multiply 50^2: cycles 0.47M (opt)
matrix multiply 100^2: cycles 3.67M (opt)

11

GCC Optimizations
• Constant Folding
• Common Sub-expression Elimination
• Dead Code
• Strength Reduction
• Code Motion
• Tail Recursion
• Loop Unrolling

12

GCC Optimizations
Optimizations may target one or more of:
• Static instruction count
• Dynamic instruction count
• Cycle count / execution time

13

GCC Optimizations
• Constant Folding
• Common Sub-expression Elimination
• Dead Code
• Strength Reduction
• Code Motion
• Tail Recursion
• Loop Unrolling

14

Constant Folding
Constant Folding pre-calculates constants at compile-time where possible.

int seconds = 60 * 60 * 24 * n_days;

What is the consequence of this for you as a programmer? What should you do
differently or the same knowing that compilers can do this for you?

15

Constant Folding
int fold(int param) {

char arr[5];
int a = 0x107;
int b = a * sizeof(arr);
int c = sqrt(2.0);
return a * param + (a + 0x15 / c + strlen("Hello") * b - 0x37) / 4;

}

16

Constant Folding: Before (-O0)
0000000000400626 <fold>:

400626: 55 push %rbp
400627: 53 push %rbx
400628: 48 83 ec 08 sub $0x8,%rsp
40062c: 89 fd mov %edi,%ebp
40062e: f2 0f 10 05 da 00 00 movsd 0xda(%rip),%xmm0
400635: 00
400636: e8 d5 fe ff ff callq 400510 <sqrt@plt>
40063b: f2 0f 2c c8 cvttsd2si %xmm0,%ecx
40063f: 69 ed 07 01 00 00 imul $0x107,%ebp,%ebp
400645: b8 15 00 00 00 mov $0x15,%eax
40064a: 99 cltd
40064b: f7 f9 idiv %ecx
40064d: 8d 98 07 01 00 00 lea 0x107(%rax),%ebx
400653: bf 04 07 40 00 mov $0x400704,%edi
400658: e8 93 fe ff ff callq 4004f0 <strlen@plt>
40065d: 48 69 c0 23 05 00 00 imul $0x523,%rax,%rax
400664: 48 63 db movslq %ebx,%rbx
400667: 48 8d 44 18 c9 lea -0x37(%rax,%rbx,1),%rax
40066c: 48 c1 e8 02 shr $0x2,%rax
400670: 01 e8 add %ebp,%eax
400672: 48 83 c4 08 add $0x8,%rsp
400676: 5b pop %rbx
400677: 5d pop %rbp
400678: c3 retq

17

Constant Folding: After (-O2)
00000000004004f0 <fold>:

4004f0: 69 c7 07 01 00 00 imul $0x107,%edi,%eax
4004f6: 05 a5 06 00 00 add $0x6a5,%eax
4004fb: c3 retq
4004fc: 0f 1f 40 00 nopl 0x0(%rax)

18

GCC Optimizations
• Constant Folding
• Common Sub-expression Elimination
• Dead Code
• Strength Reduction
• Code Motion
• Tail Recursion
• Loop Unrolling

19

Common Sub-Expression Elimination
Common Sub-Expression Elimination prevents the recalculation of the same
thing many times by doing it once and saving the result.

int a = (param2 + 0x107);
int b = param1 * (param2 + 0x107) + a;
return a * (param2 + 0x107) + b * (param2 + 0x107);

20

Common Sub-Expression Elimination
Common Sub-Expression Elimination prevents the recalculation of the same
thing many times by doing it once and saving the result.

int a = (param2 + 0x107);
int b = param1 * (param2 + 0x107) + a;
return a * (param2 + 0x107) + b * (param2 + 0x107);

00000000004004f0 <subexp>:
4004f0: 81 c6 07 01 00 00 add $0x107,%esi
4004f6: 0f af fe imul %esi,%edi
4004f9: 8d 04 77 lea (%rdi,%rsi,2),%eax
4004fc: 0f af c6 imul %esi,%eax
4004ff: c3 retq

This optimization is
done even at –O0!

21

GCC Optimizations
• Constant Folding
• Common Sub-expression Elimination
• Dead Code
• Strength Reduction
• Code Motion
• Tail Recursion
• Loop Unrolling

22

Dead Code
Dead code elimination removes code that doesn’t serve a purpose:
if (param1 < param2 && param1 > param2) {

printf("This test can never be true!\n");
}

// Empty for loop
for (int i = 0; i < 1000; i++);

// If/else that does the same operation in both cases
if (param1 == param2) {

param1++;
} else {

param1++;
}

// If/else that more trickily does the same operation in both cases
if (param1 == 0) {

return 0;
} else {

return param1;
}

23

Dead Code: Before (-O0)
00000000004004d6 <dead_code>:
4004d6: b8 00 00 00 00 mov $0x0,%eax
4004db: eb 03 jmp 4004e0 <dead_code+0xa>
4004dd: 83 c0 01 add $0x1,%eax
4004e0: 3d e7 03 00 00 cmp $0x3e7,%eax
4004e5: 7e f6 jle 4004dd <dead_code+0x7>
4004e7: 39 f7 cmp %esi,%edi
4004e9: 75 05 jne 4004f0 <dead_code+0x1a>
4004eb: 8d 47 01 lea 0x1(%rdi),%eax
4004ee: eb 03 jmp 4004f3 <dead_code+0x1d>
4004f0: 8d 47 01 lea 0x1(%rdi),%eax
4004f3: f3 c3 repz retq

