CS107 Winter 2020, Lecture 4
C Strings

reading:
Reading: K&R (1.9, 5.5, Appendix B3) or Essential C section 3

Slides by Jerry Cain and Lisa Yan, who leveraged prior work by Nick Troccoli, Julie Zelenski, Marty Stepp, Cynthia Lee, Chris Gregg, and others. 1

CS107 Topic 2: How can a

computer represent and

manipulate more complex
data like text?

Plan For Today

* Characters

* Strings

« Common string operations: String length and comparing strings
 Strings, memory, and pointers, part 1

* Break: Announcements

* Common string operations: Copying strings

e Strings as function parameters

Warmup exercise

What do the following 8-bit binary numbers represent? (select all that apply)

Unsighed integer, 149

1 @ @ 1 @ 1 @ 1 Two’s complement signed integer, -21
Two’s complement signed integer, -107
C char variable
None/other

Unsigned integer, 99

@ 1 1 @ @ @ 1 1 Two’s complement signed integer, 99

C char variable, "¢’ 6D
None/other Kl?/

Plan For Today

 Characters

A char is a 1-byte variable type that represents a single character or “glyph”.

C
C
C
C
C
C
C
C

nar letterA = 'A’;
nar plus =

J

l+l
nar zero = '0'

= \o

nar space = ;

nar newlLine '‘\n';

nar tab = '\t';

nar singleQuote = "\'"';
nar backSlash = "\\';

Under the hood, C represents char as an 8-bit unsigned integer (“ASCII value”).

» Uppercase/lowercase letters, digits are sequentially numbered.
* Lowercase letters are 32 more than their uppercase equivalents.

char uppercaseA
char lowercaseA // Actually 97
char zeroDigit = '0°; // Actually 48

A // Actually 65
lal;

// prints out every lowercase character
for (char ch = "a'; ch <= "z'; ch++) {
printf("%c", ch);

Common ctype.h Functions

Function Description

isalpha(ch) |trueifchis 'a' through 'z' or 'A' through 'Z’

islower(ch) |trueifchis 'a' through 'z’

isupper(ch) |trueifchis "A' through 'Z"’

isspace(ch) |trueifchisa space, tab, new line, etc.

isdigit(ch) |trueifchis '@"' through '9"'

toupper(ch) |returns uppercase equivalent of a letter

tolower(ch) |returnslowercase equivalent of a letter

Remember: these return a char; they cannot modify an existing char!
More documentation with man isalpha, man tolower 8

Code study: ctype.h implementations

int my isdigit(int ch) {

return ch >= '0' & ch <= '9': Small note: bool (e.g.,

true and false) is not
a built-in C type. Import
stdbool. h if you want

Standard ASCII maps 0x00 - Ox7f to to use bools

letters, digits, and punctuation

* man ascll to display table
* 8th bit used as parity/error check in some situations
* No consensus for characters mapped to Ox80-0xff

Code study: ctype.h implementations

int my isdigit(int ch) {
return ch >= '0' & & ch <= '9';
}

Code study: ctype_code

cp -r /afs/ir/class/csl1l07/samples/lectures/lectd .

‘Contains a bonus example. Test your bitwise/ASCII skills!

10

Plan For Today

* Strings

C has no dedicated variable type for strings. Instead, a string is
represented as an array of characters with a special ending sentinel value.

index
Char IHI Iel lll Ill lol I\@l

"Hello"

"\0"' is the null-terminating character; you always need to allocate one extra
space in an array for it.

12

3 equivalent ways to create a string
in local memory (on the stack):

1.
2.

C Strings, initialization

char str[] = {'H", '

char

str
str
str
str
str

str[

m Ihl le INI IHI I®

str]

6]; <=
"H s
PF
1
1
0"
'\0";

e

char str[] = "Hello";

"Hello" "H’ ‘e’ "1

"\Q'

, Ill, Ill, Iol, I\@l};

Create an empty 6-character array,
then set each element.

