
1

CS107 Winter 2020, Lecture 2
Bits and Bytes; Integer Representations

reading:
Bryant & O’Hallaron, Ch. 2.2-2.3

Slides by Jerry Cain and Lisa Yan, who leveraged prior work by Nick Troccoli, Julie Zelenski, Marty Stepp, Cynthia Lee, Chris Gregg, and others.

2

CS107 Topic 1: How can a
computer represent integer

numbers?

3

Demo: Unexpected
Behavior

cp -r /afs/ir/class/cs107/samples/lectures/lect2 .

4

Plan For Today
• Bits and Bytes
• Hexadecimal
• Integer Representations
• Unsigned Integers
• Break: Announcements
• Signed Integers
• Overflow

5

Plan For Today
• Bits and Bytes
• Hexadecimal
• Integer Representations
• Unsigned Integers
• Break: Announcements
• Signed Integers
• Overflow

6

Introducing 0

0

7

Introducing 0’s Sidekick: 1

1

8

Bits
• Computers are built around the idea of two states: on and off. Transistors

represent this in hardware, and bits represent this in software!

9

One Bit At A Time
• We can combine bits, as with base-10 numbers, to represent more data. 8 bits

= 1 byte.
• Computer memory is just a large array of bytes. It is byte-addressable; you

can’t address (store location of) a bit; only a byte.
• Computers still fundamentally operate on bits; we have just gotten more

creative about how to represent different data as bits!
• Text
• Images
• Audio
• Video
• And more…

10

Base 10

5 9 3 4
Digits 0-9 (0 to base-1)

11

Base 10

5 9 3 4
onestens

hundreds

thousands

= 5*1000 + 9*100 + 3*10 + 4*1

12

Base 10

5 9 3 4
100101102103

13

Base 10

5 9 3 4
012310X:

14

Base 2

1 0 1 1
01232X:

Digits 0-1 (0 to base-1)

15

Base 2

1 0 1 1
20212223

16

Base 2

1 0 1 1
onestwosfourseights

= 1*8 + 0*4 + 1*2 + 1*1 = 1110

Most significant bit (MSB) Least significant bit (LSB)

17

Base 10 to Base 2
Question: What is 6 in base 2?
• Strategy:

• What is the largest power of 2 ≤ 6?

18

Base 10 to Base 2

_ _ _ _

Question: What is 6 in base 2?
• Strategy:

• What is the largest power of 2 ≤ 6? 22=4

20212223

10

19

Base 10 to Base 2

_ _ _ _

Question: What is 6 in base 2?
• Strategy:

• What is the largest power of 2 ≤ 6? 22=4
• Now, what is the largest power of 2 ≤ 6 – 22?

20212223

10

20

Base 10 to Base 2

_ _ _ _

Question: What is 6 in base 2?
• Strategy:

• What is the largest power of 2 ≤ 6? 22=4
• Now, what is the largest power of 2 ≤ 6 – 22? 21=2

20212223

10 1

21

Base 10 to Base 2

_ _ _ _

Question: What is 6 in base 2?
• Strategy:

• What is the largest power of 2 ≤ 6? 22=4
• Now, what is the largest power of 2 ≤ 6 – 22? 21=2
• 6 – 22 – 21 = 0!

20212223

10 1

22

Base 10 to Base 2

_ _ _ _

Question: What is 6 in base 2?
• Strategy:

• What is the largest power of 2 ≤ 6? 22=4
• Now, what is the largest power of 2 ≤ 6 – 22? 21=2
• 6 – 22 – 21 = 0!

20212223

10 1 0

23

Base 10 to Base 2

_ _ _ _

Question: What is 6 in base 2?
• Strategy:

• What is the largest power of 2 ≤ 6? 22=4
• Now, what is the largest power of 2 ≤ 6 – 22? 21=2
• 6 – 22 – 21 = 0!

20212223

10 1 0
= 0*8 + 1*4 + 1*2 + 0*1 = 6

24

Practice: Base 2 to Base 10
What is the base-2 value 1010 in base-10?

a) 20
b) 101
c) 10
d) 5
e) Other

25

Practice: Base 10 to Base 2
What is the base-10 value 14 in base 2?

a) 1111
b) 1110
c) 1010
d) Other

26

Byte Values
• What is the minimum and maximum base-10 value a single byte (8 bits) can

store?

