
1

CS107 Winter 2020, Lecture 5
More C Strings

reading:
Reading: K&R (1.9, 5.5, Appendix B3) or Essen<al C sec<on 3

Slides by Jerry Cain and Lisa Yan, who leveraged prior work by Nick Troccoli, Julie Zelenski, Marty Stepp, Cynthia Lee, Chris Gregg, and others.

Lisa helper hours for this lecture’s content: Tuesday 1/21, 5-7pm

2

Plan For Today
• Recap: Strings and pointers
• More common string operations: Concatenating, searching, and spans
• Break: Announcements
• Strings, memory, and pointers, part 2
• Double pointers and arrays of strings

3

Plan For Today
• Recap: Strings and pointers
• More common string operaNons: ConcatenaNng, searching, and spans
• Break: Announcements
• Strings, memory, and pointers, part 2
• Double pointers and arrays of strings

4

Key takeaways from last time

1. Valid strings are null-terminated.

Review

char str[] = "Hello";
int length = strlen(str); // 5

0xf0 0xf1 0xf2 0xf3 0xf4 0xf5 address

'H' 'e' 'l' 'l' 'o' '\0' charstr

5

Key takeaways from last time

1. Valid strings are null-terminated.
2. An array name (and a string name, by

extension) is the address of the first element.

Review

char str[] = "Hello";
int length = strlen(str); // 5
char *ptr = str+1; // 0xf1
printf("%s\n", ptr); // prints "ello"

0xf0 0xf1 0xf2 0xf3 0xf4 0xf5 address

'H' 'e' 'l' 'l' 'o' '\0' charstrptr

0xe8

?0xf1

6

Key takeaways from last time

1. Valid strings are null-terminated.
2. An array name (and a string name, by

extension) is the address of the first element.
3. All parameters in C are “pass by value.”

For efficiency purposes, arrays (and strings, by
extension) passed in as parameters are
converted to pointers.

Review

7

Code study: string.h implementations

src: A modifiable pointer to
(const char)

8

Code study: string.h implementations
char *my_strcpy(char *dst, const char *src)
{

char *result = dst;
while ((*dst++ = *src++)) ;
return result;

}

Key takeaways:
• While loop with no body executes unNl zero condiNon
• ⚠ The pos\ix ++ operator increments the value of a variable a"er execuNon.
• Assignment op (=) returns result of assignment

1
2
3
4
5
6

🤔

• Line 4: What is happening?

string_code.c

9

Code study: string.h implementations
char *my_strcpy(char *dst, const char *src)
{

char *result = dst;
while ((*dst++ = *src++)) ;
return result;

}

Key takeaways:
• While loop with no body executes unNl zero condiNon
• ⚠ The pos\ix ++ operator increments the value of a variable a"er execuNon.
• Assignment op (=) returns result of assignment

1
2
3
4
5
6

*dst = *src;
char c = *dst;
src = src + 1;
dst = dst + 1;
// break if c == '\0'

string_code.c

10

String Diamond
• Write a function diamond that accepts a string parameter and prints its letters

in a "diamond" format as shown below.
• For example, diamond("PICHU") should print:

P
PI
PIC
PICH
PICHU
ICHU
CHU
HU
U

11

Practice: Diamond

cp -r /afs/ir/class/cs107/samples/lectures/lect5 .

12

Plan For Today
• Recap: Strings and pointers
• More common string operations: Concatenating, searching, and spans
• Break: Announcements
• Strings, memory, and pointers, part 2
• Double pointers and arrays of strings

13

Common string.h Functions
Function Description

strlen(str) returns the # of chars in a C string (before null-terminating character).

strcmp(str1, str2),
strncmp(str1, str2, n)

compares two strings; returns 0 if identical, <0 if str1 comes before str2
in alphabet, >0 if str1 comes after str2 in alphabet. strncmp stops
comparing after at most n characters.

strchr(str, ch)
strrchr(str, ch)

character search: returns a pointer to the first occurrence of ch in str, or
NULL if ch was not found in str. strrchr finds the last occurrence.

strstr(haystack, needle) string search: returns a pointer to the start of the first occurrence of
needle in haystack, or NULL if needle was not found in haystack.

strcpy(dst, src),
strncpy(dst, src, n)

copies characters in src to dst, including null-terminating character.
Assumes enough space in dst. Strings must not overlap. strncpy stops
after at most n chars (might not include null-terminating character).

strcat(dst, src),
strncat(dst, src, n)

concatenate src onto the end of dst. strncat stops concatenating after
at most n characters. Always adds a null-terminating character.

strspn(str, accept),
strcspn(str, reject)

strspn returns the length of the initial part of str which contains only
characters in accept. strcspn returns the length of the initial part of
str which does not contain any characters in reject.