(=== |Shorthand: Populate array,
auto-add null terminator

13

Plan For Today

« Common string operations: String length and comparing strings

14

string.h Functions

Function

Description

strlen(str)

returns the # of chars in a C string (before null-terminating character).

strcmp(strl, str2),
strncmp(strl, str2, n)

compares two strings; returns O if identical, <0 if strl1 comes before str2
in alphabet, >0 if strl comes after str2 in alphabet. strncmp stops
comparing after at most n characters.

strchr(str, ch)
strrchr(str, ch)

character search: returns a pointer to the first occurrence of ch in str, or
NULL if ch was not found in str. strrchr finds the last occurrence.

strstr(haystack, needle)

string search: returns a pointer to the start of the first occurrence of
needle in haystacR, or NULL if needle was not found in haystacR.

strcpy(dst, src),
strncpy(dst, src, n)

copies characters in src to dst, including null-terminating character.
Assumes enough space in dst. Strings must not overlap. strncpy stops
after at most n chars (might not include null-terminating character).

strcat(dst, src),
strncat(dst, src, n)

concatenate src onto the end of dst. strncat stops concatenating after
at most n characters. Always adds a null-terminating character.

strspn(str, accept),
strcspn(str, reject)

strspn returns the length of the initial part of str which contains only
characters in accept. strcspn returns the length of the initial part of
str which does not contain any characters in reject.

15

Common string.h Functions

Function Description
strlen(str) returns the # of chars in a C string (before null-terminating character).
strcmp(strl, str2), compares two strings; returns O if identical, <0 if strl1 comes before str2

in alphabet, >0 if strl comes after str2 in alphabet. strncmp stops

strncmp(strl, str2, n)
comparing after at most n characters.

strcpy(dst, src), copies characters in src to dst, including null-terminating character.
strncpy(dst, src, n) Assumes enough space in dst. Strings must not overlap. strncpy stops
after at most n chars (might not include null-terminating character).

ecture)

(we'll cover these this |

| b

The string library: strlen

strlen: returns the # of chars in a C string.

"Hello"; index
strlen(str); // 5 char ['H' | e’ | "1' | "1" | 'o' |"\@'

char str[]
int length

* The null-terminating character ' \@' does not count towards the length.
 strlenis O(N) because it counts the characters until the null terminator.

Important: Strings are not objects.
* They do not embed additional information (e.g., string length).
* Many string functions assume valid string input; i.e., ends in a null

terminator.

String Length

What is printed out by the following program?

1 int main(int argc, char *argv[]) {
2 char str[] = "Hi earth";

3 StP[Z] = '\@';

4 printf("str = %s, len = %ld\n",

> str, strlen(str));

6 return 0; str = Hi, len = 8
7} str = Hi, len = 2

str = Hi earth, len
str = Hi earth, len
None/other

|
N 00

Mmoo m>

°)

) .'

p

18

Y Key takeaway #1

1. Valid strings are null-terminated.

19

The string library: strcmp

strcmp(strl, str2):compares two strings.
* returns O if identical
* <0 if strl comes before str2 in alphabet

e >0 if strl comes after str2 in alphabet.

Demo: strcmp_ex

>

cp -r /afs/ir/class/csl1l07/samples/lectures/lectsd . 50

Questions with strcmp

1 char strl[] = "Lettuce"; - -

2 char str2[] = "Cabbage"; * Line 3: What is the return
3 int cmp result = strcmp(strl, str2); value of strcmp()?

4 * Lines 3, 6, 8: Why can’t we
5 printf("%s", stril); just use ==, >, < to

6 if (cmp_result == 0) { compare strings?

7 printf(" is the same as ");

8 } else if (cmp_result < 0) {

9 printf(" comes before ");
10 } else {
11 printf(" comes after ");
12 }

13 printf("%s\n", str2); |
14 printf("int result of strcmp: %d\n", cmp_result); (v>

o)

)

p

Plan For Today

 Strings, memory, and pointers, part 1

22

- Key takeaway #2

2. An array name (and a string name, by extension)
is the address of the first element.

23

CS1068B

Pointers and memory, a refresher . _

Memory

Stack

*Take CS107 to learn much more!!

