CS107 Winter 2020, Lecture 2

Bits and Bytes; Integer Representations

reading:
Bryant & O’Hallaron, Ch. 2.2-2.3

Slides by Jerry Cain and Lisa Yan, who leveraged prior work by Nick Troccoli, Julie Zelenski, Marty Stepp, Cynthia Lee, Chris Gregg, and others. 1

CS107 Topic 1: How can a
computer represent integer
numbers?

Demo: Unexpected
Behavior

cp -r /afs/ir/class/csl107/samples/lectures/lect2 .

Plan For Today

* Bits and Bytes

* Hexadecimal

* Integer Representations
* Unsigned Integers

* Break: Announcements
* Signed Integers

e Overflow

Plan For Today

 Bits and Bytes

* Hexadecimal

* Integer Representations
* Unsigned Integers

* Break: Announcements
* Signed Integers

e Overflow

Introducing O

Introducing 0’s Sidekick: 1

e Computers are built around the idea of two states: on and off. Transistors
represent this in hardware, and bits represent this in software!

One Bit At A Time

* We can combine bits, as with base-10 numbers, to represent more data. 8 bits
= 1 byte.

« Computer memory is just a large array of bytes. It is byte-addressable; you
can’t address (store location of) a bit; only a byte.

* Computers still fundamentally operate on bits; we have just gotten more
creative about how to represent different data as bits!
* Text
* Images
* Audio
* Video
* And more...

5934

Digits 0-9 (0 to base-1)

5934

61 t t 1
o 0(\60(\& o0° tens ones
\\ A}

= 51000 + 9100 + 3*10 + 4*1

11

o
=i
),
)
0
a4

(1o

Digits 0-1 (0 to base-1)

14

Most significant bit (MSB) Least significant bit (LSB)

~. /
1011

eights fours twos ones

= 1*8 + 0%4 + 1"2 + 1*1 = 11,

16

Base 10 to Base 2

Question: What is 6 in base 27

* Strategy:
* What is the largest power of 2 < 67?

17

Base 10 to Base 2

Question: What is 6 in base 27

* Strategy:
* What is the largest power of 2 < 6? 22=4

18

Base 10 to Base 2

Question: What is 6 in base 27

* Strategy:

* What is the largest power of 2 < 6? 22=4
* Now, what is the largest power of 2 < 6 — 22?

19

Base 10 to Base 2

Question: What is 6 in base 27

* Strategy:

* What is the largest power of 2 < 6? 22=4
* Now, what is the largest power of 2 < 6 —22? 21=2

011 _

23 22 21 20

20

Base 10 to Base 2

Question: What is 6 in base 27

* Strategy:

* What is the largest power of 2 < 6? 22=4
* Now, what is the largest power of 2 < 6 —22? 21=2
e 6—22-21=0!

011 _

23 22 21 20

21

Base 10 to Base 2

Question: What is 6 in base 27

* Strategy:

* What is the largest power of 2 < 6? 22=4
* Now, what is the largest power of 2 < 6 —22? 21=2
e 6—22-21=0!

0110

23 22 21 20

22

Base 10 to Base 2

Question: What is 6 in base 27

* Strategy:

* What is the largest power of 2 < 6? 22=4
* Now, what is the largest power of 2 < 6 —22? 21=2
e 6—22-21=0!

23 22 21 20
=0"8+1"4+1"2+ 01 =6 53

Practice: Base 2 to Base 10

What is the base-2 value 1010 in base-107?
a) 20
b) 101
c) 10
d) 5
e) Other

24

Practice: Base 10 to Base 2

What is the base-10 value 14 in base 27
a) 1111
b) 1110
c) 1010
d) Other

25

Byte Values

* What is the minimum and maximum base-10 value a single byte (8 bits) can
store?

26

Byte Values

* What is the minimum and maximum base-10 value a single byte (8 bits) can
store? minimum =0 maximum =?

27

Byte Values

* What is the minimum and maximum base-10 value a single byte (8 bits) can
store? minimum =0 maximum =?

1111111

2%:

28

Byte Values

* What is the minimum and maximum base-10 value a single byte (8 bits) can
store? minimum =0 maximum =?