14

Concatenating Strings
What does the following code do?

char str1[] = "tomato";
char str2[] = "potato";
printf("%s", str1 + str2);

A. Prints "tomatopotato", 12 characters
B. Prints "tomato\0potato", 13 characters
C. Prints sum of two memory addresses
D. Compiler error

🤔

15

Concatenating Strings
What does the following code do?

char str1[] = "tomato";
char str2[] = "potato";
printf("%s", str1 + str2);

A. Prints "tomatopotato", 12 characters
B. Prints "tomato\0potato", 13 characters
C. Prints sum of two memory addresses
D. Compiler error

⚠ Pointer arithmeNc: You cannot add addresses together
(result will most likely refer to inaccessible memory)

error: invalid operands to binary
+ (have ‘char *’ and ‘char *’)

printf("%s", str1 + str2);

16

The string library: strcat
To concatenate strings, use strcat (or strncat) which will both remove the
old '\0' and add a new one at the end.

char str1[13]; // enough space for strings + '\0'
strcpy(str1, "hello ");
char str2[] = "world!";
strcat(str1, str2);

str1

0 1 2 3 4 5 6

'w' 'o' 'r' 'l' 'd' '!' '\0'str2

0 1 2 3 4 5 6 7 8 9 10 11 12

'h' 'e' 'l' 'l' 'o' ' ' '\0' ? ? ? ? ? ?

1
2
3
4

17

The string library: strcat
To concatenate strings, use strcat (or strncat) which will both remove the
old '\0' and add a new one at the end.

char str1[13]; // enough space for strings + '\0'
strcpy(str1, "hello ");
char str2[] = "world!";
strcat(str1, str2);

str1

0 1 2 3 4 5 6

'w' 'o' 'r' 'l' 'd' '!' '\0'str2

0 1 2 3 4 5 6 7 8 9 10 11 12

'h' 'e' 'l' 'l' 'o' ' ' 'w' 'o' 'r' 'l' 'd' '!' '\0'

1
2
3
4

18

String Spans
strspn(str, accept): returns the length of the iniNal part of str which
contains only characters in accept.

char str[] = "Pocket Monsters";
int span = strspn(str, "Pokemon"); // 2

19

String Spans
strspn(str, accept): returns the length of the initial part of str which
contains only characters in accept.

char str[] = "Pocket Monsters";
int span = strspn(str, "Pokemon"); // 2

strcspn(str, reject): returns the length of the initial part of str which
contains only characters not in reject (strcspn: ”complement”).

char str[] = "Pocket Monsters";
int span = strcspn(str, "QqJjZzXxVvKk"); // 3

20

Practice: Pig Latin

pig.c

string.h funcNons to consider: strcspn, strcat, strncat

21

Plan For Today
• Recap: Strings and pointers
• More common string operaNons: ConcatenaNng, searching, and spans
• Break: Announcements
• Strings, memory, and pointers, part 2
• Double pointers and arrays of strings

22

Announcements
• Assignment 0 grades released latest Monday
• Assignment 1 due Monday 11:59PM PST

• Grace period until Wed. 11:59PM PST

• Lab 2: C strings practice
• Assignment 2 released at Assignment 1 due date

• Due next Mon. 11:59PM PST, grace period until next Wed. 11:59PM PST
• Programs using C strings

23

Joke break

https://xkcd.com/138/

https://xkcd.com/138/

24

Plan For Today
• Recap: Strings and pointers
• More common string operations: Concatenating, searching, and spans
• Break: Announcements
• Strings, memory, and pointers, part 2
• Double pointers and arrays of strings

25

Important details: char * vs char[]
• As parameter types, they are both pointers (pass by value + efficiency):

• However…

Always keep in mind the following when working with arrays and pointers:
• Can we change the memory address?
• Can we change the content at this memory address?

⚠ Arrays are NOT pointers, even if they someNmes behave like them.

void fun_times(char *str); void fun_times(char str[]);

26

char []

• Arrays are instantiated as a
contiguous block of memory
on the stack.

• The array name is the address of the first element,
designated at compile-time. It refers to the original block
of memory.

• You can never change the address of an array, but you
can always modify its contents.*

Stack

0 Text (program
instrucNons)

Heap

Data segment

// chars stored in
// stack frame
char arr[]= "hi";

*ignoring const and/or static arrays

27

char *

• A pointer is a variable that stores a memory address.
• This memory can be anywhere: in the stack, heap, or

the data segment.
• The data segment contains global/staNc variables or

read-only string literals.

• You can always change the address stored in a pointer,
even if you might not be able to modify the content at
that address.