Heap ** We are currently taking CS107

0 Text

CS1068B Fall 2019, Cynthia B. Lee 24

Pointers and memory, a refresher

A pointer is a variable that stores a memory address.

>

1 int main(int argc, char *argv[]) {
2 int x = 2;

int *xptr = &x; & op: “address of”

*xptr = 3;

printf("%d\n", x);
printf("%d\n", *xptr);
printf("%p\n", xptr);
return 9;

O 00 N O U1 b W

CS1068B

Review

main()

X:

xptr:

Heap

25

Pointers and memory, a refresher

A pointer is a variable that stores a memory address.

1 int main(int argc, char *argv[]) {

2 int x = 2;

3 int *xptr = &x; & op: “address of”
® 4 *xptr = 3; * op: “dereference”

5 printf("%d\n", x); // 3

6 printf("%d\n", *xptr); // 3

7 printf("%p\n", xptr);

3 return 0;

9 }

CS1068B

Review

main()

X:

xptr:

Heap

26

Pointers and memory, a refresher

A pointer is a variable that stores a memory address.

1 int main(int argc, char *argv[]) {

2

O 00 N O U1 b W

int x = 2;

int *xptr = &x;
*xptr = 3;
printf("%d\n", x);

// 3

printf("%d\n", *xptr); // 3

printf("%p\n", xptr);
return 0;

// Ox7fffffffe820

"%p": Format
as address

CS1068B

Review

xptr:

main() X:

Heap

27

Memory, In detalil

* Memory is a big array of bytes.

* Each byte has a memory address that is commonly
written in hexadecimal.

* Local variables are created and pushed onto the
stack, which is a part of memory.

* A pointer is a variable that stores a memory address.

* On the myth machines, all pointers are 64-bits,
or 8 bytes long.

Address

Value

Ox7FFFFfffe82s
Ox7FFFFFffe824
Ox7FFFFfffes23
Ox7FFFfFffe822
Ox7FFFFFffes2l
Ox7FFFFfffe820

28

char * and char|[]

* An array name (and a string name, by extension) is the address of the first
element.

1 char stril[] = "Lettuce”; * Line 2: What is printed?
2 printf("%c", *strl); : : :
- P () * Line 4: What is stored in ptr?
4 char *cptr = stril; * Lines 5-7: What is printed?
5 printf("%s\n", cptr);
6 printf("%s\n", strl);
7 printf("%c\n", *cptr);
str1 | 'L | 'e" | "t | "t | 'u' | 'c" | 'e" | "\O'
cptr ? K\'\ 29

char * and char|[]

* An array name (and a string name, by extension) is the address of the first
element.

1 char strl[] = "Lettuce";
2 printf("%c", *strl); // L
3
4 char *cptr = stril;
5 printf("%s\n", cptr); // Lettuce
6 printf("%s\n", strl); // Lettuce
7 printf("%c\n", *cptr); // L
strx | 'L | e | "€ T tut | e | e | '\O

cptr oxfo

30

Comparing pointers

* An array name (and a string name, by extension) is the address of the first
element.

* As a result, it is meaningless in C to compare strings with relational operators:

char strl[] = "Cabbage";
char str2[] = "Cabbage";
if (strl > str2) { Cinterprets as: compare 0xf0 > 0xe8

¥

Operations on arrays tend to
be operations on addresses.
Use string library functions
when you can!

S‘tr\l ICI Ial Ibl Ibl Ial lgl lel I\@I

Str\2 ICI lal lbl Ibl Ial lgl Iel l\@l

31

Answers with strcmp

1 char strl[] = "Lettuce";

2 char str2[] = "Cabbage";

3 int cmp result = strcmp(strl, str2);

4 * Lines 3, 6, 8: Why can’t we
5 printf("%s", strl); just use ==, >, < to

6 if (cmp_result == 0) { compare strings?

