
1

CS107 Lecture 17
Wrap-Up / What’s Next?

Slides by Jerry Cain and Lisa Yan, who leveraged prior work by Nick Troccoli, Julie Zelenski, Marty Stepp, Cynthia Lee, Chris Gregg, and others.

2

CS107 Learning Goals
The goals for CS107 are for students to gain mastery of
• writing C programs with complex use of memory and pointers
• an accurate model of the address space and compile/runtime behavior of C programs
to achieve competence in
• translating C to/from assembly
• writing programs that respect the

limitations of computer arithmetic
• identifying bottlenecks and

improving runtime performance
• working effectively in a Unix development

environment
and have exposure to
• a working understanding of the basics of computer architecture

Improve
programming skills

Learn C and computer
system design/layout

Develop ability to glean important
information from dense resources

(C manual, website, lecture, lab/assignment
specs, textbook)

3

We’ve covered a lot in just
10 weeks! Let’s take a look

back.

4

Course Overview
1. Bits and Bytes - How can a computer represent integer numbers?
2. Chars and C-Strings - How can a computer represent and manipulate more

complex data like text?
3. Pointers, Stack and Heap – How can we effectively manage all types of

memory in our programs?
4. Generics - How can we use our knowledge of memory and data

representation to write code that works with any data type?
5. Floats - How can a computer represent floating point numbers in addition to

integer numbers?
6. Assembly - How does a computer interpret and execute C programs?
7. Heap Allocators - How do core memory-allocation operations

like malloc and free work?

5

First Day
/*
* hello.c
* This program prints a welcome message
* to the user.
*/

#include <stdio.h> // for printf

int main(int argc, char *argv[]) {
printf("Hello, world!\n");
return 0;

}

6

Our CS107 Journey

Bits and
Bytes

C Strings

Arrays
and

Pointers

Stack and
Heap

Generics

Floats

Assembly

Heap
Allocators

7

C Strings
Key Question: How can a computer represent and manipulate more complex
data like text?
• Strings in C are arrays of characters ending with a null terminator!
• We can manipulate them using pointers and C library functions (many of which

you could probably implement).

index 0 1 2 3 4 5 6 7 8 9 10 11 12 13

value 'H' 'e' 'l' 'l' 'o' ',' ' ' 'w' 'o' 'r' 'l' 'd' '!' '\0'

8

Pointers, Stack and Heap
Key Question: How can we effectively manage all types of memory in our
programs?
• Arrays let us store ordered lists of information.
• Pointers let us pass addresses of data instead of the data itself.
• We can use the stack, which cleans up memory for us, or the heap, which we

must manually manage.

Address Value
…

0x1f0 2
…

0x10 0x1f0
…

x

intPtr

main()

myFunc()

STACK

9

Stack And Heap
Why does this matter?
• The stack and heap allow for two ways to store data in

our programs, each with their own tradeoffs, and it’s
crucial to understand the nuances of managing memory
in any program you write!
• Pointers let us pass around references to data efficiency

10

Generics
Key Question: How can we use our knowledge of memory and data
representation to write code that works with any data type?
• We can use void * to circumvent the type system, memcpy, etc. to copy

generic data, and function pointers to pass logic around.

Why does this matter?
• Working with any data type lets us write more generic, reusable code.
• Using generics helps us better understand the type system in C and other

languages, and where it can help and hinder our program.

11

Floating Point
Key Question: How can a computer represent floating point numbers in addition
to integer numbers?

Why does this matter?
• IEEE floating point represents tradeoffs in representing floats with high

precision in a large range. These tradeoffs impact many programs and
systems, as you saw with your assignment 5 exploration!

31 30 23 22 0

s exponent (8 bits) fraction (23 bits)

12

Assembly Language (1/2)
Key Question: How does a computer interpret and execute C programs?
• GCC compiles our code into machine code instructions executable by our

processor.
• Our processor uses registers and instructions like mov to manipulate data.

13

Assembly Language (2/2)
Why does this matter?
• We write C code because it is higher level

and transferrable across machines. But it is
not the representation executed by the
computer!
• Understanding how programs are compiled

and executed, as well as computer
architecture, is key to writing performant
programs (e.g. fewer lines of code is not
necessarily better).
• We can reverse engineer and exploit

programs at the assembly level!

14

Heap Allocators
Key Question: How do core memory-allocation operations
like malloc and free work?
• A heap allocator manages a block of memory for the heap and completes

requests to use or give up memory space.
• We can manage the data in a heap allocator using headers, pointers to free

blocks, or other designs

Why does this matter?
• Designing a heap allocator requires making many design decisions to optimize

it as much as possible. There is no perfect design!
• All languages have a “heap”, but manipulate it in different ways.