27

Byte Values
• What is the minimum and maximum base-10 value a single byte (8 bits) can

store? minimum = 0 maximum = ?

28

Byte Values
• What is the minimum and maximum base-10 value a single byte (8 bits) can

store? minimum = 0 maximum = ?

11111111
2x: 7 6 5 4 3 2 1 0

29

Byte Values
• What is the minimum and maximum base-10 value a single byte (8 bits) can

store? minimum = 0 maximum = ?

• Strategy 1: 1*27 + 1*26 + 1*25 + 1*24 + 1*23+ 1*22 + 1*21 + 1*20 = 255

11111111
2x: 7 6 5 4 3 2 1 0

30

Byte Values
• What is the minimum and maximum base-10 value a single byte (8 bits) can

store? minimum = 0 maximum = 255

• Strategy 1: 1*27 + 1*26 + 1*25 + 1*24 + 1*23+ 1*22 + 1*21 + 1*20 = 255
• Strategy 2: 28 – 1 = 255

11111111
2x: 7 6 5 4 3 2 1 0

31

Multiplying by Base

1450 x 10 = 14500
11002 x 2 = 11000
Key Idea: inserting 0 at the end multiplies by the base!

32

Dividing by Base

1450 / 10 = 145
11002 / 2 = 110
Key Idea: removing 0 at the end divides by the base!

33

Plan For Today
• Bits and Bytes
• Hexadecimal
• Integer Representations
• Unsigned Integers
• Break: Announcements
• Signed Integers
• Overflow

34

Hexadecimal
• When working with bits, often times we have large numbers with 32 or 64 bits.
• Instead, we’ll represent bits in base-16 instead; this is called hexadecimal.

0110 1010 0011
0-150-150-15

35

Hexadecimal
• When working with bits, oftentimes we have large numbers with 32 or 64 bits.
• Instead, we’ll represent bits in base-16 instead; this is called hexadecimal.

0-150-150-15

Each is a base-16 digit!

36

Hexadecimal
• Hexadecimal is base-16, so we need digits for 1-15. How do we do this?

0 1 2 3 4 5 6 7 8 9 a b c d e f
10 11 12 13 14 15

37

Hexadecimal

Hex digit 0 1 2 3 4 5 6 7
Decimal value 0 1 2 3 4 5 6 7
Binary value 0000 0001 0010 0011 0100 0101 0110 0111

Hex digit 8 9 A B C D E F
Decimal value 8 9 10 11 12 13 14 15
Binary value 1000 1001 1010 1011 1100 1101 1110 1111

38

Hexadecimal
• We distinguish hexadecimal numbers by prefixing them with 0x, and binary

numbers with 0b.
• E.g. 0xf5 is 0b11110101

0x f 5
1111 0101

39

Practice: Hexadecimal to Binary
What is 0x173A in binary?

Hexadecimal 1 7 3 A
Binary 0001 0111 0011 1010

40

Practice: Hexadecimal to Binary
What is 0b1111001010 in hexadecimal? (Hint: start from the right)

Binary 11 1100 1010
Hexadecimal 3 C A

41

Plan For Today
• Bits and Bytes
• Hexadecimal
• Integer Representations
• Unsigned Integers
• Break: Announcements
• Signed Integers
• Overflow

42

Number Representations
• Unsigned Integers: positive integers, and 0. (e.g. 0, 1, 2, … 99999…
• Signed Integers: negative, positive and 0. (e.g. …-2, -1, 0, 1,… 9999…)

• Floating Point Numbers: real numbers. (e,g. 0.1, -12.2, 1.5x1012)

43

Number Representations
• Unsigned Integers: positive integers, and 0. (e.g. 0, 1, 2, … 99999…
• Signed Integers: negative, positive and 0. (e.g. …-2, -1, 0, 1,… 9999…)

• Floating Point Numbers: real numbers. (e,g. 0.1, -12.2, 1.5x1012)
Stay tuned until week 5!

44

Number Representations

C Declaration Size (Bytes)

int 4

double 8

float 4

char 1

char * 8

short 2

long 8

45

In The Days Of Yore…

C Declaration Size (Bytes)

int 4

double 8

float 4

char 1

char * 4

short 2

long 4

46

Transitioning To Larger Datatypes

• Early 2000s: most computers were 32-bit. This means that pointers were 4
bytes (32 bits).