1111111

e Strategy 1: 1*27 + 1*2° + 1*2°> + 1*24 + 1%23+ 1*22 + 1*21 + 1*20 =255

2%:

29

Byte Values

* What is the minimum and maximum base-10 value a single byte (8 bits) can
store? minimum =0 maximum = 255

1111111

e Strategy 1: 1*27 + 1*2° + 1*2°> + 1*24 + 1%23+ 1*22 + 1*21 + 1*20 =255
* Strategy 2: 28— 1 = 255

2%:

30

Multiplying by Base

1450 x 10 = 14500
1100, x 2 =11000

Key Idea: inserting O at the end multiplies by the base!

Dividing by Base

1450 / 10 = 145
1100, /2 = 110

Key Idea: removing 0 at the end divides by the base!

Plan For Today

* Bits and Bytes

* Hexadecimal

* Integer Representations
* Unsigned Integers

* Break: Announcements
* Signed Integers

e Overflow

33

* When working with bits, often times we have large numbers with 32 or 64 bits.

* Instead, we’ll represent bits in base-16 instead; this is called hexadecimal.

0110 1010 0011

0-15 0-15 0-15

34

 When working with bits, oftentimes we have large numbers with 32 or 64 bits.

* Instead, we’ll represent bits in base-16 instead; this is called hexadecimal.

0-15 0-15 0-15

Each is a base-16 digit!

35

* Hexadecimal is base-16, so we need digits for 1-15. How do we do this?

01234507 89abcdef

10 11 12 13 14 15

36

Hexadecimal

Hex digit 0 1 2 3 4 5 6 7
Decimal value 0 1 2 3 4 5 6 7
Binary value 0000 0001 0010 0011 0100 0101 0110 0111
Hex digit 8 9 A B C D E F
Decimal value 8 9 10 11 12 13 14 15
Binary value 1000 1001 1010 1011 1100 1101 1110 1111

37

* We distinguish hexadecimal numbers by prefixing them with @x, and binary
numbers with @b.

* E.g. Oxf5isoblll10101

Oxf 5
oY

38

Practice: Hexadecimal to Binary

What is @©x173A in binary?

Hexadecimal 1 7 3 A
Binary 0001 0111 0011 1010

39

Practice: Hexadecimal to Binary

What is ©b1111001010 in hexadecimal? (Hint: start from the right)

Binary 11 1100 1010
Hexadecimal 3 C A

40

Plan For Today

* Bits and Bytes

* Hexadecimal

* Integer Representations
* Unsigned Integers

* Break: Announcements
* Signed Integers

e Overflow

41

Number Representations

* Unsigned Integers: positive integers, and 0. (e.g. 0, 1, 2, ... 99999...

 Signed Integers: negative, positive and 0. (e.g. ...-2,-1, 0, 1,... 9999...)

* Floating Point Numbers: real numbers. (e,g. 0.1, -12.2, 1.5x10%?)

42

Number Representations

* Unsigned Integers: positive integers, and 0. (e.g. 0, 1, 2, ... 99999...

* Signed Integers: negative, positive and 0. (e.g. ...-2, -1, 0, 1,... 9999...)

* Floating Point Numbers: real numbers. (e,g. 0.1, -12.2, 1.5x10%?)

L Stay tuned until week 5!

43

Number Representations

int
double
float

char

char *

short

O NN O KB & 00 &

long

44

In The Days Of Yore...

Coeclraion i By

int 4
double 8
float 4
char 1
short 2

45

Transitioning To Larger Datatypes

64

. bit J| bit |

e Early 2000s: most computers were 32-bit. This means that pointers were 4
bytes (32 bits).

* 32-bit pointers store a memory address from 0 to 23%-1, equaling 232 bytes of
addressable memory. This equals 4 Gigabytes, meaning that 32-bit
computers could have at most 4GB of memory (RAM)!

* Because of this, computers transitioned to 64-bit. This means some
fundamental datatypes got bigger; pointers, for instance, needed to be 64 bits.

* 64-bit pointers store a memory address from 0 to 2%4-1, equaling 24 bytes of
addressable memory. This equals 16 Exabytes, meaning that 64-bit
computers could have up to 1024*1024*1024 GB of memory (RAM)! 46

Plan For Today

* Bits and Bytes

* Hexadecimal

* Integer Representations
* Unsigned Integers

* Break: Announcements
* Signed Integers

e Overflow

47

Unsigned Integers

* An unsigned integer is 0 or a positive integer (no negatives).