7 printf(" is the same as ");

8 } else if (cmp_result < 9) { Remaining questions:

9 printf(" comes before "); * Is char* equal to charl[]?
10 } else {
. orintf(" comes after "); (full answer next lecture)

12 }
13 printf("%s\n", str2);
14 printf("int result of strcmp: %d\n", cmp result);

32

char * and substrings

Because char *s are pointers to characters, we can use them to create
substrings of larger strings!

* Key: Incrementing a char * by 1 increases the memory address by 1 byte.

1 char chars[] = "racecar";
2 char *strl = chars;

3 char *str2 = chars + 4;

4 str2[0] = 'f';

5 printf("%s, %s\n", chars, strl);
6 printf("%s\n", str2);

Char\S Ir\l lal ICI Iel ICI lal 'Pl I\@I

stril N oxfo str2 N oxfa

33

char * and substrings

Because char *s are pointers to characters, we can use them to create
substrings of larger strings!

* Key: Incrementing a char * by 1 increases the memory address by 1 byte.

1 char chars[] = "racecar";
2 char *strl = chars;

3 char *str2 = chars + 4;

4 str2[0] = 'f';

5 printf("%s, %s\n", chars, strl);
6 printf("%s\n", str2);

Char\S Ir\l lal ICI Iel I_FI lal 'Pl I\@I

stril N oxfo str2 N oxfa

34

char * and substrings

Because char *s are pointers to characters, we can use them to create
substrings of larger strings!

* Key: Incrementing a char * by 1 increases the memory address by 1 byte.

1 char chars[] = "racecar";
2 char *strl = chars;
3 char *str2 = chars + 4;
4 str2[0] = 'f';
5 printf("%s, %s\n", chars, strl); // racefar, racefar
6 printf("%s\n", str2); // far
chars | 'r' | "a’' | "¢’ | "e’ | "FT | "a' | 'r’ | "\O] Pointer arithmetic lets
I 1 you access substrings.

stril N oxfo str2 N oxfa

35

Questions?

Plan For Today

* Break: Announcements

37

Announcements

* GDB Config File (cs107.stanford.edu/resources/gdb)
* emacs/vim config files also available
* Piazza is an official channel for course communication this quarter

* We hope you enjoyed your first lab!

No class on Monday, 1/20 (Martin Luther King Jr. Day)
* Video lecture posted over the weekend

38

Joke break

"Hello, I'd like to hear a C joke"

strcpy(joke, chicken, strlen(chicken));
printf("%s”, joke);

Segmentation fault (core dumped) Note:
This code also just doesn’t compile

Plan For Today

* Common string operations: Copying strings

40

The string library: strcpy

strcpy(dst, src):copiescharactersin src to dst, including null terminator.

[>>1 char buf[8];
2 strcpy(buf, "hello");

3 printf("%s\n", buf);

buf:| ? ? ? ? ? ? ? ?

41

The string library: strcpy

strcpy(dst, src):copiescharactersin src to dst, including null terminator.
1 char buf[8];

[D>2 strcpy(buf, "hello");
3 printf("%s\n", buf);

bu_F: lhl Iel Ill Ill IOI I\@l ? ?

42

The string library: strcpy

strcpy(dst, src):copiescharactersin src to dst, including null terminator.
1 char buf[8];
2 strcpy(buf, "hello");

[j> 3 printf("%s\n", buf); // hello

bu_F: lhl Iel Ill Ill IOI I\@l ? ?

43

The string library: strncpy

strncpy(dst, src, n):copies at most ncharactersinsrctodst.

1
2

char str[] = "Hi";

int n = strlen(str);

>

strncpy(buf, str, n);
buf[n] = "\0';
printf("%s\n", buf);

c0O N O u1 A W

buf:| 'h" | 'e" ["1" | "1" | '0o"' | '\O' ? ? str:| '"H" | "1" | "\@"' | n: ?