• 32-bit pointers store a memory address from 0 to 232-1, equaling 232 bytes of
addressable memory. This equals 4 Gigabytes, meaning that 32-bit
computers could have at most 4GB of memory (RAM)!

• Because of this, computers transitioned to 64-bit. This means some
fundamental datatypes got bigger; pointers, for instance, needed to be 64 bits.

• 64-bit pointers store a memory address from 0 to 264-1, equaling 264 bytes of
addressable memory. This equals 16 Exabytes, meaning that 64-bit
computers could have up to 1024*1024*1024 GB of memory (RAM)!

47

Plan For Today
• Bits and Bytes
• Hexadecimal
• Integer Representations
• Unsigned Integers
• Break: Announcements
• Signed Integers
• Overflow

48

Unsigned Integers
• An unsigned integer is 0 or a positive integer (no negatives).
• We have already discussed converting between decimal and binary.

Examples:
0b0001 = 1

0b0101 = 5
0b1011 = 11

0b1111 = 15
• The range of an unsigned number is 0 → 2w - 1, where w is the number of bits.

E.g. a 32-bit integer can represent 0 to 232 – 1 (4,294,967,295).

49

Unsigned Integers

50

Plan For Today
• Bits and Bytes
• Hexadecimal
• Integer Representations
• Unsigned Integers
• Break: Announcements
• Signed Integers
• Overflow

51

Announcements
• Sign up for Piazza on the Help page if you haven’t already!
• Lab signups opened this morning at 10:30am, and they start next week.

• Lab materials posted on the course website at the start of each week

• Helper Hours started earlier this week
• Assignment 0 due Monday evening.

• No grace period for this one. We want to grade it immediately!

• Assignment 1 goes out this coming Monday, will exercise material from today
and this coming Monday.

52

Plan For Today
• Bits and Bytes
• Hexadecimal
• Integer Representations
• Unsigned Integers
• Break: Announcements
• Signed Integers
• Overflow

53

Signed Integers
• A signed integer is a negative integer, 0, or a positive integer.
• Problem: How can we represent negative and positive numbers in binary?

54

Signed Integers
• A signed integer is a negative integer, 0, or a positive integer.
• Problem: How can we represent negative and positive numbers in binary?

Idea: let’s reserve the most
significant bit to store the sign.

55

Sign Magnitude Representation

0110
positive 6

1011
negative 3

56

Sign Magnitude Representation

0000
positive 0

1000
negative 0

🤯

57

Sign Magnitude Representation

• We’ve only represented 15 of our 16 available numbers!

1 000 = -0
1 001 = -1
1 010 = -2
1 011 = -3
1 100 = -4
1 101 = -5
1 110 = -6
1 111 = -7

0 000 = 0
0 001 = 1
0 010 = 2
0 011 = 3
0 100 = 4
0 101 = 5
0 110 = 6
0 111 = 7

58

Sign Magnitude Representation
• Pro: easy to represent, and easy to convert to/from decimal.
• Con: +-0 is not intuitive
• Con: we lose a bit that could be used to store more numbers
• Con: arithmetic is tricky: we need to find the sign, then maybe subtract

(borrow and carry, etc.), then maybe change the sign. This complicates the
hardware support for something as fundamental as addition.

Can we do better?

59

A Better Idea
• Ideally, binary addition should just work regardless of whether the numbers

are positive or negative.

0101
????
0000

+

60

A Better Idea
• Ideally, binary addition should just work regardless of whether the numbers

are positive or negative.

0101
1011
0000

+

61

A Better Idea
• Ideally, binary addition should just work regardless of whether the numbers

are positive or negative.

0011
????
0000

+

62

A Better Idea
• Ideally, binary addition should just work regardless of whether the numbers

are positive or negative.

0011
1101
0000

+

63

A Better Idea
• Ideally, binary addition should just work regardless of whether the numbers

are positive or negative.

0000
????
0000

+

64

A Better Idea
• Ideally, binary addition should just work regardless of whether the numbers

are positive or negative.

