CS107 Lecture 17
Wrap-Up / What’s Next?

>

Slides by Jerry Cain and Lisa Yan, who leveraged prior work by Nick Troccoli, Julie Zelenski, Marty Stepp, Cynthia Lee, Chris Gregg, and others. 1

CS107 Learning Goals

The goals for CS107 are for students to gain mastery of
e writing C programs with complex use of memory and pointers
* an accurate model of the address space and compile/runtime behavior of C programs
to achieve competence in

* translating C to/from assembly Improve Learn C and computer

* writing programs that respect the programming skills system design/layout
limitations of computer arithmetic

* identifying bottlenecks and Develop ability to glean important
improving runtime performance information from dense resources

* working effectively in a Unix development (C manual, website, lecture, lab/assignment
environment specs, textbook)

and have exposure to
* a working understanding of the basics of computer architecture

We've covered a /ofin just

10 weeks! Let’'s take a look
back.

Course Overview

Bits and Bytes - How can a computer represent integer numbers?

Chars and C-Strings - How can a computer represent and manipulate more
complex data like text?

Pointers, Stack and Heap — How can we effectively manage all types of
memory in our programs?

Generics - How can we use our knowledge of memory and data
representation to write code that works with any data type?

Floats - How can a computer represent floating point numbers in addition to
integer numbers?

. Assembly - How does a computer interpret and execute C programs?

Heap Allocators - How do core memory-allocation operations
like malloc and free work?

First Day

* hello.c
* This program prints a welcome message
* to the user.
*/
#include <stdio.h> // for printf

int main(int argc, char *argv[]) {
printf("Hello, world!\n");
return 0;

Our CS107 Journey

Arrays
Bits and and
Bytes Pointers Generics Assembly
C Strings Stack and Floats Heap

Heap Allocators

Key Question: How can a computer represent and manipulate more complex
data like text?

e Strings in C are arrays of characters ending with a null terminator!

* We can manipulate them using pointers and C library functions (many of which
you could probably implement).

index
Value IHI Iel Ill Ill IOI I’I 1 1 IWI IOI 'P' Ill Idl I!I l\@l

Pointers, Stack and Heap

Key Question: How can we effectively manage all types of memory in our
programs?

* Arrays let us store ordered lists of information.
* Pointers let us pass addresses of data instead of the data itself.

* We can use the stack, which cleans up memory for us, or the heap, which we
must manually manage.

STACK
Address Value

X 0Ox1fe 2

main()

————
e

myFunc() intPtr 0x10

Stack And Heap

Why does this matter?

* The stack and heap allow for two ways to store data in
our programs, each with their own tradeoffs, and it’s

crucial to understand the nuances of managing memory
in any program you write!

* Pointers let us pass around references to data efficiency

Ox7ffffffff000

Ox7ffff7ffe000

0x602010

0x600000

0x400000

Stack

Shared library
text/data

Heap

Global data

Text
(machine code)

8MB
reserved

Sized for
library

Grows on
demand

Sized for
executable

Low addresses
deliberately unmapped

Key Question: How can we use our knowledge of memory and data
representation to write code that works with any data type?

* We can use void * to circumvent the type system, memcpy, etc. to copy
generic data, and function pointers to pass logic around.

Why does this matter?

* Working with any data type lets us write more generic, reusable code.

* Using generics helps us better understand the type system in C and other
languages, and where it can help and hinder our program.

10

Floating Point

Key Question: How can a computer represent floating point numbers in addition
to integer numbers?

31 30 23 22 0
S exponent (8 bits) fraction (23 bits)

Why does this matter?

 |EEE floating point represents tradeoffs in representing floats with high
precision in a large range. These tradeoffs impact many programs and
systems, as you saw with your assignment 5 exploration!

11

Assembly Language (1/2)

Key Question: How does a computer interpret and execute C programs?

* GCC compiles our code into machine code instructions executable by our
pProcessor.

* Our processor uses registers and instructions like mov to manipulate data.

12

Assembly Language (2/2)

Why does this matter?

* We write C code because it is higher level Zlid
and transferrable across machines. But it is it
not the representation executed by the P 1, AL
Computer! Ao ?m bus Memolry bus : B

* Understanding how programs are compiled Bus interface |, | oo wordw
and executed, as well as computer e
architecture, is key to writing performant]DD
programs (e.g. fewer lines of code is not it Expansion slots for
necessarily better). USE Graphics BRRBREEE oo notwork adsptors

controller adapter controller

* We can reverse engineer and exploit S I -, ¢

programs at the assembly level! MBI PRy) nello executable

{»DiSk/, stored on disk

—

13

Heap Allocators

Key Question: How do core memory-allocation operations
like malloc and free work?

* A heap allocator manages a block of memory for the heap and completes
requests to use or give up memory space.

* We can manage the data in a heap allocator using headers, pointers to free
blocks, or other designs

Why does this matter?

* Designing a heap allocator requires making many design decisions to optimize
it as much as possible. There is no perfect design!

* All languages have a “heap”, but manipulate it in different ways.