44

The string library: strncpy

strncpy(dst, src, n):copies at most ncharactersinsrctodst.

1
2

char str[] = "Hi";
[j> int n = strlen(str);
strncpy(buf, str, n);
buf[n] = "\@";

printf("%s\n", buf);

c0O N O u1 A W

buf:| 'h" | 'e" ["1" | "1" | '0o"' | '\O' ? ? str:| '"H" | "1" | "\@"' | n: 2

45

The string library: strncpy

strncpy(dst, src, n):copies at most ncharactersinsrctodst.

buf:

char str[] = "Hi";
int n = strlen(str);
strncpy(buf, str, n);
buf[n] = "\@";
printf("%s\n", buf);

str:

! strncpy() does

not automatically put a
null terminator at the

end of the copy.

46

The string library: strncpy

strncpy(dst, src, n):copies at most ncharactersinsrctodst.

char str[] = "Hi"; ! strncpy() does
not automatically put a

null terminator at the

strncpy(buf, str, n);
end of the copy.

buf[n] = '\0"';
printf("%s\n", buf);

2
3
4
5 int n = strlen(str);
6
7
8

buf:| 'H' it "\e'| "1’ ‘o' | "\0' ? ? str:| "H' "i' | "\@' | n: 2

47

The string library: strncpy

strncpy(dst, src, n):copies at most ncharactersinsrctodst.

2

3

4 char str[] = "Hi";

5 int n = strlen(str);

6 strncpy(buf, str, n);

7 buf[n] = "\@';

g8 printf("%s\n", buf); // Hi

buf:| 'H" | "i' ['\@'| '"1" | '0o' | '\O"' ? ? str:| '"H" | "1" | "\@"' | n: 2

48

O Ul h W N B

String copying exercise

char buf[_]; Line 1: What value should go in the blank?

strcpy(buf, "Chadwick"); A7 D. 12

printf("%s\n", buf); B. 8 =. strlen("Chadwick")
C. 9 ~. Something else

char *word = buf + 2;

strncpy(word, "ris", 3);
printf("%s\n", buf);

Line 6: What is printed?

A. risick D. Chrisick
5. risdwick E. Something else
C. Chris ~. Compile error

°)

p

49

Pitfalls with strcpy: Buffer overflow

L. strcpy(dst, src) does not check if the destination is large enough:

char stri[14];
strcpy(strl, "hello, world!");

char str2[6]; // not enough space

strcpy(str2, strl); // overwrites other memory!
strl]| 'h' ‘e "1 "1 ‘o' Yy b 'w' ‘o' 'r' "1 'd' 1T \e!
ctra| ? >

50

Pitfalls with strcpy: Buffer overflow

L. strcpy(dst, src) does not check if the destination is large enough:

char stri[14];
strcpy(strl, "hello, world!");

char str2[6]; // not enough space
[j>strcpy(str2, strl); // overwrites other memory!
strl]| 'h' ‘e "1 "1 ‘o' Yy b 'w' ‘o' 'r' "1 'd' 1T \e!
str2| 'h’ ‘e "1 "1 ‘o’ " C ‘W' ‘0" Ero) I 'd’ 1 '\e!

Buffer overflow: strcpy(dst, src) writes past the available space in dst.
This is a major security flaw which hackers exploit all the time!

51

Pitfalls with strncpy

strncpy(dst, src, n):always writes up to n bytes; as the programmer,
you can avoid buffer overflow.

' However, if the resulting string is not null-terminated, you could read past
the end of the dst buffer!

[$>char str1[14];
strncpy(strl, "hello there", 5);

printf("%s\n", strl);

strl

52

Pitfalls with strncpy

strncpy(dst, src, n):always writes up to n bytes; as the programmer,
you can avoid buffer overflow.