* We have already discussed converting between decimal and binary.
Examples:

0b0001 =1
0b0101 = 5
0b1011 = 11
0bl111 = 15

* The range of an unsigned number is 0 - 2% -1, where w is the number of bits.
E.g. a 32-bit integer can represent O to 232 —1 (4,294,967,295).

48

Unsigned Integers

15 1

0000

14 1111 0001

1110 0010

1101 0011

4-pbit
1100 unsigned integer 0100
representation

49

Plan For Today

* Bits and Bytes

* Hexadecimal

* Integer Representations
* Unsigned Integers

* Break: Announcements
* Signed Integers

e Overflow

50

Announcements

e Sign up for Piazza on the Help page if you haven’t already!

e Lab signups opened this morning at 10:30am, and they start next week.
* Lab materials posted on the course website at the start of each week

* Helper Hours started earlier this week

* Assignment O due Monday evening.
* No grace period for this one. We want to grade it immediately!

e Assignment 1 goes out this coming Monday, will exercise material from today
and this coming Monday.

51

Plan For Today

* Bits and Bytes

* Hexadecimal

* Integer Representations
* Unsigned Integers

* Break: Announcements
* Signed Integers

e Overflow

52

Sighed Integers

* A signed integer is a negative integer, 0, or a positive integer.

* Problem: How can we represent negative and positive numbers in binary?

53

Sighed Integers

* A signed integer is a negative integer, 0, or a positive integer.

* Problem: How can we represent negative and positive numbers in binary?

Idea: let’s reserve the most
significant bit to store the sign.

Sigh Magnitude Representation

0110
1011
W

negative 3

Sigh Magnitude Representation

0000
szie 0 RS,
1000
L'J_'_I

negative O

Sigh Magnitude Representation

1000=-0
1001=-1
1010=-2
1011=-3
1100=-4
1101=-5
1110=-6
1111 =-7

* We’ve only represented 15 of our 16 available numbers!

0000=0
0001=1
0010=2
0011=3
0100=4
0101=5
0110=6
0111=7

57

Sigh Magnitude Representation

* Pro: easy to represent, and easy to convert to/from decimal.
* Con: +-0 is not intuitive
* Con: we lose a bit that could be used to store more numbers

e Con: arithmetic is tricky: we need to find the sign, then maybe subtract
(borrow and carry, etc.), then maybe change the sign. This complicates the
hardware support for something as fundamental as addition.

Can we do better?

58

A Better Idea

* Ideally, binary addition should just work regardless of whether the numbers

are positive or negative.

0101
+ 070707

0000

59

A Better Idea

* Ideally, binary addition should just work regardless of whether the numbers

are positive or negative.

0101
+1011

0000

60

A Better Idea

* Ideally, binary addition should just work regardless of whether the numbers

are positive or negative.

0011
+ 070707

0000

61

A Better Idea

* Ideally, binary addition should just work regardless of whether the numbers

are positive or negative.

0011
+1101

0000

62

A Better Idea

* Ideally, binary addition should just work regardless of whether the numbers

are positive or negative.

0000
+ 20707

0000

63

A Better Idea

* Ideally, binary addition should just work regardless of whether the numbers

are positive or negative.

0000
{0000

0000

64

There Seems Like a Pattern Here...

0101 0011 0000
+1011 +1101 0000

0000 0000 0000

There Seems Like a Pattern Here...

A binary number plus its e is all 1s. Add 1 to this to all 1s and get 0!

0101 1111
+1010 {0001

1111 0000

Another Trick

* To compute the negative of a number, work right-to-left and write down all
digits through when you reach a 1. Then, invert the rest of the digits.

100100
v 27707077

000000

67

Another Trick

* To compute the negative of a number, work right-to-left and write down all
digits through when you reach a 1. Then, invert the rest of the digits.

100100
+277100
000000

68

Another Trick

* To compute the negative of a number, work right-to-left and write down all
digits through when you reach a 1. Then, invert the rest of the digits.

