
1

CS107 Winter 2020, Lecture 4
C Strings

reading:
Reading: K&R (1.9, 5.5, Appendix B3) or Essen<al C sec<on 3

Slides by Jerry Cain and Lisa Yan, who leveraged prior work by Nick Troccoli, Julie Zelenski, Marty Stepp, Cynthia Lee, Chris Gregg, and others.

2

CS107 Topic 2: How can a
computer represent and

manipulate more complex
data like text?

3

Plan For Today
• Characters
• Strings
• Common string operations: String length and comparing strings
• Strings, memory, and pointers, part 1
• Break: Announcements
• Common string operations: Copying strings
• Strings as function parameters

4

Warmup exercise
What do the following 8-bit binary numbers represent? (select all that apply)

A. Unsigned integer, 149
B. Two’s complement signed integer, -21
C. Two’s complement signed integer, -107
D. C char variable
E. None/other

🤔

10010101

A. Unsigned integer, 99
B. Two’s complement signed integer, 99
C. C char variable, 'c'
D. None/other

01100011

5

Plan For Today
• Characters
• Strings
• Common string operaXons: String length and comparing strings
• Strings, memory, and pointers, part 1
• Break: Announcements
• Common string operaXons: Copying strings
• Strings as funcXon parameters

6

Char
A char is a 1-byte variable type that represents a single character or “glyph”.

char letterA = 'A';
char plus = '+';
char zero = '0';
char space = ' ';
char newLine = '\n';
char tab = '\t';
char singleQuote = '\'';
char backSlash = '\\';

7

ASCII
Under the hood, C represents char as an 8-bit unsigned integer (“ASCII value”).
• Uppercase/lowercase letters, digits are sequentially numbered.
• Lowercase letters are 32 more than their uppercase equivalents.

char uppercaseA = 'A'; // Actually 65
char lowercaseA = 'a'; // Actually 97
char zeroDigit = '0'; // Actually 48

// prints out every lowercase character
for (char ch = 'a'; ch <= 'z'; ch++) {

printf("%c", ch);
}

8

Common ctype.h Functions
Function Description

isalpha(ch) true if ch is 'a' through 'z' or 'A' through 'Z'

islower(ch) true if ch is 'a' through 'z'

isupper(ch) true if ch is 'A' through 'Z'

isspace(ch) true if ch is a space, tab, new line, etc.

isdigit(ch) true if ch is '0' through '9'

toupper(ch) returns uppercase equivalent of a letter

tolower(ch) returns lowercase equivalent of a letter

Remember: these return a char; they cannot modify an existing char!
More documentation with man isalpha, man tolower

9

Code study: ctype.h implementations
int my_isdigit(int ch) {

return ch >= '0' && ch <= '9';
}

Standard ASCII maps 0x00 - 0x7f to
le_ers, digits, and punctuaXon
• man ascii to display table
• 8th bit used as parity/error check in some situaXons
• No consensus for characters mapped to 0x80-0xff

Small note: bool (e.g.,
true and false) is not
a built-in C type. Import
stdbool.h if you want
to use bools.

🤔

10

Code study: ctype.h implementations
int my_isdigit(int ch) {

return ch >= '0' && ch <= '9';
}

cp -r /afs/ir/class/cs107/samples/lectures/lect4 .

Code study: ctype_code

Contains a bonus example. Test your bitwise/ASCII skills!

11

Plan For Today
• Characters
• Strings
• Common string operaXons: String length and comparing strings
• Strings, memory, and pointers, part 1
• Break: Announcements
• Common string operaXons: Copying strings
• Strings as funcXon parameters

12

C Strings
C has no dedicated variable type for strings. Instead, a string is
represented as an array of characters with a special ending sentinel value.

'\0' is the null-terminating character; you always need to allocate one extra
space in an array for it.