0000
0000
0000

+

65

There Seems Like a Pattern Here…

0101
1011
0000

+

0011
1101
0000

+

0000
0000
0000

+

• The negative number is the positive number inverted, plus one!

66

There Seems Like a Pattern Here…

A binary number plus its inverse is all 1s. Add 1 to this to carry over all 1s and get 0!

0101
1010
1111

+

1111
0001
0000

+

67

Another Trick
• To compute the negative of a number, work right-to-left and write down all

digits through when you reach a 1. Then, invert the rest of the digits.

100100
??????
000000

+

68

Another Trick
• To compute the negative of a number, work right-to-left and write down all

digits through when you reach a 1. Then, invert the rest of the digits.

100100
???100
000000

+

69

Another Trick
• To compute the negative of a number, work right-to-left and write down all

digits through when you reach a 1. Then, invert the rest of the digits.

100100
011100
000000

+

70

Two’s Complement

71

Two’s Complement
• In two’s complement, we represent a

positive number as itself, and its
negative equivalent as the two’s
complement of itself.

• The two’s complement of a number is
the binary digits inverted, plus 1.

• This works to convert from positive to
negative, and back from negative to
positive!

72

Two’s Complement
• Con: more difficult to represent, and

difficult to convert to/from decimal and
between positive and negative.

• Pro: only 1 representation for 0!
• Pro: all bits are used to represent as

many numbers as possible
• Pro: the most significant bit still indicates

the sign of a number.
• Pro: addition works for any combination

of positive and negative!

73

Two’s Complement
• Adding two numbers is just…adding! There is no special case needed for

negatives. E.g. what is 2 + -5?

0010
1011
1101

+

2

-5

-3

74

Two’s Complement
• Subtracting two numbers is just performing the two’s complement on one of

them and then adding. E.g. 4 – 5 = -1.

0100
0101-

4

5
0100
1011
1111

+

4

-5

-1

75

Practice: Two’s Complement
What are the negative or positive equivalents of the numbers below?
a) -4 (1100)
b) 7 (0111)
c) 3 (0011)
d) -8 (1000)

76

Practice: Two’s Complement
What are the negative or positive equivalents of the numbers below?
a) -4 (1100)
b) 7 (0111)
c) 3 (0011)

77

Plan For Today
• Bits and Bytes
• Hexadecimal
• Integer Representations
• Unsigned Integers
• Break: Announcements
• Signed Integers
• Overflow

78

Overflow
• If you exceed the maximum value of your bit representation, you wrap around

or overflow back to the smallest bit representation. (Assume unsigned 4-bit
numbers).

0b1111 + 0b1 = 0b0000

• If you go below the minimum value of your bit representation, you wrap
around or overflow back to the largest bit representation.

0b0000 - 0b1 = 0b1111

79

Min and Max Integer Values
Type

Size
(Bytes)

Minimum Maximum

char 1 -128 127
unsigned char 1 0 255

short 2 -32768 32767

unsigned short 2 0 65535

int 4 -2147483648 2147483647

unsigned int 4 0 4294967295

long 8 -9223372036854775808 9223372036854775807

unsigned long 8 0 18446744073709551615

80

Min and Max Integer Values
INT_MIN, INT_MAX, UINT_MAX, LONG_MIN, LONG_MAX,
ULONG_MAX, …

81

Overflow

000…000111…111

011…111100…000

000…001
000…010

000…011

111…110
111…101

111…100

100…001
100…010

011…110
011…101

+1

+1

+1

……

82

Overflow

At which points can overflow occur for
signed and unsigned int?
A. Signed and unsigned can both overflow

at points X and Y
B. Signed can overflow only at X, unsigned

only at Y
C. Signed can overflow only at Y, unsigned

only at X
D. Signed can overflow at X and Y,

unsigned only at X
E. Other

X

Y

000…000111…111

011…111100…000

000…001
000…010

000…011

111…110
111…101

111…100

100…001
100…010

011…110
011…101

……

83

Unsigned Integers

000…000111…111

011…111100…000

000…001
000…010

000…011

111…110
111…101

111…100

100…001
100…010

011…110
011…101

……

0≈+4billion

Discontinuity
means overflow

possible here

Increasing positive
num

bers

M
or

e
in

cr
ea

si
ng

 p
os

iti
ve

nu
m

be
rs

84

Signed Numbers

000…000111…111

011…111100…000

000…001
000…010

000…011

111…110
111…101

111…100

100…001
100…010

011…110
011…101

……

0-1

Discontinuity
means overflow

possible here

Increasing positive num
bers

N
eg

at
iv

e
nu

m
be

rs
be

co
m

in
g

le
ss

 n
eg

at
iv

e
(i.