Stack

0 Text (program
instrucNons)

// chars stored in
// read-only DS
char *str = "hi";

// chars stored in
// stack frame
char arr[]= "hi";
char *str = arr;

Heap

Data segment

28

char* vs char[] exercises
Suppose we use a
variable str as follows:

For each of the
following instantiations:

arr_ptr.c

• Will there be a compile error/segfault?
• If no errors, what is printed?

str = str + 1;
str[1] = 'u';
printf("%s", str)

🤔

1. char str[6] = "Hello1"; 2. char *str = "Hello2";

3. char arr[]= "Hello3";
char *str = arr;

4. char *ptr = "Hello4";
char *str = ptr;

29

char* vs char[] exercises
Suppose we use a
variable str as follows:

For each of the
following instanNaNons:

arr_ptr.c

str = str + 1;
str[1] = 'u';
printf("%s", str)

1. char str[6] = "Hello1"; 2. char *str = "Hello2";

3. char arr[]= "Hello3";
char *str = arr;

4. char *ptr = "Hello4";
char *str = ptr;

Compile error (cannot reassign array) SegmentaNon fault (string literal)

Prints eulo3 SegmentaNon fault (string literal)

• Will there be a compile error/segfault?
• If no errors, what is printed?

30

Nitty gritty detail: char * vs char[]
Detail #1: sizeof() takes the size of a variable at compile Ime.

void binky(char arr[]);
int main(int argc, char *argv[]) {

char arr[] = "supercalifragilisticexpialidocious";
printf("sizeof: %ld\n", sizeof(arr)); // sizeof: 35
binky(arr);
...

}
void binky(char arr[]) { // arr is pointer

printf("sizeof: %ld\n", sizeof(arr)); // sizeof: 8
printf("strlen: %ld\n", strlen(arr)); // strlen: 34

}

⚠

Use strlen instead of sizeof, or pass in array length as parameter.

31

Super nitty gritty detail: char * vs char[]

char *ptr = "hi";
• IniNalize string literal, stored in data

segment
• Point local variable ptr to address of

first character in string literal

char arr[]= "hi";
• Allocate 3 chars’ worth of stack

space, where arr points to address
of first element

• Set elements of arr to 'h', 'i',
and '\0'

Detail #2: Array initialization will always instantiate memory on the stack.

Treat as “fun fact” for now; you will be able to verify this with assembly in a few weeks J

32

What’s the deal with pointers?

Why even bother with pointers if arrays can (seemingly) do most of the work?

• Pointers allow us to (effectively) pass by reference.
• Pointers are always 8* bytes, so they can refer to

large data structures in a compact way.
• Pointers let us refer to memory anywhere

(not just on the stack).
• Pointers to pointers are really useful.

*on a 64-bit machine like myth

33

Plan For Today
• Recap: Strings and pointers
• More common string operations: Concatenating, searching, and spans
• Break: Announcements
• Strings, memory, and pointers, part 2
• Double pointers and arrays of strings

34

Arrays of Strings
We can make an array of strings to group mulNple strings together:

char *string_array[5]; // array of 5 char *s

We can also use the following shorthand to iniNalize a string array:

char *string_array[] = {
"hello world", // strings
"hi", // can have
"have a nice day" // different lengths

};

35

argc and argv

int main(int argc, char *argv[]);

elements in argv An array of char *’s!!

36

Double pointer parameters
The parameter types below are equivalent (both are double pointers):

• As a C programmer, you oren choose stylisNcally between the two to convey
meaning, based on what you expect the input to be.

• You should feel free to use your own abstracNon.

void binky(char *x[]); void winky(char **x);

(suggestion): want to process an
array of pointers

(suggesNon): want to modify a
pointer’s address

37

Skip spaces
Write a function skip_spaces that modifies a string pointer to skip past any
leading spaces.

void skip_spaces(__?__) {
...

}

int main(int argc, char *argv[]) {
char *str = " hello";
skip_spaces(__?__);
printf("%s", str); // should print "hello"

} 🤔

What should go in each
of the blanks?

38

Skip spaces
Write a function skip_spaces that modifies a string pointer to skip past any
leading spaces.

void skip_spaces(char **strptr) {
...

}

int main(int argc, char *argv[]) {
char *str = " hello";
skip_spaces(&str);
printf("%s", str); // should print "hello"

}

We are modifying a specific
instance of the string pointer, so
we pass the location of the string
pointer we would like to modify.

39

Demo: Skip spaces

skip_spaces.c

40

Practice: Password Verification
Write a funcNon verify_password that accepts a candidate password and
certain password criteria and returns whether the password is valid.

bool verify_password(char *password,
char *bad_substrings[], int num_bad_substrings);

password is valid if it does not contain any substrings in bad_substrings.

41

Demo: Password
Verification

verify_password.c

42

Recap of today
• Recap: Strings and pointers
• More common string operaNons: ConcatenaNng, searching, and spans
• Break: Announcements
• Strings, memory, and pointers, part 2
• Double pointers and arrays of strings