"Hello"
index 0 1 2 3 4 5

char 'H' 'e' 'l' 'l' 'o' '\0'

13

C Strings, initialization
3 equivalent ways to create a string
in local memory (on the stack): 'H' 'e' 'l' 'l' 'o' '\0'"Hello"

char str[6];
str[0] = 'H';
str[1] = 'e';
str[2] = 'l';
str[3] = 'l';
str[4] = 'o';
str[5] = '\0';

char str[] = {'H', 'e', 'l', 'l', 'o', '\0'};

2.

1.

3. char str[] = "Hello";

Create an empty 6-character array,
then set each element.

Shorthand: Populate array,
auto-add null terminator

14

Plan For Today
• Characters
• Strings
• Common string operaXons: String length and comparing strings
• Strings, memory, and pointers, part 1
• Break: Announcements
• Common string operaXons: Copying strings
• Strings as funcXon parameters

15

Common string.h Functions
Function Description

strlen(str) returns the # of chars in a C string (before null-terminating character).

strcmp(str1, str2),
strncmp(str1, str2, n)

compares two strings; returns 0 if identical, <0 if str1 comes before str2
in alphabet, >0 if str1 comes after str2 in alphabet. strncmp stops
comparing after at most n characters.

strchr(str, ch)
strrchr(str, ch)

character search: returns a pointer to the first occurrence of ch in str, or
NULL if ch was not found in str. strrchr finds the last occurrence.

strstr(haystack, needle) string search: returns a pointer to the start of the first occurrence of
needle in haystack, or NULL if needle was not found in haystack.

strcpy(dst, src),
strncpy(dst, src, n)

copies characters in src to dst, including null-terminating character.
Assumes enough space in dst. Strings must not overlap. strncpy stops
after at most n chars (might not include null-terminating character).

strcat(dst, src),
strncat(dst, src, n)

concatenate src onto the end of dst. strncat stops concatenating after
at most n characters. Always adds a null-terminating character.

strspn(str, accept),
strcspn(str, reject)

strspn returns the length of the initial part of str which contains only
characters in accept. strcspn returns the length of the initial part of
str which does not contain any characters in reject.

16

Common string.h Functions
Function Description

strlen(str) returns the # of chars in a C string (before null-terminating character).

strcmp(str1, str2),
strncmp(str1, str2, n)

compares two strings; returns 0 if identical, <0 if str1 comes before str2
in alphabet, >0 if str1 comes after str2 in alphabet. strncmp stops
comparing after at most n characters.

strchr(str, ch)
strrchr(str, ch)

character search: returns a pointer to the first occurrence of ch in str, or
NULL if ch was not found in str. strrchr finds the last occurrence.

strstr(haystack, needle) string search: returns a pointer to the start of the first occurrence of
needle in haystack, or NULL if needle was not found in haystack.

strcpy(dst, src),
strncpy(dst, src, n)

copies characters in src to dst, including null-terminating character.
Assumes enough space in dst. Strings must not overlap. strncpy stops
after at most n chars (might not include null-terminating character).

strcat(dst, src),
strncat(dst, src, n)

concatenate src onto the end of dst. strncat stops concatenating after
at most n characters. Always adds a null-terminating character.

strspn(str, accept),
strcspn(str, reject)

strspn returns the length of the initial part of str which contains only
characters in accept. strcspn returns the length of the initial part of
str which does not contain any characters in reject.

(we’ll cover these this lecture)

17

The string library: strlen
strlen: returns the # of chars in a C string.

char str[] = "Hello";
int length = strlen(str); // 5

• The null-terminaXng character '\0' does not count towards the length.
• strlen is O(N) because it counts the characters unXl the null terminator.

index 0 1 2 3 4 5

char 'H' 'e' 'l' 'l' 'o' '\0'

Important: Strings are not objects.
•They do not embed additional information (e.g., string length).
•Many string functions assume valid string input; i.e., ends in a null
terminator.