14

Tools and Techniques

* Unix and the command line Practically every project you work on will have

* Coding Style debugging facilities
e Python: “PDB”
* IDEs: built-in debuggers (e.g. QT Creator, Eclipse)

o Debugging (GDB) * Web development: in-browser debugger

Testing is a crucial skill for any computer scientist.
e Writing targeted tests to validate correctness

T * Use tests to prevent regressions

e Use tests to develop incrementally

* Testing (Sanity Check)

 Memory Checking (Valgrind) \>_

Many projects you work on will have profiling

* Profiling (Callgrind) and memory analysis facilities:

* Mobile development: integrated tools (XCode
Instruments, Android Profiler, etc.)

* Web development: in-browser tools 15

After CS107, you are prepared to take a variety of
classes in various areas. What are some options?

16

Systems

Jerry Cain

Where Are We?

CS 106B/X

Programming
Abstractions

C BWe are here

CS 107/E

Computer
Organization and
Systems

CS 110

Principles of
Computer Systems

CS 103

Mathematical
Foundations of
Computing

CS 109

Intro to Probability
for Computer
Scientists

A 4

CS 161

Design and Analysis
of Algorithms

Aioayl

- “'!{;
Lisa Yan

17

* How can we implement multithreading in our

programs?
* How can multiple programs communicate with each
other?
* How can we implement distributed software systems Not DNA strands ©
to do things like process petabytes of data? @
Process

* How can we maximally take advantage of the
hardware and operating system software available to
us?

Time

https://en.wikipedia.org/wiki/Multithreading_(computer_architecture)#/media/Fi
le:Multithreaded_process.svg

18

Systems

How is an operating system
implemented? (CS140)

* Threads

* User Programs

* Virtual Memory

* Filesystem

How is a compiler implemented?
(CS143)

* Lexical analysis

* Parsing

* Semantic Analysis

* Code Generation

How can applications communicate

over a network? (€CS110/CS144)

* How can we weigh different tradeoffs
of network architecture design?

 How can we effectively transmit bits
across a network?

How can we write programs that

execute multiple tasks

simultaneously? (CS110)

* Threads of execution

* "Locks” to prevent simultaneous
access

19

Machine Learning

Can we speed up machine learning training with reduced precision
computation?

* https://www.top500.org/news/ibm-takes-aim-at-reduced-precision-for-new-
generation-of-ai-chips/

* https://devblogs.nvidia.com/mixed-precision-training-deep-neural-networks/

How can we implement performant machine learning libraries?
* Popular tools such as TensorFlow and PyTorch are implemented using C!
* https://pytorch.org/blog/a-tour-of-pytorch-internals-1/

e https://www.tensorflow.org/guide/extend/architecture

20

https://www.top500.org/news/ibm-takes-aim-at-reduced-precision-for-new-generation-of-ai-chips/
https://devblogs.nvidia.com/mixed-precision-training-deep-neural-networks/
https://pytorch.org/blog/a-tour-of-pytorch-internals-1/
https://www.tensorflow.org/guide/extend/architecture

Web Development

How can we efficiently translate Javascript code to machine code?

 The Chrome V8 JavaScript engine converts Javascript into machine code for
computers to execute: https://medium.freecodecamp.org/understanding-the-
core-of-nodejs-the-powerful-chrome-v8-engine-79e7eb8af964

* The popular Node.js web server tool is built on Chrome V8

How can we compile programs into an efficient binary instruction format that
runs in a web browser?

* WebAssembly is an emerging standard instruction format that runs in
browsers: https://webassembly.org

* You can compile C/C++/other languages into WebAssembly for web execution

21

https://medium.freecodecamp.org/understanding-the-core-of-nodejs-the-powerful-chrome-v8-engine-79e7eb8af964
https://webassembly.org/
https://s3.amazonaws.com/mozilla-games/ZenGarden/EpicZenGarden.html

Programming Languages / Runtimes

How can programming languages and runtimes efficiently manage memory?
* Manual memory management (C/C++)
» Reference Counting (Swift)

* Garbage Collection (Java)

How can we design programming languages to reduce the potential for
programmer error?

» Haskell/Swift “Optionals”

How can we design portable programming languages?
* Java Bytecode: https://en.wikipedia.org/wiki/Java bytecode .

https://en.wikipedia.org/wiki/Java_bytecode

How can compilers output efficient machine code instructions for programs?

* Languages can be represented as regular expressions and context-free
grammars

* We can model programs as control-flow graphs for additional optimization

23

Security

How can we find / fix vulnerabilities at various levels in our programs?
* Understand machine-level representation and data manipulation
* Understand how a computer executes programs

* macOS High Sierra Root Login Bug: https://objective-
see.com/blog/blog 0x24.html

24

https://objective-see.com/blog/blog_0x24.html

Other Courses

* CS$140: Operating Systems

* CS143: Compilers

* CS144: Networking

* CS145: Databases

* C$166: Data Structures

e CS221: Artificial Intelligence

* CS246: Mining Massive Datasets

* EE108: Digital Systems Design

* EE180: Digital Systems Architecture

25

Thank you!

Course Evaluations

We hope you can take the time to fill out the end-quarter CS 107 course
evaluation. We sincerely appreciate any feedback you have about the course

and read every piece of feedback we receive. We are always looking for ways to
improve!

Thank you!

27

