
1

CS107 Winter 2020, Lecture 3
Bits and Bytes; Bitwise Operators

reading:
Bryant & O’Hallaron, Ch. 2.1

Slides by Jerry Cain and Lisa Yan, who leveraged prior work by Nick Troccoli, Julie Zelenski, Marty Stepp, Cynthia Lee, Chris Gregg, and others.

2

Announcements
• Assignment 0 deadline tonight at 11:59PM PST
• Assignment 1 (Bit operations!) goes (or rather, went) out today
• Saturated arithmetic
• Cell Automata
• Unicode and UTF-8

• Labs start this week!

3

Plan For Today
• Bitwise Operators and Masks
• Demo 1: Fun With Bits
• Demo 2: Powers of 2
• Bit Shift Operators
• Demo 3: Color Wheel

4

Plan For Today
• Bitwise Operators and Masks
• Demo 1: Fun With Bits
• Demo 2: Powers of 2
• Bit Shift Operators
• Demo 3: Color Wheel

5

Now that we understand
binary representations, how

can we manipulate them at the
bit level?

6

Bitwise Operators
• You’re already familiar with many operators in C:
• Arithmetic operators: +, -, *, /, %
• Comparison operators: ==, !=, <, >, <=, >=
• Logical Operators: &&, ||, !

• Today, we’re introducing a new category of operators: bitwise operators:
• &, |, ~, ^, <<, >>

7

And (&)
& is a binary operator. The & of 2 bits is 1 if both bits are 1, and 0 otherwise.

a b output

0 0 0

0 1 0

1 0 0

1 1 1

output = a & b;

8

Or (|)
| is a binary operator. The | of 2 bits is 1 if either (or both) bits is 1.

a b output

0 0 0

0 1 1

1 0 1

1 1 1

output = a | b;

9

Not (~)
~ is a unary operator. The ~ of a bit is 1 if the bit is 0, or 1 otherwise.

a output

0 1

1 0

output = ~a;

10

Exclusive Or (^)
^ is a binary operator. The ^ of 2 bits is 1 iff exactly one of the bits is 1.

a b output

0 0 0

0 1 1

1 0 1

1 1 0

output = a ^ b;

11

Operators on Multiple Bits
• When these operators are applied to numbers (multiple bits), the operator is

applied to the corresponding bits in each number. For example:

0110
& 1100

0100

0110
1100
1110

0110
^ 1100

1010

~ 1100

0011

AND OR XOR NOT

Note: these are different from the logical
operators AND (&&), OR (||) and NOT (!).

12

Operators on Multiple Bits
• When these operators are applied to numbers (multiple bits), the operator is

applied to the corresponding bits in each number. For example:

0110
& 1100

0100

0110
1100
1110

0110
^ 1100

1010

~ 1100

0011

AND OR XOR NOT

This is different from logical
AND (&&). The logical AND
returns true if both are
nonzero, or false otherwise.

13

Operators on Multiple Bits
• When these operators are applied to numbers (multiple bits), the operator is

applied to the corresponding bits in each number. For example:

0110
& 1100

0100

0110
1100
1110

0110
^ 1100

1010

~ 1100

0011

AND OR XOR NOT

This is different from logical
NOT (!). The logical NOT
returns true if this is zero, and
false otherwise.

14

Bit Vectors and Sets
• We can use bit vectors (ordered collections of bits) to represent finite sets, and

perform functions such as union, intersection, and complement.
• Example: we can represent current courses taken using a char.

0 0 1 0 0 0 1 1

CS
10
6A

CS
10
6B

CS
10
6X

CS
10
7

CS
11
0

CS
10
3

CS
10
9

CS
16
1

15

Bit Vectors and Sets

• How do we find the union of two sets of courses taken? Use |:

00100011
01100001
01100011

0 0 1 0 0 0 1 1

CS
10
6A

CS
10
6B

CS
10
6X

CS
10
7

CS
11
0

CS
10
3

CS
10
9

CS
16
1

16

Bit Vectors and Sets

• How do we find the intersection of two sets of courses taken? Use &:

00100011
& 01100001

00100001

0 0 1 0 0 0 1 1

CS
10
6A

CS
10
6B

CS
10
6X

CS
10
7

CS
11
0

CS
10
3

CS
10
9

CS
16
1

17

Bit Masking
• We will frequently want to manipulate or isolate out specific bits in a larger

collection of bits. A bitmask is a constructed bit pattern that we can use, along
with bit operators, to do this.
• Example: how do we update our bit vector to indicate we’ve taken CS107?