18

String Length
What is printed out by the following program?

int main(int argc, char *argv[]) {
char str[] = "Hi earth";
str[2] = '\0';
printf("str = %s, len = %ld\n",

str, strlen(str));
return 0;

}

🤔

A. str = Hi, len = 8
B. str = Hi, len = 2
C. str = Hi earth, len = 8
D. str = Hi earth, len = 2
E. None/other

1
2
3
4
5
6
7

19

Key takeaway #1👉

1. Valid strings are null-terminated.

20

The string library: strcmp
strcmp(str1, str2): compares two strings.
• returns 0 if identical
• <0 if str1 comes before str2 in alphabet
• >0 if str1 comes after str2 in alphabet.

cp -r /afs/ir/class/cs107/samples/lectures/lect4 .

Demo: strcmp_ex

21

Questions with strcmp
char str1[] = "Lettuce";
char str2[] = "Cabbage";
int cmp_result = strcmp(str1, str2);

printf("%s", str1);
if (cmp_result == 0) {

printf(" is the same as ");
} else if (cmp_result < 0) {

printf(" comes before ");
} else {

printf(" comes after ");
}
printf("%s\n", str2);
printf("int result of strcmp: %d\n", cmp_result);

1
2
3
4
5
6
7
8
9

10
11
12
13
14

• Line 3: What is the return
value of strcmp()?

• Lines 3, 6, 8: Why can’t we
just use ==, >, < to
compare strings?

🤔

22

Plan For Today
• Characters
• Strings
• Common string operations: String length and comparing strings
• Strings, memory, and pointers, part 1
• Break: Announcements
• Common string operations: Copying strings
• Strings as function parameters

23

Key takeaway #2

1. Valid strings are null-terminated.
2. An array name (and a string name, by extension)

is the address of the first element.

👉

24

Pointers and memory, a refresher

CS106B Fall 2019, Cynthia B. Lee

Memory

Heap

Stack

0 Text

* Take CS107 to learn much more!!

** We are currently taking CS107

CS106B
Review

25

Pointers and memory, a refresher CS106B
Review

A pointer is a variable that stores a memory address.
int main(int argc, char *argv[]) {

int x = 2;
int *xptr = &x;
*xptr = 3;
printf("%d\n", x);
printf("%d\n", *xptr);
printf("%p\n", xptr);
return 0;

}

1
2
3
4
5
6
7
8
9

main() x:
xptr:

Heap

2

& op: “address of”

26

A pointer is a variable that stores a memory address.
int main(int argc, char *argv[]) {

int x = 2;
int *xptr = &x;
*xptr = 3;
printf("%d\n", x);
printf("%d\n", *xptr);
printf("%p\n", xptr);
return 0;

}

& op: “address of”
* op: “dereference”

Pointers and memory, a refresher CS106B
Review

1
2
3
4
5
6
7
8
9

main() x:
xptr:

Heap

2

// 3
// 3

3

27

Pointers and memory, a refresher CS106B
Review

A pointer is a variable that stores a memory address.
int main(int argc, char *argv[]) {

int x = 2;
int *xptr = &x;
*xptr = 3;
printf("%d\n", x); // 3
printf("%d\n", *xptr); // 3
printf("%p\n", xptr);
return 0;

}

1
2
3
4
5
6
7
8
9

main() x:
xptr:

Heap

3

"%p": Format
as address

// 0x7fffffffe820

28

Memory, in detail
• Memory is a big array of bytes.
• Each byte has a memory address that is commonly

written in hexadecimal.
• Local variables are created and pushed onto the

stack, which is a part of memory.

• A pointer is a variable that stores a memory address.

• On the myth machines, all pointers are 64-bits,
or 8 bytes long.

Address Value

… …

0x7fffffffe825 …

0x7fffffffe824 …

0x7fffffffe823 …

0x7fffffffe822 …

0x7fffffffe821 …

0x7fffffffe820 …

… …

29

char * and char[]
• An array name (and a string name, by extension) is the address of the first

element.

char str1[] = "Lettuce";
printf("%c", *str1);

char *cptr = str1;
printf("%s\n", cptr);
printf("%s\n", str1);
printf("%c\n", *cptr);

0xf0 0xf1 0xf2 0xf3 0xf4 0xf5 0xf6 0xf7

'L' 'e' 't' 't' 'u' 'c' 'e' '\0'str1

cptr

1
2
3
4
5
6
7

🤔
0xe8

?