100100
+011100

000000

69

Two’'s Complement

0000

1111 0001

1110 0010

1101 0011

4-bit
two's complement
signed integer
representation

1100 0100

70

Two’'s Complement

* In two’s complement, we represent a 0
positive number as itself, and its
negative equivalent as the two’s -2
complement of itself.

0000

1111 0001

1110 0010

* The two’s complement of a number is -3
the binary digits inverted, plus 1.

1101 0011

4-bit
two's complement

: . -4— 1100 . . 0100+ 4
* This works to convert from positive to signed integer

negative, and back from negative to representation

positive! 5 .

-8 71

Two’'s Complement

e Con: more difficult to represent, and
difficult to convert to/from decimal and
between positive and negative.

* Pro: only 1 representation for O!

* Pro: all bits are used to represent as
many numbers as possible

* Pro: the most significant bit still indicates
the sign of a number.

* Pro: addition works for any combination
of positive and negative!

0000

1111 0001

1110 0010

1101 0011

4-bit
two's complement
signed integer
representation

1100 0100

-8 72

Two’'s Complement

* Adding two numbers is just...adding! There is no special case needed for

negatives. E.g. whatis 2 +-5?

0010 >
1011 s

1101 =

73

Two’'s Complement

e Subtracting two numbers is just performing the two’s complement on one of
them and then adding. E.g. 4-5=-1.

0100 « 0100 4
-0101 S +1011 =

M1 -

Practice: Two’'s Complement

What are the negative or positive equivalents of the numbers below?
a) -4(1100)
b) 7(0111)
c) 3(0011)
d) -8(1000)

75

Practice: Two’'s Complement

What are the negative or positive equivalents of the numbers below?
a) -4(1100) 1 1

b) 7(0111) -2
c) 3(0011)

0000

1111 0001

1110 0010

1101 0011

4-bit
two's complement
signed integer
representation

1100 0100

76

Plan For Today

* Bits and Bytes

* Hexadecimal

* Integer Representations
* Unsigned Integers

* Break: Announcements
* Signed Integers

* Overflow

77

* If you exceed the maximum value of your bit representation, you wrap around
or overflow back to the smallest bit representation. (Assume unsigned 4-bit
numbers).

©b1111 + ©bl = ©OboOOO

* If you go below the minimum value of your bit representation, you wrap
around or overflow back to the largest bit representation.

©boooo - bl = Obl1lll

78

Min and Max Integer Values

short

-32768

Tvpe Size Minimum Maximum
Yp (Bytes)

char 1 -128 127

unsigned char |1 0 255

32767

unsigned short

int

-2147483648

65535

2147483647

unsigned int

long

0

-9223372036854775808

4294967295

9223372036854775807

unsigned long

18446744073709551615

Min and Max Integer Values

INT MIN, INT MAX, UINT MAX, LONG MIN, LONG MAX,
ULONG MAX, ..

80

+1

R

111...111 000...000 +1
111...110 000...001 «

000...010
000...011

111...101
111...100

100...010 011...101
100...001 011...110
100...000 011...111

+1 81

At which points can overflow occur for
signed and unsigned int?

A. Signed and unsigned can both overflow
at points Xand Y

B. Signed can overflow only at X, unsigned
onlyatyY

C. Signed can overflow only at Y, unsigned
only at X

D. Signed can overflow at X and Y,
unsigned only at X

E. Other

111...111 000...000
111...110 000...001
111...101 000...010

111...100 000...011

100...010 011...101
100...001 011...110
100...000 011...111

82

Unsigned Integers

111...111 000...000
111...110 000...001
111...101 000...010

111...100 000...011

Discontinuity
means overflow
possible here

SJoquinu BANISod Buisealou|

100...010 011...101
100...001 011...110
100...000 011...111

More increasing positive numbers

83

Negative numbers becoming less negative

(i.e. increasing)

Sighed Numbers

-1 0

111...111 000...000
117...110 000.
111...101

111...100

Discontinuity
means overflow
Fﬂ hossible herg
il

100. IIII|II||EH§%4
. eg;" b/ -

)0 011...111
o z+2 C
dillion

..001
000...010

000...011

011...101
.10

SJoquinu oAnIsod Buisealou

84

Overflow In Practice: PSY

PSY - GANGNAM STYLE (2t AEF!) MV

officialpsy

JII -2142584554
+ .: ; l‘ ,l

YouTube: “We never thought a video would be watched in numbers
greater than a 32-bit integer (=2,147,483,647 views), but that was before
we met PSY. "Gangnam Style" has been viewed so many times we had to
upgrade to a 64-bit integer (9,223,372,036,854,775,808)!”