00100011
00001000
00101011

0 0 1 0 0 0 1 1

CS
10
6A

CS
10
6B

CS
10
6X

CS
10
7

CS
11
0

CS
10
3

CS
10
9

CS
16
1

18

Bit Masking
#define CS106A 0x1 /* 0000 0001 */
#define CS106B 0x2 /* 0000 0010 */
#define CS106X 0x4 /* 0000 0100 */
#define CS107 0x8 /* 0000 1000 */
#define CS110 0x10 /* 0001 0000 */
#define CS103 0x20 /* 0010 0000 */
#define CS109 0x40 /* 0100 0000 */
#define CS161 0x80 /* 1000 0000 */

char myClasses = ...;
myClasses = myClasses | CS107; // Add CS107

19

Bit Masking
#define CS106A 0x1 /* 0000 0001 */
#define CS106B 0x2 /* 0000 0010 */
#define CS106X 0x4 /* 0000 0100 */
#define CS107 0x8 /* 0000 1000 */
#define CS110 0x10 /* 0001 0000 */
#define CS103 0x20 /* 0010 0000 */
#define CS109 0x40 /* 0100 0000 */
#define CS161 0x80 /* 1000 0000 */

char myClasses = ...;
myClasses |= CS107; // Add CS107

20

Bit Masking
• Example: how do we update our bit vector to indicate we’ve not taken CS103?

00100011
& 11011111

00000011

0 0 1 0 0 0 1 1

CS
10
6A

CS
10
6B

CS
10
6X

CS
10
7

CS
11
0

CS
10
3

CS
10
9

CS
16
1

char myClasses = ...;
myClasses = myClasses & ~CS103; // Remove CS103

21

Bit Masking
• Example: how do we update our bit vector to indicate we’ve not taken CS103?

00100011
& 11011111

00000011

0 0 1 0 0 0 1 1

CS
10
6A

CS
10
6B

CS
10
6X

CS
10
7

CS
11
0

CS
10
3

CS
10
9

CS
16
1

char myClasses = ...;
myClasses &= ~CS103; // Remove CS103

22

Bit Masking
• Example: how do we check if we’ve taken CS106B?

00100011
& 00000010

00000010

0 0 1 0 0 0 1 1

CS
10
6A

CS
10
6B

CS
10
6X

CS
10
7

CS
11
0

CS
10
3

CS
10
9

CS
16
1

char myClasses = ...;
if (myClasses & CS106B) {...

// taken CS106B!

23

Bit Masking
• Example: how do we check if we’ve not taken CS107?

0 0 1 0 0 0 1 1

CS
10
6A

CS
10
6B

CS
10
6X

CS
10
7

CS
11
0

CS
10
3

CS
10
9

CS
16
1

char myClasses = ...;
if (!(myClasses & CS107)) {...

// not taken CS107!

00100011
& 00001000

00000000

24

Bit Masking
• Example: how do we check if we’ve not taken CS107?

0 0 1 0 0 0 1 1

CS
10
6A

CS
10
6B

CS
10
6X

CS
10
7

CS
11
0

CS
10
3

CS
10
9

CS
16
1

char myClasses = ...;
if ((myClasses & CS107) ^ CS107) {...

// not taken CS107!

00100011
& 00001000

00000000

00000000
^ 00001000

00001000

25

Demo: Fun with Bits in gdb

26

Bit Masking
Bit masking is also useful for integer representations as well. For instance, we
might want to check the value of the most-significant bit, or just one of the
middle bytes.

• Example: If I have a 32-bit integer j, what operation should I perform if I want
to extract just the lowest byte in j?

int j = ...;
int k = j & 0xff; // mask to get just lowest byte

27

Practice: Bit Masking
• Practice 1: write an expression that, given a 32-bit integer j, sets its least-

significant byte to all 1s, but preserves all other bytes.
j | 0xff

• Practice 2: write an expression that, given a 32-bit integer j, flips
("complements") all but the least-significant byte, and preserves all other
bytes.

j ^ ~0xff

28

Powers of 2

Without using loops, how can we detect if a
binary number is a power of 2? What is
special about its binary representation and
how can we leverage that?