e.
 in

cr
ea

si
ng

)

≈+2billion≈-2billion

+1

85

Overflow In Practice: PSY

YouTube: “We never thought a video would be watched in numbers
greater than a 32-bit integer (=2,147,483,647 views), but that was before
we met PSY. "Gangnam Style" has been viewed so many times we had to
upgrade to a 64-bit integer (9,223,372,036,854,775,808)!”

86

Overflow In Practice: Timestamps
• Many systems store timestamps as the number of seconds since Jan. 1, 1970

in a signed 32-bit integer.
• Problem: the latest timestamp that can be represented this way is 3:14:07 UTC

on January 13, 2038!

87

Overflow in Practice:
• Pacman Level 256
• Make sure to reboot Boeing Dreamliners every 248 days
• Comair/Delta airline had to cancel thousands of flights days before Christmas
• Reported vulnerability CVE-2019-3857 in libssh2 may allow a hacker to

remotely execute code
• Donkey Kong Kill Screen

https://pacman.fandom.com/wiki/Map_256_Glitch
https://www.engadget.com/2015/05/01/boeing-787-dreamliner-software-bug/
https://arstechnica.com/uncategorized/2004/12/4490-2/
https://nvd.nist.gov/vuln/detail/CVE-2019-3857
http://www.donhodges.com/how_high_can_you_get.htm

88

Recap
• Bits and Bytes
• Hexadecimal
• Integer Representations
• Unsigned Integers
• Break: Announcements
• Signed Integers
• Overflow
• Surprise Bonus Topic If We Have Time: Casting and Combining Types

89

printf and Integers
• There are 3 placeholders for 32-bit integers that we can use:

• %d: signed 32-bit int
• %u: unsigned 32-bit int
• %x: hex 32-bit int

• The placeholder—not the expression filling in the placeholder—dictates
what gets printed!

90

Casting
• What happens at the byte level when we cast between variable types? The

bytes remain the same! This means they may be interpreted differently
depending on the type.

int v = -12345;
unsigned int uv = v;
printf("v = %d, uv = %u\n", v, uv);

This prints out: "v = -12345, uv = 4294954951". Why?

91

Casting
• What happens at the byte level when we cast between variable types? The

bytes remain the same. This means they may be interpreted differently
depending on the type.

int v = -12345;
unsigned int uv = v;
printf("v = %d, uv = %u\n", v, uv);

The bit representation for -12345 is 0b1100111111000111.
If we treat this binary representation as a positive number, it’s huge!

92

Casting

93

Comparisons Between Different Types
• Be careful when comparing signed and unsigned integers. C will implicitly

cast the signed argument to unsigned, and then performs the operation
assuming both numbers are non-negative.

Expression Type Evaluation Correct?
0 == 0U

-1 < 0

-1 < 0U
2147483647 >
-2147483647 - 1
2147483647U >
-2147483647 - 1
2147483647 >
(int)2147483648U
-1 > -2
(unsigned)-1 > -2

94

Comparisons Between Different Types
• Be careful when comparing signed and unsigned integers. C will implicitly

cast the signed argument to unsigned, and then performs the operation
assuming both numbers are non-negative.

Expression Type Evaluation Correct?
0 == 0U Unsigned 1 yes
-1 < 0

-1 < 0U
2147483647 >
-2147483647 - 1
2147483647U >
-2147483647 - 1
2147483647 >
(int)2147483648U
-1 > -2
(unsigned)-1 > -2

95

Comparisons Between Different Types
• Be careful when comparing signed and unsigned integers. C will implicitly

cast the signed argument to unsigned, and then performs the operation
assuming both numbers are non-negative.

Expression Type Evaluation Correct?
0 == 0U Unsigned 1 yes
-1 < 0 Signed 1 yes
-1 < 0U
2147483647 >
-2147483647 - 1
2147483647U >
-2147483647 - 1
2147483647 >
(int)2147483648U
-1 > -2
(unsigned)-1 > -2

96

Comparisons Between Different Types
• Be careful when comparing signed and unsigned integers. C will implicitly

cast the signed argument to unsigned, and then performs the operation
assuming both numbers are non-negative.