85

Overflow In Practice: Timestamps

* Many systems store timestamps as the number of seconds since Jan. 1, 1970
in a signed 32-bit integer.

* Problem: the latest timestamp that can be represented this way is 3:14:07 UTC
on January 13, 2038!

86

Overflow in Practice:

e Pacman Level 256

* Make sure to reboot Boeing Dreamliners every 248 days

* Comair/Delta airline had to cancel thousands of flights days before Christmas

* Reported vulnerability CVE-2019-3857 in libssh2 may allow a hacker to
remotely execute code

* Donkey Kong Kill Screen

87

https://pacman.fandom.com/wiki/Map_256_Glitch
https://www.engadget.com/2015/05/01/boeing-787-dreamliner-software-bug/
https://arstechnica.com/uncategorized/2004/12/4490-2/
https://nvd.nist.gov/vuln/detail/CVE-2019-3857
http://www.donhodges.com/how_high_can_you_get.htm

* Bits and Bytes

* Hexadecimal

* Integer Representations
* Unsigned Integers

* Break: Announcements
* Signed Integers

* Overflow

e Surprise Bonus Topic If We Have Time: Casting and Combining Types

88

printf and Integers

* There are 3 placeholders for 32-bit integers that we can use:
* %d: signed 32-bit int
* %u: unsigned 32-bit int
* %x: hex 32-bit int

* The placeholder—not the expression filling in the placeholder—dictates
what gets printed!

89

* What happens at the byte level when we cast between variable types? The
bytes remain the same! This means they may be interpreted differently
depending on the type.

int v = -12345;
unsigned int uv = v;
printf("v = %d, uv = %u\n", v, uv);

This prints out: "v = -12345, uv = 4294954951". Why?

90

* What happens at the byte level when we cast between variable types? The
bytes remain the same. This means they may be interpreted differently
depending on the type.

int v = -12345;
unsigned int uv = v;
printf("v = %d, uv = %u\n", v, uv);

The bit representation for -12345 is ©b1100111111000111.
If we treat this binary representation as a positive number, it’s huge!

91

15 1

0000 0000

1111 0001 1111 0001

1110 0010 1110 0010

1101 0011

1101 0011

4-bit

two's complement
signed integer

representation

4-bit
1100 unsigned integer 0100
representation

1100 0100

Comparisons Between Different Types

* Be careful when comparing signed and unsigned integers. C will implicitly

cast the signed argument to unsigned, and then performs the operation
assuming both numbers are non-negative.

Expression Type Evaluation Correct?
0 == 0U

-1 <0

-1 < 0U
2147483647 >
-2147483647 - 1

21474836470 >
-2147483647 - 1

2147483647 >
(int)2147483648U
-1 > =2
(unsigned)-1 > -2

93

Comparisons Between Different Types

* Be careful when comparing signed and unsigned integers. C will implicitly

cast the signed argument to unsigned, and then performs the operation
assuming both numbers are non-negative.

Expression Type Evaluation Correct?
0 == 0U Unsigned 1 yes
-1 <0

-1 < 0U

2147483647 >
-2147483647 - 1

21474836470 >
-2147483647 - 1

2147483647 >
(int)2147483648U
-1 > =2
(unsigned)-1 > -2

94

Comparisons Between Different Types

* Be careful when comparing signed and unsigned integers. C will implicitly

cast the signed argument to unsigned, and then performs the operation
assuming both numbers are non-negative.

Expression Type Evaluation Correct?
0 == 0U Unsigned 1 yes
-1 <0 Signed 1 yes
-1 < 0U

2147483647 >
-2147483647 - 1

21474836470 >
-2147483647 - 1

2147483647 >
(int)2147483648U
-1 > =2
(unsigned)-1 > -2

95

Comparisons Between Different Types

* Be careful when comparing signed and unsigned integers. C will implicitly

cast the signed argument to unsigned, and then performs the operation
assuming both numbers are non-negative.

