CS107: Lecture 16

Optimization

Reading: B&O 5

Slides by Nick Troccoli, who leveraged prior work by Julie Zelenski, Marty Stepp, Cynthia Lee, Chris Gregg, and others. Minor updates by Jerry Cain. 1

CS107 Topic 7: How do the
core malloc/realloc/free

memory-allocation
operations work?

Learning Goals

* Understand the various optimization channels available in gcc.

* Understand how we can profile our code to identify hotspots where gcc can’t.

Plan For Today

* What is optimization?

* gcc Optimization

* Limitations of gcc Optimization
* Break: Announcements

* Caching

Plan For Today

 What is optimization?

* gcc Optimization

* Limitations of gcc Optimization
* Break: Announcements

* Caching

Optimization

* Optimization is the task of making your more efficient along some metric—
typically time and/or memory.

* You've already optimized code in prior classes if you’ve chosen an O(n log n) sorting
algorithm over an O(n”2) one.

* In CS107, optimization more often means minimizing constants factors hidden by
asymptotic notation.

* We shouldn’t care too much about optimizing code that isn’t executed all that
often. The gains just aren’t all that big.

* We should care about optimizing code that is repeatedly executed. The gains
can be substantial.

Optimization

Most of what you need to do can be summarized by:

* |f doing something seldom and only on small inputs, do whatever is simplest to code,
understand, and debug. It’s much more important it be correct and not at all
important it be clever and efficient.

* If doing something a lot and/or on large inputs, make the primary algorithm’s Big-O
cost as low as possible.

* Let gcc do its magic from there
 Asalastresort, identify hotspots and aggressively optimize there.

Plan For Today

* What is optimization?

e gcc Optimization

* Limitations of gcc Optimization
* Break: Announcements

* Caching

GCC Optimization

* Today, we’ll be comparing two levels of optimization in the gcc compiler:
e gcc -00 // mostly a literal translation from C to asm
e gcc -02 // enables nearly all reasonable optimizations
* (we use —0g, like —O0 but relies on registers more than the stack)

* There are other more aggressive levels of optimization, e.g.:
e -03 // more aggressive than 02, trade size for speed
e -Os // optimize for size
« -Ofast // disregard standards compliance (!!)

* Exhaustive list of gcc optimization-related flags:
e https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html

https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html

Example: Matrix Multiplication

Here’s a standard matrix multiply, a triply-nested for loop:

void mmm(double a[][DIM], double b[][DIM], double c[][DIM], int n) {
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
for (int k = 0; k < n; k++) {
c[i][j] += a[i][k] * b[k][]];

}
}
}
}
./mult // -00 (no optimization) ./mult opt // -02 (with optimization)
matrix multiply 2572: cycles 0.44M matrix multiply 2572: cycles 9.11M (opt)
matrix multiply 5072: cycles 3.13M matrix multiply ©5072: cycles ©0.47M (opt)
matrix multiply 10072: cycles 24.86M matrix multiply 10072: cycles 3.67M (opt)

10

GCC Optimizations

* Constant Folding

* Common Sub-expression Elimination
* Dead Code

» Strength Reduction

* Code Motion

* Tail Recursion

* Loop Unrolling

11

GCC Optimizations

Optimizations may target one or more of:
* Static instruction count
* Dynamic instruction count

 Cycle count / execution time

12

GCC Optimizations

 Constant Folding

* Common Sub-expression Elimination
* Dead Code

» Strength Reduction

* Code Motion

* Tail Recursion

* Loop Unrolling

13

Constant Folding

Constant Folding pre-calculates constants at compile-time where possible.

int seconds = 60 * 60 * 24 * n_days;

What is the consequence of this for you as a programmer? What should you do
differently or the same knowing that compilers can do this for you?

14

Constant Folding

int fold(int param) {
char arr[5];

int a = 0x107;
int b = a * sizeof(arr);
int ¢ = sqrt(2.9);

return a * param + (a + 0x15 / ¢ + strlen("Hello") * b - 0x37) / 4;

15

Constant Folding: Before (-00)

0000000000400626 <fold>:

400626 55 push %rbp

400627 53 push %rbx

400628 48 83 ec 08 sub $0x8,%rsp

40062c: 89 fd mov %edi,%ebp

40062e: f2 of 10 05 da 00 00 movsd ©@xda(%rip),%xmmeo
400635 00

400636 e8 d5 fe ff ff callg 400510 <sqrt@plt>
40063b: f2 0f 2c c8 cvttsd2si %xmm@,%ecx
40063f: 69 ed 07 01 00 00 imul $0x1e7,%ebp, %ebp
400645 : b8 15 00 00 00 mov $0x15, %eax
40064a: 99 cltd