Expression Type Evaluation Correct?
0 == 0U Unsigned 1 yes
-1 < 0 Signed 1 yes
-1 < 0U Unsigned 0 No!
2147483647 >
-2147483647 - 1
2147483647U >
-2147483647 - 1
2147483647 >
(int)2147483648U
-1 > -2
(unsigned)-1 > -2

97

Comparisons Between Different Types
• Be careful when comparing signed and unsigned integers. C will implicitly

cast the signed argument to unsigned, and then performs the operation
assuming both numbers are non-negative.

Expression Type Evaluation Correct?
0 == 0U Unsigned 1 yes
-1 < 0 Signed 1 yes
-1 < 0U Unsigned 0 No!
2147483647 >
-2147483647 - 1 Signed 1 yes

2147483647U >
-2147483647 - 1
2147483647 >
(int)2147483648U
-1 > -2
(unsigned)-1 > -2

98

Comparisons Between Different Types
• Be careful when comparing signed and unsigned integers. C will implicitly

cast the signed argument to unsigned, and then performs the operation
assuming both numbers are non-negative.

Expression Type Evaluation Correct?
0 == 0U Unsigned 1 yes
-1 < 0 Signed 1 yes
-1 < 0U Unsigned 0 No!
2147483647 >
-2147483647 - 1 Signed 1 yes

2147483647U >
-2147483647 - 1

Unsigned 0 No!

2147483647 >
(int)2147483648U
-1 > -2
(unsigned)-1 > -2

99

Comparisons Between Different Types
• Be careful when comparing signed and unsigned integers. C will implicitly

cast the signed argument to unsigned, and then performs the operation
assuming both numbers are non-negative.

Expression Type Evaluation Correct?
0 == 0U Unsigned 1 yes
-1 < 0 Signed 1 yes
-1 < 0U Unsigned 0 No!
2147483647 >
-2147483647 - 1 Signed 1 yes

2147483647U >
-2147483647 - 1

Unsigned 0 No!

2147483647 >
(int)2147483648U

Signed 1 No!

-1 > -2
(unsigned)-1 > -2

100

Comparisons Between Different Types
• Be careful when comparing signed and unsigned integers. C will implicitly

cast the signed argument to unsigned, and then performs the operation
assuming both numbers are non-negative.

Expression Type Evaluation Correct?
0 == 0U Unsigned 1 yes
-1 < 0 Signed 1 yes
-1 < 0U Unsigned 0 No!
2147483647 >
-2147483647 - 1 Signed 1 yes

2147483647U >
-2147483647 - 1

Unsigned 0 No!

2147483647 >
(int)2147483648U

Signed 1 No!

-1 > -2 Signed 1 yes
(unsigned)-1 > -2

101

Comparisons Between Different Types
• Be careful when comparing signed and unsigned integers. C will implicitly

cast the signed argument to unsigned, and then performs the operation
assuming both numbers are non-negative.

Expression Type Evaluation Correct?
0 == 0U Unsigned 1 yes
-1 < 0 Signed 1 yes
-1 < 0U Unsigned 0 No!
2147483647 >
-2147483647 - 1 Signed 1 yes

2147483647U >
-2147483647 - 1

Unsigned 0 No!

2147483647 >
(int)2147483648U

Signed 1 No!

-1 > -2 Signed 1 yes
(unsigned)-1 > -2 Unsigned 1 yes

102

Comparisons Between Different Types

Which many of the following statements are true? (assume that
variables are set to values that place them in the spots shown)

s3 > u3
u2 > u4
s2 > s4
s1 > s2
u1 > u2
s1 > u3

103

Comparisons Between Different Types

Which many of the following statements are true? (assume that
variables are set to values that place them in the spots shown)

s3 > u3 - true
u2 > u4
s2 > s4
s1 > s2
u1 > u2
s1 > u3

104

Comparisons Between Different Types

Which many of the following statements are true? (assume that
variables are set to values that place them in the spots shown)