• Line 2: What is printed?
• Line 4: What is stored in ptr?
• Lines 5-7: What is printed?

30

char * and char[]
• An array name (and a string name, by extension) is the address of the first

element.

char str1[] = "Lettuce";
printf("%c", *str1); // L

char *cptr = str1;
printf("%s\n", cptr); // Lettuce
printf("%s\n", str1); // Lettuce
printf("%c\n", *cptr); // L

0xf0 0xf1 0xf2 0xf3 0xf4 0xf5 0xf6 0xf7

'L' 'e' 't' 't' 'u' 'c' 'e' '\0'str1

cptr

1
2
3
4
5
6
7

0xe8

0xf0

31

Comparing pointers
• An array name (and a string name, by extension) is the address of the first

element.
• As a result, it is meaningless in C to compare strings with relational operators:

char str1[] = "Cabbage";
char str2[] = "Cabbage";

if (str1 > str2) {
…

}
0xf0 0xf1 0xf2 0xf3 0xf4 0xf5 0xf6 0xf7

'C' 'a' 'b' 'b' 'a' 'g' 'e' '\0'str1

str2

0xe8 0xe9 0xea 0xeb 0xec 0xed 0xee 0xef

'C' 'a' 'b' 'b' 'a' 'g' 'e' '\0'

C interprets as: compare 0xf0 > 0xe8

Operations on arrays tend to
be operations on addresses.
Use string library functions
when you can!

32

Answers with strcmp
char str1[] = "Lettuce";
char str2[] = "Cabbage";
int cmp_result = strcmp(str1, str2);

printf("%s", str1);
if (cmp_result == 0) {

printf(" is the same as ");
} else if (cmp_result < 0) {

printf(" comes before ");
} else {

printf(" comes after ");
}
printf("%s\n", str2);
printf("int result of strcmp: %d\n", cmp_result);

1
2
3
4
5
6
7
8
9

10
11
12
13
14

• Line 3: What is the return
value of strcmp()?

• Lines 3, 6, 8: Why can’t we
just use ==, >, < to
compare strings?

Remaining questions:
• Is char* equal to char[]?
(full answer next lecture)

33

char * and substrings
Because char *s are pointers to characters, we can use them to create
substrings of larger strings!
• Key: Incrementing a char * by 1 increases the memory address by 1 byte.

char chars[] = "racecar";
char *str1 = chars;
char *str2 = chars + 4;
str2[0] = 'f';
printf("%s, %s\n", chars, str1);
printf("%s\n", str2);

1
2
3
4
5
6

chars

str1

0xe8

0xf0 str2

0xe0

???

0xe0

0xf4

0xf0 0xf1 0xf2 0xf3 0xf4 0xf5 0xf6 0xf7

'r' 'a' 'c' 'e' 'c' 'a' 'r' '\0'

34

char * and substrings
Because char *s are pointers to characters, we can use them to create
substrings of larger strings!
• Key: Incrementing a char * by 1 increases the memory address by 1 byte.

char chars[] = "racecar";
char *str1 = chars;
char *str2 = chars + 4;
str2[0] = 'f';
printf("%s, %s\n", chars, str1);
printf("%s\n", str2);

1
2
3
4
5
6

chars

str1

0xe8

0xf0

0xf0 0xf1 0xf2 0xf3 0xf4 0xf5 0xf6 0xf7

'r' 'a' 'c' 'e' 'f' 'a' 'r' '\0'

str2

0xe0

0xf4

35

char * and substrings
Because char *s are pointers to characters, we can use them to create
substrings of larger strings!
• Key: Incrementing a char * by 1 increases the memory address by 1 byte.

char chars[] = "racecar";
char *str1 = chars;
char *str2 = chars + 4;
str2[0] = 'f';
printf("%s, %s\n", chars, str1); // racefar, racefar
printf("%s\n", str2); // far

1
2
3
4
5
6

chars

str1

0xe8

0xf0

0xf0 0xf1 0xf2 0xf3 0xf4 0xf5 0xf6 0xf7

'r' 'a' 'c' 'e' 'f' 'a' 'r' '\0'

str2

0xe0

0xf4

Pointer arithmetic lets
you access substrings.

