CS107 Winter 2020, Lecture 3

Bits and Bytes; Bitwise Operators

reading:
Bryant & O’Hallaron, Ch. 2.1

Slides by Jerry Cain and Lisa Yan, who leveraged prior work by Nick Troccoli, Julie Zelenski, Marty Stepp, Cynthia Lee, Chris Gregg, and others. 1

Announcements

* Assignment O deadline tonight at 11:59PM PST

* Assignment 1 (Bit operations!) goes (or rather, went) out today
e Saturated arithmetic

e Cell Automata
e Unicode and UTF-8

e Labs start this week!

Plan For Today

* Bitwise Operators and Masks
* Demo 1: Fun With Bits

* Demo 2: Powers of 2

e Bit Shift Operators

* Demo 3: Color Wheel

Plan For Today

* Bitwise Operators and Masks
* Demo 1: Fun With Bits

* Demo 2: Powers of 2

e Bit Shift Operators

* Demo 3: Color Wheel

Now that we understand
binary representations, how
can we manipulate them at the
bit level?

Bitwise Operators

* You're already familiar with many operators in C:
* Arithmetic operators: +, -, *, /, %
 Comparison operators: ==, |=, <, >, <=, >=
* Logical Operators: &&, | |, .

* Today, we’re introducing a new category of operators: bitwise operators:
* &, |, N << >>

) ’ V4

& is a binary operator. The & of 2 bits is 1 if both bits are 1, and 0 otherwise.

output = a & b;

T o

R P ® O

%)
1
%)
1

R © ©®© o

| is a binary operator. The | of 2 bits is 1 if either (or both) bits is 1.

output = a | b;

T o

R P ® O

%)
1
%)
1

R R R ©®

~is a unary operator. The ~ of a bitis 1 if the bitis 0, or 1 otherwise.

output = ~a;

= o

0 1
1 0

Exclusive Or ()

A is a binary operator. The ” of 2 bits is 1 iff exactly one of the bits is 1.

output a ™ b;

T o

R P ® O

%)
1
%)
1

O B B O©

10

Operators on Multiple Bits

* When these operators are applied to numbers (multiple bits), the operator is
applied to the corresponding bits in each number. For example:

AND OR XOR NOT

Note: these are different from the logical
operators AND (&&), OR (| |) and NOT (!).

11

Operators on Multiple Bits

* When these operators are applied to numbers (multiple bits), the operator is
applied to the corresponding bits in each number. For example:

AND OR XOR NOT

*

This is different from logical

AND (&&). The logical AND
returns true if both are

nonzero, or false otherwise.

12

Operators on Multiple Bits

* When these operators are applied to numbers (multiple bits), the operator is
applied to the corresponding bits in each number. For example:

AND

OR

XOR NOT

*

This is different from logical
NOT (!). The logical NOT

returns true if this is zero, and
false otherwise.

Bit Vectors and Sets

* \We can use bit vectors (ordered collections of bits) to represent finite sets, and
perform functions such as union, intersection, and complement.

* Example: we can represent current courses taken using a char.

14

Bit Vectors and Sets

%) %) 1 %) %) %) 1 1

o o P '\'\Q Q/\ Q(SF Q‘b@
S S S N N
O O G

* How do we find the union of two sets of courses taken? Use |:

00100011
| 01100001

01100011

15

Bit Vectors and Sets

%) %) 1 %) %) %) 1 1

o o P '\'\Q Q/\ Q(SF Q‘b@
S S S N N
O O G

e How do we find the intersection of two sets of courses taken? Use &:

00100011
& 01100001

00100001

16

Bit Masking

* We will frequently want to manipulate or isolate out specific bits in a larger
collection of bits. A bitmask is a constructed bit pattern that we can use, along

with bit operators, to do this.
* Example: how do we update our bit vector to indicate we’ve taken CS1077?

