CS107 Winter 2020, Lecture 5
More C Strings

reading:
Reading: K&R (1.9, 5.5, Appendix B3) or Essential C section 3

Lisa helper hours for this lecture’s content: Tuesday 1/21, 5-7pm

Slides by Jerry Cain and Lisa Yan, who leveraged prior work by Nick Troccoli, Julie Zelenski, Marty Stepp, Cynthia Lee, Chris Gregg, and others. 1

Plan For Today

* Recap: Strings and pointers

* More common string operations: Concatenating, searching, and spans
* Break: Announcements

 Strings, memory, and pointers, part 2

* Double pointers and arrays of strings

Plan For Today

* Recap: Strings and pointers

Key takeaways from last time

1. Valid strings are null-terminated.

address
S‘tr\ IHI Iel lll Ill IOI I\@l Char

"Hello";
strlen(str); // 5

char str[]
int length

Key takeaways from last time

2. An array name (and a string name, by
extension) is the address of the first element.

address
ptr Oxf1 str| 'H' ‘e "1 "1 ‘o' | "\0' char

char *ptr = str+l; // Oxfl
printf("%s\n", ptr); // prints "ello"

Key takeaways from last time revew

3. All parameters in C are “pass by value.”
For efficiency purposes, arrays (and strings, by
extension) passed in as parameters are
converted to pointers.

Code study: string.h implementations

STRCPY(3) Linux Programmer's Manual STRCPY(3)

NAME
strcpy, strncpy - copy a string

SYNOPSIS «po .
#include <string.h> src: A modifiable pointer to

(const char)

[:t> char *strcpy(char *dest, const char *src);

char *strncpy(char *dest, const char *src, size_t n);

Code study: string.h implementations

1 char *my strcpy(char *dst, const char *src)
2 { string code.c
3 char *result = dst;
4 while ((*dst++ = *src++)) ; * Line 4: What is happening? ‘
5 return result;
6 }

Key takeaways:

* While loop with no body executes until zero condition

e /L. The postfix ++ operator increments the value of a variable after execution.

°)
®)

y

* Assignment op (=) returns result of assignment &

p

Code study: string.h implementations

1 char *my_strcpy(char *dst, const char *src)
2 { string code.c
3 char *result = dst;
4 while ((*dst++ = *src++)) ; I *dst = *src;
5 return result; char c = *dst;
src = src + 1;
6 } dst = dst + 1;
// break if c == '\@'
Key takeaways:)

* While loop with no body executes until zero condition
e /L. The postfix ++ operator increments the value of a variable after execution.

» Assignment op (=) returns result of assignment

String Diamond

* Write a function diamond that accepts a string parameter and prints its letters
in a "diamond" format as shown below.

* For example, diamond("PICHU") should print:

P
PI
PIC
PICH
PICHU
ICHU
CHU
HU
U

10

Practice: Diamond

cp -r /afs/ir/class/csl1l07/samples/lectures/lect5 .

11

Plan For Today

* More common string operations: Concatenating, searching, and spans

12

string.h Functions

Function

Description

strlen(str)

returns the # of chars in a C string (before null-terminating character).

strcmp(strl, str2),
strncmp(strl, str2, n)

compares two strings; returns O if identical, <0 if strl1 comes before str2
in alphabet, >0 if strl comes after str2 in alphabet. strncmp stops
comparing after at most n characters.

strchr(str, ch)
strrchr(str, ch)

character search: returns a pointer to the first occurrence of ch in str, or
NULL if ch was not found in str. strrchr finds the last occurrence.

strstr(haystack, needle)

string search: returns a pointer to the start of the first occurrence of
needle in haystacR, or NULL if needle was not found in haystacR.

strcpy(dst, src),
strncpy(dst, src, n)

copies characters in src to dst, including null-terminating character.
Assumes enough space in dst. Strings must not overlap. strncpy stops
after at most n chars (might not include null-terminating character).

strcat(dst, src),
strncat(dst, src, n)

concatenate src onto the end of dst. strncat stops concatenating after
at most n characters. Always adds a null-terminating character.

strspn(str, accept),
strcspn(str, reject)

strspn returns the length of the initial part of str which contains only
characters in accept. strcspn returns the length of the initial part of
str which does not contain any characters in reject.