36

Questions?

37

Plan For Today
• Characters
• Strings
• Common string operations: String length and comparing strings
• Strings, memory, and pointers, part 1
• Break: Announcements
• Common string operations: Copying strings
• Strings as function parameters

38

Announcements
• GDB Config File (cs107.stanford.edu/resources/gdb)
• emacs/vim config files also available
• Piazza is an official channel for course communication this quarter
• We hope you enjoyed your first lab!

No class on Monday, 1/20 (Martin Luther King Jr. Day)
• Video lecture posted over the weekend

39

Joke break

Note:
This code also just doesn’t compile

40

Plan For Today
• Characters
• Strings
• Common string operations: String length and comparing strings
• Strings, memory, and pointers, part 1
• Break: Announcements
• Common string operations: Copying strings
• Strings as function parameters

41

The string library: strcpy
strcpy(dst, src): copies characters in src to dst, including null terminator.

char buf[8];
strcpy(buf, "hello");
printf("%s\n", buf);

1
2
3

0 1 2 3 4 5 6 7

? ? ? ? ? ? ? ?buf:

42

The string library: strcpy
strcpy(dst, src): copies characters in src to dst, including null terminator.

char buf[8];
strcpy(buf, "hello");
printf("%s\n", buf);

1
2
3

0 1 2 3 4 5 6 7

'h' 'e' 'l' 'l' 'o' '\0' ? ?buf:

43

The string library: strcpy
strcpy(dst, src): copies characters in src to dst, including null terminator.

char buf[8];
strcpy(buf, "hello");
printf("%s\n", buf); // hello

1
2
3

0 1 2 3 4 5 6 7

'h' 'e' 'l' 'l' 'o' '\0' ? ?buf:

44

The string library: strncpy
strncpy(dst, src, n): copies at most n characters in src to dst.

char buf[8];
strcpy(buf, "hello");
printf("%s\n", buf); // hello
char str[] = "Hi";
int n = strlen(str);
strncpy(buf, str, n);
buf[n] = '\0';
printf("%s\n", buf);

1
2
3
4
5
6
7
8

0 1 2 3 4 5 6 7

'h' 'e' 'l' 'l' 'o' '\0' ? ?buf:

0 1 2

'H' 'i' '\0'str: ?n:

45

The string library: strncpy
strncpy(dst, src, n): copies at most n characters in src to dst.

char buf[8];
strcpy(buf, "hello");
printf("%s\n", buf); // hello
char str[] = "Hi";
int n = strlen(str);
strncpy(buf, str, n);
buf[n] = '\0';
printf("%s\n", buf);

1
2
3
4
5
6
7
8

0 1 2 3 4 5 6 7

'h' 'e' 'l' 'l' 'o' '\0' ? ?buf:

0 1 2

'H' 'i' '\0'str: 2n:

46

The string library: strncpy
strncpy(dst, src, n): copies at most n characters in src to dst.

char buf[8];
strcpy(buf, "hello");
printf("%s\n", buf); // hello
char str[] = "Hi";
int n = strlen(str);
strncpy(buf, str, n);
buf[n] = '\0';
printf("%s\n", buf);

1
2
3
4
5
6
7
8

0 1 2 3 4 5 6 7

'H' 'i' 'l' 'l' 'o' '\0' ? ?buf:

0 1 2

'H' 'i' '\0'str: 2n:

⚠ strncpy() does
not automaXcally put a
null terminator at the
end of the copy.