' However, if the resulting string is not null-terminated, you could read past
the end of the dst buffer!
char stri[14];
[$>strncpy(str1, "hello there", 5);
printf("%s\n", strl);

str1| "' | 'e" | "1 | "1 | 'o' | ? ? ? ? ? ? ? ? ?

53

Pitfalls with strncpy

strncpy(dst, src, n):always writes up to n bytes; as the programmer,
you can avoid buffer overflow.

' However, if the resulting string is not null-terminated, you could read past
the end of the dst buffer!

char stri[14];
strncpy(strl, "hello there", 5);

[$>printf("%s\n", strl);

str1| "' | 'e" | "1 | "1 | 'o' | ? ? ? ? ? ? ? ? ?

hello|?|(?|]]|?||?]|?

54

Questions?

Plan For Today

e Strings as function parameters

56

What's the deal?

1. Valid strings are null-terminated.

2. An array name (and a string name, by
extension) is the address of the first element.

Why did C bother with this representation?

Cis a powerful, efficient language that requires a
solid understanding of computer memory.

Over the next two weeks, we will hone this
understanding with lots of practice!

57

- Key takeaway #3

3. All parameters in C are “pass by value.”
For efficiency purposes, arrays (and strings, by
extension) passed in as parameters are
converted to pointers.

58

CS1068B
Review

Pass by value

* When you pass a value as a parameter, C passes a copy of that value.
What gets printed out by the following program?

void foo(int a) {

a++;

printf("%d\n", a); // 3
}

int main(int argc, char *argv[]) {
int x = 2;
foo(x);
printf("%d\n", x); /] *2%*
return 0;

°)

) .'

(

59

“Pass by reference” with pointers

* When you pass a value as a parameter, C passes a copy of that value.
To modify the original variable, use a pointer to that variable.

void foo(int *a) {
*¥a = *3 + 1; // Equivalent to (*a)++
printf("%d\n", *a); // 3

}

int main(int argc, char *argv[]) {
int x = 2;
foo(&x);

ﬁgizx(;%d\n": X); /] *3% All C parameters (even pointers)

} are passed in by value.

60

Passing In strings

How do you think the parameter str is being represented?

void fun_times(char *str) { str ggg::::ji::j::::::;;i}g
str[@0] = 'd’;

}
int main(int argc, char *argv[]) { local str | ‘vt 1 'i'] 'c' | ‘e’ | "\o'
char local str[] = "rice"; -
fun_times(local str);
return 0;
}
A. A copy of the array local str
3. A pointer containing an address to (?\r

the first elementin local str -
61

Passing In strings

How do you think the parameter str is being represented?

J

void fun_times(char *str) {
str[@] = 'd’;

}

int main(int argc, char *argv[]) {
char local str[] = "rice";
fun_times(local_str);
return 0;

}

A. A copy of the array local str
3.) A pointer containing an address to
the first elementin local str

str

local str

Oxao

Idl

"\Q'

62

Passing in strings, redux

How do you think the parameter str is being represented?

void more_ fun_times(char str[]) { str g;g::::ji::j::::::;;i}g
str[@] = 'm’;

}
int main(int argc, char *argv[]) { local str | 'n' 1 'i'] 'c' | ‘e’ | "\o'
char local str[] = "nice"; -
more_ fun_times(local str);
return 0;
}
A. A copy of the array local str
3. A pointer containing an address to (?\r

the first elementin local_str -
63

Passing in strings, redux

How do you think the parameter str is being represented?

J

void more_fun_times(char str[]) { str ox1b
str[@] = 'm’;

}

int main(int argc, char *argv[]) { local str | 'm' 1 i | ‘¢ | ‘e | "\o
char local str[] = "nice"; -
more_fun_times(local_str);
return 0;

}

char arr[]and char *arrare

equivalent for parameter types.
(Not quite true for local variable declarations)

A copy of the array local str
A pointer containing an address to
the first elementin local str

64