40064b: f7 9 idiv %ecx

40064d: 8d 98 07 01 00 00 lea 0x107 (%rax) ,%ebx
400653 bf 04 07 40 00 mov $0x400704, %edi
400658 e8 93 fe ff ff callg 4004f0 <strlen@plt>
40065d: 48 69 cO 23 05 00 00 imul $0x523,%rax, %rax
400664 : 48 63 db movslq %ebx,%rbx

400667 48 8d 44 18 c9 lea -0x37(%rax,%rbx,1),%rax
40066¢C: 48 cl1 e8 02 shr $0x2,%rax

400670: 01 e8 add %ebp, %eax

400672 48 83 c4 08 add $0x8,%rsp

400676 5b pop %rbx

400677 5d pop %rbp

400678: c3 retq

16

Constant Folding: After (-02)

0000000000400410 <fold>:

4004f0: 69 c7 07 01 00 00 imul $0x107, %edi, %eax
4004f6: 05 a5 06 00 00 add $0x6a5, %eax
4004fb: c3 retq

4004fc: of 1f 40 o0 nopl O@x@(%rax)

17

GCC Optimizations

* Constant Folding

* Common Sub-expression Elimination
* Dead Code

» Strength Reduction

* Code Motion

* Tail Recursion

* Loop Unrolling

18

Common Sub-Expression Elimination

Common Sub-Expression Elimination prevents the recalculation of the same
thing many times by doing it once and saving the result.

int a = (param2 + 0x107);
int b = paraml * (param2 + 0x107) + a;
return a * (param2 + 0x107) + b * (param2 + 0x107);

19

Common Sub-Expression Elimination

Common Sub-Expression Elimination prevents the recalculation of the same
thing many times by doing it once and saving the result.

This optimization is
done even at —00!

int a = (param2 + 0x107);
int b = paraml * (param2 + 0x107) + a;
return a * (param2 + 0x107) + b * (param2 + 0x107);

00000000004004f0 <subexp>:

4004f0: 81 c6 07 01 00 00 add $0x107,%esi
4004f6: ©of af fe imul %esi,nedi

40041f9: 8d 04 77 lea (%rdi,%rsi,2),%eax
4004fc: ©of af c6 imul %esi,%eax

4004ff: «¢3 retq

20

GCC Optimizations

* Constant Folding

* Common Sub-expression Elimination
* Dead Code

» Strength Reduction

* Code Motion

* Tail Recursion

* Loop Unrolling

21

Dead Code

Dead code elimination removes code that doesn’t serve a purpose:

if (paraml < param2 && paraml > param2) {
printf("This test can never be true!\n");
}

// Empty for loop
for (int i = @; i < 1000; i++);

// If/else that does the same operation in both cases
if (paraml == param2) {
paraml++;
} else {
paraml++;
}

// If/else that more trickily does the same operation in both cases
if (paraml == @) {

return 9;
} else {

return paraml; 22
1

Dead Code: Before (-00)

000000000R4004d6 <dead_code>:

4004d6: b8 00 00 00 00 mov $0x0, %eax

4004db: eb 03 jmp 4004e0 <dead code+Oxa>
4004dd: 83 c0 01 add $0x1,%eax

4004€0: 3d e7 03 00 00 cmp $0x3e7,%eax

4004e5: 7e f6 jle 4004dd <dead code+0x7>
4004e7: 39 {7 cmp %esi,xedi

4004€9: 75 05 jne 400410 <dead code+0xla>
4004eb: 8d 47 o1 lea Ox1(%rdi),%eax

4004¢ee: eb 03 jmp 400413 <dead_ code+0x1d>
400410: 8d 47 o1 lea Ox1(%rdi),%eax

400413 f3 ¢3 repz retq

23

Dead Code: After (-02)

0000000000400410 <dead code>:
4004f0: 8d 47 o1 lea Ox1(%rdi),%eax
4004f3: c3 retq
4004f4: 66 2e Of 1f 84 00 60 nopw %Cs:0x0(%rax,%rax,1)
4004fb: 00 00 00
4004fe: 66 90 xchg %ax,%ax

24

GCC Optimizations

* Constant Folding

* Common Sub-expression Elimination
* Dead Code

 Strength Reduction

* Code Motion

* Tail Recursion

* Loop Unrolling

25

Strength Reduction

Strength reduction changes divide to multiply, multiply to add/shift, and mod to
AND to avoid using instructions that cost many cycles (multiply and divide).

int a = param2 * 32;
int b = a * 7;

int ¢ = b / 3;

int d = param2 % 2;

for (int i = @; i <= param2; i++) {
C += paraml[i] + ©x107 * i;
}

return c + d;

26

GCC Optimizations

* Constant Folding

* Common Sub-expression Elimination
* Dead Code

» Strength Reduction

* Code Motion

* Tail Recursion

* Loop Unrolling

27

Code Motion

Code motion moves code outside of a loop if possible.

for (int i = @; i < n; i++) {
sum += arr[i] + foo * (bar + 3);

¥

Common subexpression elimination deals with expressions that appear multiple
times in the code. Here, the expression appears once, but is calculated each
loop iteration.