47

The string library: strncpy
strncpy(dst, src, n): copies at most n characters in src to dst.

char buf[8];
strcpy(buf, "hello");
printf("%s\n", buf); // hello
char str[] = "Hi";
int n = strlen(str);
strncpy(buf, str, n);
buf[n] = '\0';
printf("%s\n", buf);

1
2
3
4
5
6
7
8

0 1 2 3 4 5 6 7

'H' 'i' '\0' 'l' 'o' '\0' ? ?buf:

0 1 2

'H' 'i' '\0'str: 2n:

⚠ strncpy() does
not automaXcally put a
null terminator at the
end of the copy.

48

The string library: strncpy
strncpy(dst, src, n): copies at most n characters in src to dst.

char buf[8];
strcpy(buf, "hello");
printf("%s\n", buf); // hello
char str[] = "Hi";
int n = strlen(str);
strncpy(buf, str, n);
buf[n] = '\0';
printf("%s\n", buf); // Hi

1
2
3
4
5
6
7
8

0 1 2 3 4 5 6 7

'H' 'i' '\0' 'l' 'o' '\0' ? ?buf:

0 1 2

'H' 'i' '\0'str: 2n:

49

String copying exercise

char buf[9];
strcpy(buf, "Chadwick");
printf("%s\n", buf);
char *word = buf + 2;
strncpy(word, "ris", 3);
printf("%s\n", buf);

Line 1: What value should go in the blank?

Line 6: What is printed?

1
2
3
4
5
6

🤔

A. 7
B. 8
C. 9

A. risick
B. risdwick
C. Chris

D. 12
E. strlen("Chadwick")
F. Something else

D. Chrisick
E. Something else
F. Compile error

50

Pitfalls with strcpy: Buffer overflow
⚠ strcpy(dst, src) does not check if the desXnaXon is large enough:

char str1[14];
strcpy(str1, "hello, world!");
char str2[6]; // not enough space
strcpy(str2, str1); // overwrites other memory!

str1

? ? ? ? ? ?str2

'h' 'e' 'l' 'l' 'o' ',' ' ' 'w' 'o' 'r' 'l' 'd' '!' '\0'

- other program memory -

51

Pitfalls with strcpy: Buffer overflow
⚠ strcpy(dst, src) does not check if the desXnaXon is large enough:

char str1[14];
strcpy(str1, "hello, world!");
char str2[6]; // not enough space
strcpy(str2, str1); // overwrites other memory!

Buffer overflow: strcpy(dst, src) writes past the available space in dst.
This is a major security flaw which hackers exploit all the time!

str1

'h' 'e' 'l' 'l' 'o' ','str2

'h' 'e' 'l' 'l' 'o' ',' ' ' 'w' 'o' 'r' 'l' 'd' '!' '\0'

- other program memory -' ' 'w' 'o' 'r' 'l' 'd' '!' '\0'

52

Pitfalls with strncpy
✅ strncpy(dst, src, n): always writes up to n bytes; as the programmer,

you can avoid buffer overflow.
⚠ However, if the resulXng string is not null-terminated, you could read past

the end of the dst buffer!
char str1[14];
strncpy(str1, "hello there", 5);
printf("%s\n", str1);

str1 ? ? ? ? ? ? ? ? ? ? ? ? ? ?

53

Pitfalls with strncpy
✅ strncpy(dst, src, n): always writes up to n bytes; as the programmer,

you can avoid buffer overflow.
⚠ However, if the resulXng string is not null-terminated, you could read past

the end of the dst buffer!
char str1[14];
strncpy(str1, "hello there", 5);
printf("%s\n", str1);

str1 'h' 'e' 'l' 'l' 'o' ? ? ? ? ? ? ? ? ?