%) %) 1 %) %) %) 1 1

> P R N & ar % &
S L& & & & c?'@ c?\g cf’\g
00100011
| 00001000

00101011

17

Bit Masking

#define CS106A 0Ox1 /* 0000 0001 */
#define CS106B 0Ox2 /* 0000 0010 */
#define CS106X 0Ox4 /* 0000 0100 */
#define CS107 Ox8 /* 0000 1000 */
#define CS110 Ox10 /* 0001 0000 */
#define CS103 Ox20 /* 0010 0000 */
#define CS109 Ox40 /* 0100 0000 */
#define CS1l161 Ox80 /* 1000 0000 */
char myClasses = ...;

myClasses = myClasses | CS107; // Add CS107

18

Bit Masking

#define CS106A 0Ox1 /* 0000 0001 */
#define CS106B 0Ox2 /* 0000 0010 */
#define CS106X 0Ox4 /* 0000 0100 */
#define CS107 Ox8 /* 0000 1000 */
#define CS110 Ox10 /* 0001 0000 */
#define CS103 Ox20 /* 0010 0000 */
#define CS109 Ox40 /* 0100 0000 */
#define CS1l161 Ox80 /* 1000 0000 */
char myClasses = ...;

myClasses |= CS107; // Add CS107

19

Bit Masking

* Example: how do we update our bit vector to indicate we’ve not taken C51037?

%) %) 1 %) %) %) 1 1

N) % N A Ny % g
O@'\b O@'\Q O@"Q & O%'\Q O@\Q% O%'\Q(b Q@"Q
00100011
& 11011111
00000011
char myClasses = ...;

myClasses = myClasses & ~(CS103; // Remove (CS103 -

Bit Masking

* Example: how do we update our bit vector to indicate we’ve not taken C51037?

%) %) 1 %) %) %) 1 1

N) % N A Ny % g
O@'\b O@'\Q O@"Q & O%'\Q O@\Q% O%'\Q(b Q@"Q
00100011
& 11011111
00000011
char myClasses = ...;

myClasses &= ~(CS103; // Remove CS103 "

Bit Masking

 Example: how do we check if we've taken CS106B?

%) %) 1 %) %) %) 1 1

N e 4o QS A - 2 g
O@'\b O@'\Q O@"Q c?\\ O%'\Q O@\Q% O%'\Q(b Q@"Q
00100011
& 00000010
00000010

char myClasses = ...;
if (myClasses & CS106B) {..
// taken CS106B! ’

Bit Masking

* Example: how do we check if we've not taken CS1077?

%) %) 1 %) %) %) 1 1

N e 4o QS A - 2 g
O@'\b O@'\Q O@"Q c?\\ O%'\Q O@\Q% O%'\Q(b Q@"Q
00100011
& 00001000
00000000

char myClasses = ..
if (!(myClasses & CSl@7)) {..
// not taken (CS107! 23

Bit Masking

* Example: how do we check if we've not taken CS1077?

%) %) 1 %) %) %) 1 1

N &) e} N

© S Q N
S 2 23 S o
O O O O O @ @ 2

00100011 00000000
& 00001000 ~ 00001000

00000000 00001000

char myClasses = ...;
if ((myClasses & CS107) ~ CS1e7) {..
// not taken CS107! 24

Demo: Fun with Bits in gdb

Bit Masking

Bit masking is also useful for integer representations as well. For instance, we
might want to check the value of the most-significant bit, or just one of the
middle bytes.

* Example: If | have a 32-bit integer j, what operation should | perform if | want
to extract just the lowest byte in j?

int j
int k

J

j & Oxff; // mask to get just lowest byte

26

Practice: Bit Masking

* Practice 1: write an expression that, given a 32-bit integer j, sets its least-
significant byte to all 1s, but preserves all other bytes.

j | oxff

* Practice 2: write an expression that, given a 32-bit integer j, flips
("complements") all but the least-significant byte, and preserves all other
bytes.

j N ~Oxff

27

Without using loops, how can we detect if a
binary number is a power of 2? What is

special about its binary representation and
how can we leverage that?