Concatenating Strings

What does the following code do?

char strl[] = "tomato";

char str2[] = "potato";
printf("%s", strl + str2);

Prints "tomatopotato", 12 characters
Prints "tomato\@potato", 13 characters
Prints sum of two memory addresses
Compiler error

oo w>

°)

) .'

p

14

Concatenating Strings

What does the following code do?

char strl[] = "tomato";
char str2[] = "potato";
printf("%s", strl + str2);

Prints "tomatopotato", 12 characters
Prints "tomato\@potato", 13 characters
Prints sum of two memory addresses

Compiler error error: invalid operands to binary

+ (have ‘char x' and ‘char %x’)
printf("%s", strl + str2);

' Pointer arithmetic: You cannot add addresses together
(result will most likely refer to inaccessible memory)

15

The string library: strcat

To concatenate strings, use strcat (or strncat) which will both remove the
old '\0@' and add a new one at the end.

1 char stril[13]; // enough space for strings + '\0'
2 strcpy(strl, "hello ");

3 char str2[] = "world!";

4 strcat(strl, str2);

S‘tr\l lhl Iel Ill Ill IOI 1 I l\@l ? ? ? ? ? ?

Str\Z IWI IOI Ir\l Ill ldl l!l I\@I

16

The string library: strcat

To concatenate strings, use strcat (or strncat) which will both remove the
old '\0@' and add a new one at the end.

1 char stril[13]; // enough space for strings + '\0'
2 strcpy(strl, "hello ");
3 char str2[] = "world!";

[>¢Lstrcat(str1, str2);

S‘tr\l Ihl Iel Ill Ill IOI 1 I lwl IOI Ir‘l Ill ldl I!I l\@l

Str\Z IWI IOI Ir\l Ill ldl l!l I\@I

17

strspn(str, accept):returnsthe length of the initial part of str which
contains only characters in accept.

char str[] = "Pocket Monsters";
int span = strspn(str, "Pokemon"); /] 2

18

strcspn(str, reject):returnsthe length of the initial part of str which
contains only characters not in reject (strcspn: "complement”).

char str[] = "Pocket Monsters";
int span = strcspn(str, "QgJjZzXxVvKkk"); // 3

19

Practice: Pig Latin

pig.c

string.h functions to consider: strcspn, strcat, strncat

20

Plan For Today

 Break: Announcements

21

Announcements

e Assignment O grades released latest Monday

* Assignment 1 due Monday 11:59PM PST
* Grace period until Wed. 11:59PM PST

e Lab 2: C strings practice

* Assighment 2 released at Assignment 1 due date
* Due next Mon. 11:59PM PST, grace period until next Wed. 11:59PM PST
* Programs using C strings

22

Joke break

MAN, | S5UCK AT THIS GAME.
CAN YOU GIVE ME.
A FEW POINTERS?

Ox3A28213A
Ox6339292C,
Ox7363632E.

https://xkcd.com/138/

https://xkcd.com/138/

Plan For Today

 Strings, memory, and pointers, part 2

24

Important details: char * vs char[]

* As parameter types, they are both pointers (pass by value + efficiency):

void fun_times(char *str); void fun_times(char str[]);

* However...

' Arrays are NOT pointers, even if they sometimes behave like them.

Always keep in mind the following when working with arrays and pointers:
* Can we change the memory address?
* Can we change the content at this memory address?

25

char []

* Arrays are instantiated as a // chars stored in
contiguous block of memory // stack frame Stack
on the stack. char arr[]= "hi";

* The array name is the address of the first element,
designated at compile-time. It refers to the original block
of memory.

Heap

* You can never change the address of an array, but you Data segment
can always modify its contents.*

Text (program

instructions)

0

*ignoring const and/or static arrays 26

* A pointer is a variable that stores a memory address.

* This memory can be anywhere: in the stack, heap, or

the data segment.

* The data segment contains global/static variables or

read-only string literals.

// chars stored in
// read-only DS
char *str = "hi";

// chars stored in
// stack frame
char arr[]= "hi";
char *str = arr;

* You can always change the address stored in a pointer,
even if you might not be able to modify the content at

that address.

Stack

Heap

Data segment

Text (program

instructions)

27

char* vs char[] exercises

Suppose we use a str = str + 1;
variable str as follows: str[1] = "u’; arr ptr.c
printf("%s", str) =

For each of the * Will there be a compile error/segfault?
following instantiations: * If no errors, what is printed?