54

Pitfalls with strncpy
✅ strncpy(dst, src, n): always writes up to n bytes; as the programmer,

you can avoid buffer overflow.
⚠ However, if the resulXng string is not null-terminated, you could read past

the end of the dst buffer!
char str1[14];
strncpy(str1, "hello there", 5);
printf("%s\n", str1);

str1 'h' 'e' 'l' 'l' 'o' ? ? ? ? ? ? ? ? ?

hello⍰⍰J⍰⍰⍰

55

Questions?

56

Plan For Today
• Characters
• Strings
• Common string operations: String length and comparing strings
• Strings, memory, and pointers, part 1
• Break: Announcements
• Common string operations: Copying strings
• Strings as function parameters

57

What’s the deal?

1. Valid strings are null-terminated.
2. An array name (and a string name, by

extension) is the address of the first element.
Why did C bother with this representaXon?

C is a powerful, efficient language that requires a
solid understanding of computer memory.
Over the next two weeks, we will hone this

understanding with lots of practice!

58

Key takeaway #3

1. Valid strings are null-terminated.
2. An array name (and a string name, by

extension) is the address of the first element.
3. All parameters in C are “pass by value.”

For efficiency purposes, arrays (and strings, by
extension) passed in as parameters are
converted to pointers.

👉

59

Pass by value
• When you pass a value as a parameter, C passes a copy of that value.
What gets printed out by the following program?

void foo(int a) {
a++;
printf("%d\n", a);

}

int main(int argc, char *argv[]) {
int x = 2;
foo(x);
printf("%d\n", x);
return 0;

} 🤔

CS106B
Review

// 3

// *2*

60

“Pass by reference” with pointers
• When you pass a value as a parameter, C passes a copy of that value.
To modify the original variable, use a pointer to that variable.

void foo(int *a) {
*a = *a + 1; // Equivalent to (*a)++
printf("%d\n", *a); // 3

}

int main(int argc, char *argv[]) {
int x = 2;
foo(&x);
printf("%d\n", x); // *3*
return 0;

}

All C parameters (even pointers)
are passed in by value.

61

Passing in strings
How do you think the parameter str is being represented?

void fun_times(char *str) {
str[0] = 'd';

}

int main(int argc, char *argv[]) {
char local_str[] = "rice";
fun_times(local_str);
return 0;

}

🤔

str ?

A. A copy of the array local_str
B. A pointer containing an address to

the first element in local_str

local_str

0xa0 0xa1 0xa2 0xa3 0xa4

'r' 'i' 'c' 'e' '\0'

62

Passing in strings
How do you think the parameter str is being represented?

void fun_times(char *str) {
str[0] = 'd';

}

int main(int argc, char *argv[]) {
char local_str[] = "rice";
fun_times(local_str);
return 0;

}

A. A copy of the array local_str
B. A pointer containing an address to

the first element in local_str

local_str

0xa0 0xa1 0xa2 0xa3 0xa4

'r' 'i' 'c' 'e' '\0''d'

str 0xa0

63

Passing in strings, redux
How do you think the parameter str is being represented?

void more_fun_times(char str[]) {
str[0] = 'm';

}

int main(int argc, char *argv[]) {
char local_str[] = "nice";
more_fun_times(local_str);
return 0;

}

🤔
A. A copy of the array local_str
B. A pointer containing an address to

the first element in local_str

⚠

local_str

0x1b 0x1c 0x1d 0x1e 0x1f

'n' 'i' 'c' 'e' '\0'

str ?

64

Passing in strings, redux
How do you think the parameter str is being represented?

void more_fun_times(char str[]) {
str[0] = 'm';

}

int main(int argc, char *argv[]) {
char local_str[] = "nice";
more_fun_times(local_str);
return 0;

}

A. A copy of the array local_str
B. A pointer containing an address to

the first element in local_str

⚠

char arr[] and char *arr are
equivalent for parameter types.
(Not quite true for local variable declarations)

local_str

0x1b 0x1c 0x1d 0x1e 0x1f

'n' 'i' 'c' 'e' '\0'

str 0x1b

'm'