Expression Type Evaluation Correct?
0 == 0U Unsigned 1 yes
-1 <0 Signed 1 yes
-1 < 0U Unsigned 0 No!

2147483647 >
-2147483647 - 1

21474836470 >
-2147483647 - 1

2147483647 >
(int)2147483648U
-1 > =2
(unsigned)-1 > -2

96

Comparisons Between Different Types

* Be careful when comparing signed and unsigned integers. C will implicitly

cast the signed argument to unsigned, and then performs the operation
assuming both numbers are non-negative.

Expression Type Evaluation Correct?
0 == 0U Unsigned 1 yes
-1 <0 Signed 1 yes
-1 < 0U Unsigned 0 No!

2147483647 >
-2147483647 - 1

21474836470 >
-2147483647 - 1

2147483647 >
(int)2147483648U
-1 > =2
(unsigned)-1 > -2

Signed 1 yes

97

Comparisons Between Different Types

* Be careful when comparing signed and unsigned integers. C will implicitly

cast the signed argument to unsigned, and then performs the operation
assuming both numbers are non-negative.

Expression Type Evaluation Correct?
0 == 0U Unsigned 1 yes
-1 <0 Signed 1 yes
-1 < 0U Unsigned 0 No!

2147483647 >
-2147483647 - 1

21474836470 >
-2147483647 - 1

2147483647 >
(int)2147483648U

-1 > =2
(unsigned)-1 > -2

Signed 1 yes

Unsigned 0 No!

98

Comparisons Between Different Types

* Be careful when comparing signed and unsigned integers. C will implicitly
cast the signed argument to unsigned, and then performs the operation
assuming both numbers are non-negative.

Expression Type Evaluation Correct?
0 == 0U Unsigned 1 yes
-1 <0 Signed 1 yes
-1 < 0U Unsigned 0 No!

2147483647 >

_2147483647 - 1 Signed ! yes
21474836470 > .

2147483647 - 1 Unsigned 0 No!
(int)2147483648U

1 > -2

(unsigned)-1 > -2

99

Comparisons Between Different Types

* Be careful when comparing signed and unsigned integers. C will implicitly
cast the signed argument to unsigned, and then performs the operation
assuming both numbers are non-negative.

Expression Type Evaluation Correct?
0 == 0U Unsigned 1 yes
-1 <0 Signed 1 yes
-1 < 0U Unsigned 0 No!

2147483647 >

_2147483647 - 1 Signed 1 yes
21474836470 > .

2147483647 - 1 Unsigned 0 No!
(int)2147483648U

-1 > =2 Signed 1 yes

(unsigned)-1 > -2

100

Comparisons Between Different Types

* Be careful when comparing signed and unsigned integers. C will implicitly
cast the signed argument to unsigned, and then performs the operation
assuming both numbers are non-negative.

Expression Type Evaluation Correct?
0 == 0U Unsigned 1 yes
-1 <0 Signed 1 yes
-1 < 0U Unsigned 0 No!

2147483647 >

_2147483647 - 1 Signed 1 yes
21474836470 > Unsigned 0 No!
-2147483647 - 1

(int)2147483648U

-1 > =2 Signed 1 yes

(unsigned)-1 > -2 Unsigned 1 yes

101

Comparisons Between Different Types

Which many of the following statements are true? (assume that
variables are set to values that place them in the spots shown)

111...111 000...000
s3 > u3
u2 > u4g
s2 > s4
sl > s2
ul > u2
sl > u3

100...000 011...111
102

Comparisons Between Different Types

Which many of the following statements are true? (assume that
variables are set to values that place them in the spots shown)

111...111 000...000
s3 > u3 - true
u2 > u4g
s2 > s4
sl > s2
ul > u2
sl > u3

100...000 011...111
103

Comparisons Between Different Types

Which many of the following statements are true? (assume that
variables are set to values that place them in the spots shown)

111...111 000...000
s3 > u3 - true
u2 > u4 - true
s2 > s4
sl > s2
ul > u2
sl > u3

100...000 011...111
104

Comparisons Between Different Types

Which many of the following statements are true? (assume that
variables are set to values that place them in the spots shown)