s3 > u3 - true
u2 > u4 - true
s2 > s4
s1 > s2
u1 > u2
s1 > u3

105

Comparisons Between Different Types

Which many of the following statements are true? (assume that
variables are set to values that place them in the spots shown)

s3 > u3 - true
u2 > u4 - true
s2 > s4 - false
s1 > s2
u1 > u2
s1 > u3

106

Comparisons Between Different Types

Which many of the following statements are true? (assume that
variables are set to values that place them in the spots shown)

s3 > u3 - true
u2 > u4 - true
s2 > s4 - false
s1 > s2 - true
u1 > u2
s1 > u3

107

Comparisons Between Different Types

Which many of the following statements are true? (assume that
variables are set to values that place them in the spots shown)

s3 > u3 - true
u2 > u4 - true
s2 > s4 - false
s1 > s2 - true
u1 > u2 - true
s1 > u3

108

Comparisons Between Different Types

Which many of the following statements are true? (assume that
variables are set to values that place them in the spots shown)

s3 > u3 - true
u2 > u4 - true
s2 > s4 - false
s1 > s2 - true
u1 > u2 - true
s1 > u3 - true

109

Expanding Bit Representations
• Sometimes, we want to convert between two integers of different sizes (e.g.
short to int, or int to long).

• We might not be able to convert from a bigger data type to a smaller data
type, but we do want to always be able to convert from a smaller data type to
a bigger data type.

• For unsigned values, we can add leading zeros to the representation (“zero
extension”)

• For signed values, we can repeat the sign of the value for new digits (“sign
extension”

• Note: when doing <, >, <=, >= comparison between different size types, it will
promote to the larger type.

110

Expanding Bit Representation
unsigned short s = 4;

// short is a 16-bit format, so s = 0000 0000 0000 0100b

unsigned int i = s;

// conversion to 32-bit int, so i = 0000 0000 0000 0000 0000 0000 0000 0100b

111

Expanding Bit Representation
short s = 4;

// short is a 16-bit format, so s = 0000 0000 0000 0100b

int i = s;

// conversion to 32-bit int, so i = 0000 0000 0000 0000 0000 0000 0000 0100b

— or —

short s = -4;

// short is a 16-bit format, so s = 1111 1111 1111 1100b

int i = s;

// conversion to 32-bit int, so i = 1111 1111 1111 1111 1111 1111 1111 1100b

112

Truncating Bit Representation
If we want to reduce the bit size of a number, C truncates the representation
and discards the more significant bits.

What happens here? Let's look at the bits in x (a 32-bit int), 53191:
0000 0000 0000 0000 1100 1111 1100 0111
When we cast x to a short, it only has 16-bits, and C truncates the number:

1100 1111 1100 0111
This is -12345! And when we cast sx back to int, we sign-extend the number.
1111 1111 1111 1111 1100 1111 1100 0111 // still -12345

int x = 53191;
short sx = x;
int y = sx;

113

Truncating Bit Representation
If we want to reduce the bit size of a number, C truncates the representation
and discards the more significant bits.

What happens here? Let's look at the bits in x (a 32-bit int), -3:
1111 1111 1111 1111 1111 1111 1111 1101
When we cast x to a short, it only has 16-bits, and C truncates the number:

1111 1111 1111 1101
This is -3! If the number does fit, it will convert fine. y looks like this:
1111 1111 1111 1111 1111 1111 1111 1101 // still -3

int x = -3;
short sx = x;
int y = sx;

114

Truncating Bit Representation
If we want to reduce the bit size of a number, C truncates the representation
and discards the more significant bits.

What happens here? Let's look at the bits in x (a 32-bit unsigned int), 128000:
0000 0000 0000 0001 1111 0100 0000 0000
When we cast x to a short, it only has 16-bits, and C truncates the number:

1111 0100 0000 0000
This is 62464! Unsigned numbers can lose info too. Here is what y looks like:
0000 0000 0000 0000 1111 0100 0000 0000 // still 62464

unsigned int x = 128000;
unsigned short sx = x;
unsigned int y = sx;

115

The sizeof Operator
long sizeof(type);

// Example
long int_size_bytes = sizeof(int); // 4
long short_size_bytes = sizeof(short); // 2
long char_size_bytes = sizeof(char); // 1

sizeof takes a variable type as a parameter and returns the size of that type, in
bytes.