1. char str[6] = "Hellol"; 2. char *str = "Hello2";

3. char arr[]= "Hello3"; 4. char *ptr = "Hello4";

char *str = arr; char *str = ptr; A~

p

28

char* vs char[] exercises

Suppose we use a str = str + 1;

variable str as follows: str[1] = "u’; arr ptr.c
printf("%s", str) =

For each of the * Will there be a compile error/segfault?

following instantiations: * If no errors, what is printed?

1. char str[6] = "Hellol"; 2. char *str = "Hello2";

Compile error (cannot reassign array)

3. char arr[]= "Hello3"; 4.
char *str = arr;

Prints eulo3

Segmentation fault (string literal)

char *ptr = "Hello4";
char *str = ptr;

Segmentation fault (string literal)
29

Nitty gritty detail: char * vs char[]

. Detail #1: sizeof () takes the size of a variable at compile time.

void binky(char arr[]);
int main(int argc, char *argv[]) {

char arr[] = "supercalifragilisticexpialidocious”;
printf("sizeof: %1d\n", sizeof(arr)); // sizeof: 35
binky(arr);

}

void binky(char arr[]) { // arr 1is pointer
printf("sizeof: %1d\n", sizeof(arr)); // sizeof: 8
printf("strlen: %1d\n", strlen(arr)); // strlen: 34

}

Use strlen instead of sizeof, or pass in array length as parameter.

30

Super nitty gritty detail: char * vs char[]

Detail #2: Array initialization will always instantiate memory on the stack.

char *ptr = "hi"; char arr[]= "hi";

* Initialize string literal, stored in data * Allocate 3 chars’ worth of stack
segment space, where arr points to address

- Point local variable ptr to address of ~ ©Of first element

first character in string literal e Set elementsof arrto 'h', "1,
and "\0'

Treat as “fun fact” for now; you will be able to verify this with assembly in a few weeks ©
31

What's the deal with pointers?

Why even bother with pointers if arrays can (seemingly) do most of the work?

* Pointers allow us to (effectively) pass by reference.
* Pointers are always 8* bytes, so they can refer to
large data structures in a compact way.
* Pointers let us refer to memory anywhere
(not just on the stack).
* Pointers to pointers are really useful.

*on a 64-bit machine like myth 32

Plan For Today

* Double pointers and arrays of strings

33

Arrays of Strings

We can make an array of strings to group multiple strings together:
char *string array[5]; // array of 5 char *s

We can also use the following shorthand to initialize a string array:

char *string array[] = {

"hello world", // strings
"hi", // can have
"have a nice day" // different lengths

s

34

int main(int argc, char *argv[]);

]]

elements in argv ‘An array of char *’s!!

35

Double pointer parameters

The parameter types below are equivalent (both are double pointers):

void binky(char *x[]); void winky(char **x);
(suggestion): want to process an (suggestion): want to modify a
array of pointers pointer’s address

* As a C programmer, you often choose stylistically between the two to convey
meaning, based on what you expect the input to be.

* You should feel free to use your own abstraction.

36

Skip spaces

Write a function skip_spaces that modifies a string pointer to skip past any
leading spaces.

What should go in each

void skip spaces(?) { of the blanks?
}
int main(int argc, char *argv[]) {

char *str = " hello";

skip_spaces(__ ?_); /
printf("%s", str); // should print "hello" (;)
} -

)

p—
(e}

7

Skip spaces

Write a function skip_spaces that modifies a string pointer to skip past any
leading spaces.

We are modifying a specific
instance of the string pointer, so
we pass the location of the string
} pointer we would like to modify.

void skip spaces(char **strptr) {

int main(int argc, char *argv[]) {

char *str = " hello";
skip spaces(&str);
printf("%s", str); // should print "hello"

38

Demo: Skip spaces

skip_spaces.c

Practice: Password Verification

Write a function verify password that accepts a candidate password and
certain password criteria and returns whether the password is valid.

bool verify password(char *password,
char *bad substrings[], int num_bad substrings);

password is valid if it does not contain any substrings in bad_substrings.

40

Demo: Password
Verification

Recap of today

* Recap: Strings and pointers

* More common string operations: Concatenating, searching, and spans
* Break: Announcements

 Strings, memory, and pointers, part 2

* Double pointers and arrays of strings

42