111...111 000...000
s3 > u3 - true
u2 > u4 - true
s2 > s4 - false
sl > s2
ul > u2
sl > u3

100...000 011...111
105

Comparisons Between Different Types

Which many of the following statements are true? (assume that
variables are set to values that place them in the spots shown)

111...111 000...000
s3 > u3 - true
u2 > u4 - true
s2 > s4 - false
sl > s2 - true
ul > u2
sl > u3

100...000 011...111
106

Comparisons Between Different Types

Which many of the following statements are true? (assume that
variables are set to values that place them in the spots shown)

111...111 000...000
s3 > u3 - true
u2 > u4 - true
s2 > s4 - false
sl > s2 - true
ul > u2 - true
sl > u3

100...000 011...111
107

Comparisons Between Different Types

Which many of the following statements are true? (assume that
variables are set to values that place them in the spots shown)

111...111 000...000
s3 > u3 - true
u2 > u4 - true
s2 > s4 - false
sl > s2 - true
ul > u2 - true
sl > u3 - true

100...000 011...111
108

Expanding Bit Representations

 Sometimes, we want to convert between two integers of different sizes (e.g.
short to int, or int to long).

 We might not be able to convert from a bigger data type to a smaller data
type, but we do want to always be able to convert from a smaller data type to
a bigger data type.

* For unsigned values, we can add leading zeros to the representation (“zero
extension”)

 For signed values, we can repeat the sign of the value for new digits (“sign
extension”

* Note: when doing <, >, <=, >= comparison between different size types, it will
promote to the larger type.

109

Expanding Bit Representation

unsigned short s = 4;

// short is a 16-bit format, so s = 0000 0000 0000 0100b

unsigned int i = s;

// conversion to 32-bit int, so i = 0000 0000 0000 0000 0000 0000 0000 0100b

110

Expanding Bit Representation

short s = 4;
// short is a 16-bit format, so s = 0000 0000 0000 0100b

int i = s;

// conversion to 32-bit int, so i = 0000 0000 0000 0000 0000 0000 0000 0100b

short s = -4;
// short is a 16-bit format, so s = 1111 1111 1111 1100b
int i = s;

// conversion to 32-bit int, so i = 1111 1111 1111 1111 1111 1111 1111 1100b
111

Truncating Bit Representation

If we want to reduce the bit size of a number, C truncates the representation
and discards the more significant bits.

int x = 53191;

short sx = x;
int y = sx;

What happens here? Let's look at the bits in x (a 32-bit int), 53191:
0000 0000 0000 0000 1100 1111 1100 0111
When we cast x to a short, it only has 16-bits, and C truncates the number:
1100 1111 1100 0111
This is -12345! And when we cast sx back to int, we sign-extend the number.
1111 1111 1111 1111 1100 1111 1100 0111 // still -12345 112

Truncating Bit Representation

If we want to reduce the bit size of a number, C truncates the representation
and discards the more significant bits.

int x =

short sx = x;
int y = sx;

What happens here? Let's look at the bits in x (a 32-bit int), -3:
1111 1111 1111 1111 1111 1111 1111 11e1
When we cast x to a short, it only has 16-bits, and C truncates the number:
1111 1111 1111 11e1
This is -3! If the number does fit, it will convert fine. y looks like this:
1111 1111 1111 1111 1111 1111 1111 11e1 // still -3 113

Truncating Bit Representation

If we want to reduce the bit size of a number, C truncates the representation
and discards the more significant bits.

unsigned int x = 128000;

unsigned short sx = Xx;
unsigned int y = sXx;

What happens here? Let's look at the bits in x (a 32-bit unsigned int), 128000:
0000 0000 0000 0001 1111 0100 00O 00O
When we cast x to a short, it only has 16-bits, and C truncates the number:

1111 0100 0000 0000
This is 62464! Unsigned numbers can lose info too. Here is what y looks like:
0000 0000 0000 0000 1111 0100 00O 00O // still 62464 114

The sizeof Operator

long sizeof(type);

// Example

long int size bytes = sizeof(int); // 4
long short size bytes = sizeof(short); // 2
long char size bytes = sizeof(char); // 1

sizeof takes a variable type as a parameter and returns the size of that type, in
bytes.

115