15

Tools and Techniques
• Unix and the command line
• Coding Style

• Debugging (GDB)

• Testing (Sanity Check)

• Memory Checking (Valgrind)
• Profiling (Callgrind)

Many projects you work on will have profiling
and memory analysis facilities:
• Mobile development: integrated tools (XCode

Instruments, Android Profiler, etc.)
• Web development: in-browser tools

Testing is a crucial skill for any computer scientist.
• Writing targeted tests to validate correctness
• Use tests to prevent regressions
• Use tests to develop incrementally

Practically every project you work on will have
debugging facilities
• Python: “PDB”
• IDEs: built-in debuggers (e.g. QT Creator, Eclipse)
• Web development: in-browser debugger

16

What’s Next?

After CS107, you are prepared to take a variety of
classes in various areas. What are some options?

17

Where Are We?

CS 106B/X

Programming
Abstractions

CS 107/E

Computer
Organization and

Systems

CS 110

Principles of
Computer Systems

CS 103

Mathematical
Foundations of

Computing

CS 109

Intro to Probability
for Computer

Scientists

CS 161

Design and Analysis
of Algorithms

Theory
Sy

st
em

s

We are here

Jerry Cain

Lisa Yan

18

CS 110
• How can we implement multithreading in our

programs?
• How can multiple programs communicate with each

other?
• How can we implement distributed software systems

to do things like process petabytes of data?
• How can we maximally take advantage of the

hardware and operating system software available to
us?

https://en.wikipedia.org/wiki/Multithreading_(computer_architecture)#/media/Fi
le:Multithreaded_process.svg

Not DNA strands J

19

Systems
How is an operating system
implemented? (CS140)
• Threads
• User Programs
• Virtual Memory
• Filesystem
How is a compiler implemented?
(CS143)
• Lexical analysis
• Parsing
• Semantic Analysis
• Code Generation

How can applications communicate
over a network? (CS110/CS144)
• How can we weigh different tradeoffs

of network architecture design?
• How can we effectively transmit bits

across a network?
How can we write programs that
execute multiple tasks
simultaneously? (CS110)
• Threads of execution
• ”Locks” to prevent simultaneous

access

20

Machine Learning
Can we speed up machine learning training with reduced precision
computation?
• https://www.top500.org/news/ibm-takes-aim-at-reduced-precision-for-new-

generation-of-ai-chips/
• https://devblogs.nvidia.com/mixed-precision-training-deep-neural-networks/

How can we implement performant machine learning libraries?
• Popular tools such as TensorFlow and PyTorch are implemented using C!
• https://pytorch.org/blog/a-tour-of-pytorch-internals-1/
• https://www.tensorflow.org/guide/extend/architecture

https://www.top500.org/news/ibm-takes-aim-at-reduced-precision-for-new-generation-of-ai-chips/
https://devblogs.nvidia.com/mixed-precision-training-deep-neural-networks/
https://pytorch.org/blog/a-tour-of-pytorch-internals-1/
https://www.tensorflow.org/guide/extend/architecture

21

Web Development
How can we efficiently translate Javascript code to machine code?
• The Chrome V8 JavaScript engine converts Javascript into machine code for

computers to execute: https://medium.freecodecamp.org/understanding-the-
core-of-nodejs-the-powerful-chrome-v8-engine-79e7eb8af964
• The popular Node.js web server tool is built on Chrome V8

How can we compile programs into an efficient binary instruction format that
runs in a web browser?
• WebAssembly is an emerging standard instruction format that runs in

browsers: https://webassembly.org
• You can compile C/C++/other languages into WebAssembly for web execution

https://medium.freecodecamp.org/understanding-the-core-of-nodejs-the-powerful-chrome-v8-engine-79e7eb8af964
https://webassembly.org/
https://s3.amazonaws.com/mozilla-games/ZenGarden/EpicZenGarden.html

22

Programming Languages / Runtimes
How can programming languages and runtimes efficiently manage memory?
• Manual memory management (C/C++)
• Reference Counting (Swift)
• Garbage Collection (Java)

How can we design programming languages to reduce the potential for
programmer error?
• Haskell/Swift ”Optionals”

How can we design portable programming languages?
• Java Bytecode: https://en.wikipedia.org/wiki/Java_bytecode

https://en.wikipedia.org/wiki/Java_bytecode

23

Theory
How can compilers output efficient machine code instructions for programs?
• Languages can be represented as regular expressions and context-free

grammars
• We can model programs as control-flow graphs for additional optimization

24

Security
How can we find / fix vulnerabilities at various levels in our programs?
• Understand machine-level representation and data manipulation
• Understand how a computer executes programs
• macOS High Sierra Root Login Bug: https://objective-

see.com/blog/blog_0x24.html

https://objective-see.com/blog/blog_0x24.html

25

Other Courses
• CS140: Operating Systems
• CS143: Compilers
• CS144: Networking
• CS145: Databases
• CS166: Data Structures
• CS221: Artificial Intelligence
• CS246: Mining Massive Datasets
• EE108: Digital Systems Design
• EE180: Digital Systems Architecture

26

Thank you!

27

Course Evaluations
We hope you can take the time to fill out the end-quarter CS 107 course
evaluation. We sincerely appreciate any feedback you have about the course
and read every piece of feedback we receive. We are always looking for ways to
improve!

Thank you!