28

GCC Optimizations

* Constant Folding

* Common Sub-expression Elimination
* Dead Code

» Strength Reduction

* Code Motion

* Tail Recursion

* Loop Unrolling

29

Tail Recursion

Tail recursion is an example of where GCC can identify recursive patterns that
can be more efficiently implemented iteratively.

long factorial(int n) {
if (n <=1) {
return 1;

}

else return n * factorial(n - 1);

¥

You saw this in lab7!

30

GCC Optimizations

* Constant Folding

* Common Sub-expression Elimination
* Dead Code

» Strength Reduction

* Code Motion

* Tail Recursion

* Loop Unrolling

31

Loop Unrolling

Loop Unrolling: Do n loop iterations’ worth of work per actual loop iteration, so
we save ourselves from doing the loop overhead (test and jump) every time, and
instead incur overhead only every n-th time.

for (int 1 = 0; i <=n - 4; i += 4) {
sum += arr[i];
sum += arr[i + 1];
sum += arr[i + 2];

sum += arr[i + 3];
} // after the loop handle any leftovers

32

Plan For Today

* What is optimization?
* GCC Optimization
 Limitations of GCC Optimization

 Break: Announcements
e Caching

33

Limitations of GCC Optimization

GCC can’t optimize everything! You ultimately may know more than GCC does.

int char_sum(char *s) {
int sum = ©;
for (size t i = 0; i < strlen(s); i++) {
sum += s[i];
}

return sum;

What is the bottleneck? strlen called for every character

What can GCC do? code motion — pull strlen out of loop
34

Limitations of GCC Optimization

GCC can’t optimize everything! You ultimately may know more than GCC does.

void lowerl(char *s) {
for (size_t i = @; 1 < strlen(s); i++) {
if (s[i] >= 'A' && s[i] <= 'Z") {

S[i] -— (IAI _ Ial);
}
}
}
What is the bottleneck? strlen called for every character
What can GCC do? nothing! s is changing, and even gcc isn’t smart enough

to know if the length is constant across iterations.
35

Demo: limitations.c

Plan For Today

* What is optimization?

* GCC Optimization

 Limitations of GCC Optimization
* Break: Announcements

* Caching

37

Plan For Today

* What is optimization?
* GCC Optimization
 Limitations of GCC Optimization

 Break: Announcements
e Caching

38

* Processor speed is not the only bottleneck in program performance — memory
access is perhaps even more of a bottleneck!

 Memory exists in levels and goes from really fast (registers) to really slow

(disk).

* As data is more frequently used, it ends up in faster and faster memory.

L1
I-cache

CPU

Reg

32 KB

L1
D-cache

Throughput: 16 B/cycle

Latency:

3 cycles

256KB

L2
cache

8MB

8 B/cycle
14 cycles

L3
cache

4 Bl/cycle
40 cycles

32GB

Main
Memory

2 B/cycle
100 cycles

1 B/30 cycles
millions

1TB

Disk

39

All caching depends on locality.

Temporal locality
* Repeat access to the same data tends to be co-located in time
* Intuitively: things | have used recently, | am likely to use again soon

Spatial locality
* Related data tends to be co-located in space
* Intuitively: data that is near a used item is more likely to also be accessed

40

All caching depends on locality.

Realistic scenario:

* 97% cache hit rate

* Cache hit costs 1 cycle

e Cache miss costs 100 cycles

* How much of your memory access time is spent on 3% of accesses that are
cache misses?

41

Demo: cache.c

Assignment 7: Optimization

* Explore various optimizations you can make to your code to reduce instruction
count and runtime.
* More efficient Big-O for your algorithms

* Explore other ways to reduce instruction count

* Look for hotspots using callgrind
* Optimize using —02
* And more...

43

Assignment 7 Tips

* Two parts: Implicit and Explicit
* Follow the provided milestones for Implicit!

* Explicit builds on Implicit — make sure your Implicit implementation is rock-
solid before moving on.

* Develop incrementally — debug and test thoroughly!

44

* What is optimization?
* GCC Optimization
 Limitations of GCC Optimization

 Break: Announcements
e Caching

Next time: wrap-up 45