28

Demo: Powers of 2

Plan For Today

* Bitwise Operators and Masks
* Demo 1: Courses

* Demo 2: Powers of 2

* Bit Shift Operators

30

Left Shift (<<)

The LEFT SHIFT operator shifts a bit pattern a certain number of positions to the
left. New lower order bits are filled in with Os, and bits shifted off the end are
lost.

X << kj; // shifts x to the left by k bits

8-bit examples:
00110111 << 2 results in 11011100
01100011 << 4 results in 001100006
10010101 << 4 results in 010100006

31

Right Shift (>>)

The RIGHT SHIFT operator shifts a bit pattern a certain number of positions to
the right. Bits shifted off the end are lost.

X > k; // shifts x to the right by k bits

Question: how should we fill in new higher-order bits?
Idea: let’s follow left-shift and fill with Os.

short x = 2; // 0000 0000 0000 0010
int y = x > 1; // 0000 0000 0000 0001
printf("%d\n", y); // 1

32

Right Shift (>>)

The RIGHT SHIFT operator shifts a bit pattern a certain number of positions to
the right. Bits shifted off the end are lost.

X > k; // shifts x to the right by k bits

Question: how should we fill in new higher-order bits?
Idea: let’s follow left-shift and fill with Os.

short x = -2; // 1111 1111 1111 1110
inty = x > 1; // 6111 1111 1111 1111
printf("%d\n", y); // 32767!

33

Right Shift (>>)

The RIGHT SHIFT operator shifts a bit pattern a certain number of positions to
the right. Bits shifted off the end are lost.

X > k; // shifts x to the right by k bits
Question: how should we fill in new higher-order bits?

Problem: always filling with zeros means we may change the sign bit.
Solution: let’s fill with the sign bit!

34

Right Shift (>>)

The RIGHT SHIFT operator shifts a bit pattern a certain number of positions to
the right. Bits shifted off of the end are lost.

X > k; // shifts x to the right by k bits

Question: how should we fill in new higher-order bits?
Solution: let’s fill with the sign bit!

short x = 2; // 0000 0000 0000 0010
int y = x >> 1; // 0000 0000 0000 0001
printf("%d\n", y); // 1

35

Right Shift (>>)

The RIGHT SHIFT operator shifts a bit pattern a certain number of positions to
the right. Bits shifted off of the end are lost.

X > k; // shifts x to the right by k bits

Question: how should we fill in new higher-order bits?
Solution: let’s fill with the sign bit!

short x = -2; // 1111 1111 1111 1110
int y = x > 1; // 1111 1111 1111 1111
printf("%d\n", y); // -1

36

Right Shift (>>)

There are two kinds of right shifts, depending on the value and type you are
shifting:

* Logical Right Shift: fill new high-order bits with Os.
* Arithmetic Right Shift: fill new high-order bits with the most-significant bit.

Unsigned numbers are right-shifted using Logical Right Shift.
Signed numbers are right-shifted using Arithmetic Right Shift.

This way, the sign of the number (if applicable) is preserved!

37

Shift Operator Pitfalls

1. Technically, the C standard does not precisely define whether a right shift for
signed integers is logical or arithmetic. However, almost all
compilers/machines use arithmetic, and you can most likely assume this.

2. Operator precedence can be tricky! For example:

1<<2 + 3<<4 means1l << (2+3) << 4 because addition and
subtraction have higher precedence than shifts! Always use parentheses

to be sure:

(1<<2) + (3<<4)

38

Shift Operator Pitfalls

* The default type of a number literal in your code is an int.
* Let’s say you want a long with the index-32 bit as 1:

long num = 1 << 32;

* This doesn’t work! 1 is by default an int, and you can’t shift an int by 32
because it only has 32 bits. You must specify that you want 1 to be a long.

long num = 1L << 32;

39

Demo: Color Wheel

Recap

* Bitwise Operators and Masks
* Demo 1: Fun With Bits

* Demo 2: Powers of 2

e Bit Shift Operators

* Demo 3: Color Wheel

Next time: How can a computer represent and manipulate more complex data
like text?

41

Bonus Demo: Bitwise abs