24

Dead Code: After (-O2)
00000000004004f0 <dead_code>:
4004f0: 8d 47 01 lea 0x1(%rdi),%eax
4004f3: c3 retq
4004f4: 66 2e 0f 1f 84 00 00 nopw %cs:0x0(%rax,%rax,1)
4004fb: 00 00 00
4004fe: 66 90 xchg %ax,%ax

25

GCC Optimizations
• Constant Folding
• Common Sub-expression Elimination
• Dead Code
• Strength Reduction
• Code Motion
• Tail Recursion
• Loop Unrolling

26

Strength Reduction
Strength reduction changes divide to multiply, multiply to add/shift, and mod to
AND to avoid using instructions that cost many cycles (multiply and divide).

int a = param2 * 32;
int b = a * 7;
int c = b / 3;
int d = param2 % 2;

for (int i = 0; i <= param2; i++) {
c += param1[i] + 0x107 * i;

}
return c + d;

27

GCC Optimizations
• Constant Folding
• Common Sub-expression Elimination
• Dead Code
• Strength Reduction
• Code Motion
• Tail Recursion
• Loop Unrolling

28

Code Motion
Code motion moves code outside of a loop if possible.

for (int i = 0; i < n; i++) {
sum += arr[i] + foo * (bar + 3);

}

Common subexpression elimination deals with expressions that appear multiple
times in the code. Here, the expression appears once, but is calculated each
loop iteration.

29

GCC Optimizations
• Constant Folding
• Common Sub-expression Elimination
• Dead Code
• Strength Reduction
• Code Motion
• Tail Recursion
• Loop Unrolling

30

Tail Recursion
Tail recursion is an example of where GCC can identify recursive patterns that
can be more efficiently implemented iteratively.

long factorial(int n) {
if (n <= 1) {

return 1;
}
else return n * factorial(n - 1);

}

You saw this in lab7!

31

GCC Optimizations
• Constant Folding
• Common Sub-expression Elimination
• Dead Code
• Strength Reduction
• Code Motion
• Tail Recursion
• Loop Unrolling

32

Loop Unrolling
Loop Unrolling: Do n loop iterations’ worth of work per actual loop iteration, so
we save ourselves from doing the loop overhead (test and jump) every time, and
instead incur overhead only every n-th time.

for (int i = 0; i <= n - 4; i += 4) {
sum += arr[i];
sum += arr[i + 1];
sum += arr[i + 2];
sum += arr[i + 3];

} // after the loop handle any leftovers

33

Plan For Today
• What is optimization?
• GCC Optimization
• Limitations of GCC Optimization
• Break: Announcements
• Caching

34

Limitations of GCC Optimization
GCC can’t optimize everything! You ultimately may know more than GCC does.

int char_sum(char *s) {
int sum = 0;
for (size_t i = 0; i < strlen(s); i++) {

sum += s[i];
}
return sum;

}

What is the bottleneck?
What can GCC do?

strlen called for every character
code motion – pull strlen out of loop

35

Limitations of GCC Optimization
GCC can’t optimize everything! You ultimately may know more than GCC does.

void lower1(char *s) {
for (size_t i = 0; i < strlen(s); i++) {

if (s[i] >= 'A' && s[i] <= 'Z') {
s[i] -= ('A' - 'a');

}
}

}

What is the bottleneck?
What can GCC do?

strlen called for every character
nothing! s is changing, and even gcc isn’t smart enough
to know if the length is constant across iterations. But we
know its length doesn’t change.

36

Demo: limitations.c

37

Plan For Today
• What is optimization?
• GCC Optimization
• Limitations of GCC Optimization
• Break: Announcements
• Caching

38

Plan For Today
• What is optimization?
• GCC Optimization
• Limitations of GCC Optimization
• Break: Announcements
• Caching

39

Caching
• Processor speed is not the only bottleneck in program performance – memory

access is perhaps even more of a bottleneck!
• Memory exists in levels and goes from really fast (registers) to really slow

(disk).
• As data is more frequently used, it ends up in faster and faster memory.

40

Caching
All caching depends on locality.

Temporal locality
• Repeat access to the same data tends to be co-located in time
• Intuitively: things I have used recently, I am likely to use again soon

Spatial locality
• Related data tends to be co-located in space
• Intuitively: data that is near a used item is more likely to also be accessed

41

Caching
All caching depends on locality.

Realistic scenario:
• 97% cache hit rate
• Cache hit costs 1 cycle
• Cache miss costs 100 cycles
• How much of your memory access time is spent on 3% of accesses that are

cache misses?

42

Demo: cache.c

43

Assignment 7: Optimization
• Explore various optimizations you can make to your code to reduce instruction

count and runtime.
• More efficient Big-O for your algorithms
• Explore other ways to reduce instruction count

• Look for hotspots using callgrind
• Optimize using –O2
• And more…

44

Assignment 7 Tips
• Two parts: Implicit and Explicit
• Follow the provided milestones for Implicit!
• Explicit builds on Implicit – make sure your Implicit implementation is rock-

solid before moving on.
• Develop incrementally – debug and test thoroughly!

45

Recap
• What is optimization?
• GCC Optimization
• Limitations of GCC Optimization
• Break: Announcements
• Caching

Next time: wrap-up