29

Demo: Powers of 2

30

Plan For Today
• Bitwise Operators and Masks
• Demo 1: Courses
• Demo 2: Powers of 2
• Bit Shift Operators

31

Left Shift (<<)
The LEFT SHIFT operator shifts a bit pattern a certain number of positions to the
left. New lower order bits are filled in with 0s, and bits shifted off the end are
lost.

x << k; // shifts x to the left by k bits

8-bit examples:
00110111 << 2 results in 11011100
01100011 << 4 results in 00110000
10010101 << 4 results in 01010000

32

Right Shift (>>)
The RIGHT SHIFT operator shifts a bit pattern a certain number of positions to
the right. Bits shifted off the end are lost.

x >> k; // shifts x to the right by k bits

Question: how should we fill in new higher-order bits?
Idea: let’s follow left-shift and fill with 0s.

short x = 2; // 0000 0000 0000 0010
int y = x >> 1; // 0000 0000 0000 0001
printf("%d\n", y); // 1

33

Right Shift (>>)
The RIGHT SHIFT operator shifts a bit pattern a certain number of positions to
the right. Bits shifted off the end are lost.

x >> k; // shifts x to the right by k bits

Question: how should we fill in new higher-order bits?
Idea: let’s follow left-shift and fill with 0s.

short x = -2; // 1111 1111 1111 1110
int y = x >> 1; // 0111 1111 1111 1111
printf("%d\n", y); // 32767!

34

Right Shift (>>)
The RIGHT SHIFT operator shifts a bit pattern a certain number of positions to
the right. Bits shifted off the end are lost.

x >> k; // shifts x to the right by k bits

Question: how should we fill in new higher-order bits?
Problem: always filling with zeros means we may change the sign bit.
Solution: let’s fill with the sign bit!

35

Right Shift (>>)
The RIGHT SHIFT operator shifts a bit pattern a certain number of positions to
the right. Bits shifted off of the end are lost.

x >> k; // shifts x to the right by k bits

Question: how should we fill in new higher-order bits?
Solution: let’s fill with the sign bit!

short x = 2; // 0000 0000 0000 0010
int y = x >> 1; // 0000 0000 0000 0001
printf("%d\n", y); // 1

36

Right Shift (>>)
The RIGHT SHIFT operator shifts a bit pattern a certain number of positions to
the right. Bits shifted off of the end are lost.

x >> k; // shifts x to the right by k bits

Question: how should we fill in new higher-order bits?
Solution: let’s fill with the sign bit!

short x = -2; // 1111 1111 1111 1110
int y = x >> 1; // 1111 1111 1111 1111
printf("%d\n", y); // -1!

37

Right Shift (>>)
There are two kinds of right shifts, depending on the value and type you are
shifting:
• Logical Right Shift: fill new high-order bits with 0s.
• Arithmetic Right Shift: fill new high-order bits with the most-significant bit.

Unsigned numbers are right-shifted using Logical Right Shift.
Signed numbers are right-shifted using Arithmetic Right Shift.

This way, the sign of the number (if applicable) is preserved!

38

Shift Operator Pitfalls
1. Technically, the C standard does not precisely define whether a right shift for

signed integers is logical or arithmetic. However, almost all
compilers/machines use arithmetic, and you can most likely assume this.

2. Operator precedence can be tricky! For example:

1<<2 + 3<<4 means 1 << (2+3) << 4 because addition and
subtraction have higher precedence than shifts! Always use parentheses
to be sure:

(1<<2) + (3<<4)

39

Shift Operator Pitfalls
• The default type of a number literal in your code is an int.
• Let’s say you want a long with the index-32 bit as 1:

long num = 1 << 32;

• This doesn’t work! 1 is by default an int, and you can’t shift an int by 32
because it only has 32 bits. You must specify that you want 1 to be a long.

long num = 1L << 32;

40

Demo: Color Wheel

41

Recap
• Bitwise Operators and Masks
• Demo 1: Fun With Bits
• Demo 2: Powers of 2
• Bit Shift Operators
• Demo 3: Color Wheel

Next time: How can a computer represent and manipulate more complex data
like text?

42

Bonus Demo: Bitwise abs

