CS107 Winter 2020, Lecture 6

More Pointers and Arrays

reading:
K&R (5.2-5.5) or Essential C section 6

Slides by Jerry Cain and Lisa Yan, who leveraged prior work by Nick Troccoli, Julie Zelenski, Marty Stepp, Cynthia Lee, Chris Gregg, and others. 1

CS107 Topic 3: How can we
effectively manage all types
of memory in our

programs?

Plan For Today

e Pointers and addresses, a review
* Arrays of different types
* Break: Announcements

* Programming with stack memory

cp -r /afs/ir/class/csl1l07/samples/lectures/lect6 .

Warmup exercise

Compare and contrast the following declarations of X (some may not compile):

1. char *x; char x[4];
2. char *x; char &x;
3. char *x; char **x;
4. char *x; char* x;

°)

) .'

p

A most unfortunate page break v

° K&R’ top Of p. 100 100 POINTERS AND ARRAYS CHAPTER $

char s();

use it says more explicitly that the
parameter is a pointer. When an array name is passed to a function, the func-
tion can at its convenience believe that it has been handed cither an array or a
pointer, and manipulate it accordingly. It can even use both notations if it
seems appropriate and clear.

e K&R, bottom of p. 99

strlien(ptr); /e char sptr; «/

As formal parameters in a function definition, _

' Arrays are NOT pointers, even if they sometimes behave like them.

* Wars: Episode I (of 2)

In variable declaration, * creates a pointer.

char ch = 'r

J

char *cptr = &ch;

char **strptr

&cptr;

ch stores a char ch

cptr stores an address of

a char cptr Lr\ oxto
(points to a char)

strptr stores an address of
a char *

(points to a char *) strptr

Warmup exercise

Compare and contrast the following declarations of X (some may not compile):

1.

char *x;

char *x;

char *x;

char *x;

Pointer variable: stores char x[4];
an address to a char

char &x;
Variable stores char **x;
an address of a char
No difference; left is char* x;

preferred stylistically

Array variable: contiguous
block of memory on stack

Not a valid type; & operator
means “address of”

Variable stores
an address of a char *

* Wars: Episode 1I (of 2)

In reading values from/storing values, * dereferences a pointer.

char ch = 'r'; Increment value stored in ch ch I ‘s’ |
ch = ch + 1;

* Wars: Episode 1I (of 2)

In reading values from/storing values, * dereferences a pointer.

char *cptr = &ch;
*cptr = *cptr + 1;

Increment value stored at
memory address in cptr
(increment char pointed to)

ch

cptr

\ Oxfo

* Wars: Episode 1I (of 2)

In reading values from/storing values, * dereferences a pointer.

char **strptr = &cptr; Increment value stored at \

*strptr = *strptr + 1; memory address in cptr
(increment address pointed to)

strptr \ oxes

10

Pen and paper: A * Wars Story

1 void binky() A

, int a = 10; * Lines 2-5: Draw a diagram.

3 int b = 20; * Line 7: Update your diagram.

4 int *p = 8a; * Line 8: Update your diagram.
ﬁ>5 int *g = &b;

6 a 10 m oxFfe800

7 *p = *q; -

8 p = g; m

9 3 b 20 | q | oxffe804

arrptr.c 11

Pen and paper: A * Wars Story

1 void binky() A
, int a = 10; * Lines 2-5: Draw a diagram.
3 int b = 20; * Line 7: Update your diagram.
4 int *p = 8a; * Line 8: Update your diagram.
5 int *g = &b;
6 a 20 m oxFfe800
D7 *p = *g;
8 p = g; m
9 3 b 20 | q | oxffes804
arrptr.c 12

Pen and paper: A * Wars Story

1 void binky() A

2 int a = 10;

3 int b = 20;

4 int *p = &a;

5 int *g = &b;

6

7 *p = *q;
)8 p = q;

9 }

* Lines 2-5: Draw a diagram.
* Line 7: Update your diagram.
* Line 8: Update your diagram.

20

20

p Oxffe804

d Oxffe804

13

Beyond char* and char[]

Recall: sizeof () returns the size of a variable type in bytes at compile time.
sizeof(char *) // 8

What will sizeof(arr) return in the following cases?

A. 4 D. 24
1. char arr[] = "rey"; B 8 F 32
C. 16 F. Other

2. int arr[] = {1, 32, 128, 256},

3. char *arr[] = {
"have a",
"nice",
"day" (

o)
°)

y

s

p

14

Pointer arithmetic

Array indexing is “syntactic sugar” for pointer arithmetic:
ptr + 1 & &ptr[i]
*(ptr + 1) < ptr[i]

' Pointer arithmetic does not work in bytes; it works on the type it points to.
On int* addresses scale by sizeof(int), on char* scale by sizeof(char) .

* This means too-large/negative subscripts will compile ©
arr[99] arr[-1]

* You can use either syntax on either pointer or array.

15

Demo: Pointer arithmetic

arrptr.c

Useful Linux commands

Working with multiple terminals: Working with one terminal:
* Create new terminal, click and drag * clear (or Ctrl-k/38-k)
to resize, then ssh into both clears current terminal output
e Useful to keep gdb open in one e Ctrl-z
window, editor in another temporarily suspends current job
* /. Don’t edit the same file in two (editor, gdb, etc.)
different windows * jobs lists all jobs
e fg %1 continues job [1]
Whatever your workflow is, be sure to (see Jjobs for job list)
quit all jobs (“close all windows”) when e kill %1 Kkills job

you log out/disconnect internet (“force quit” — only use if necessary)

17

Code study: strlen

1 /* Based on FreeBSD 6.2's strlen */ '\0'

2 size t freebsd strlen(char *str) { '3

3 char *s; D

4 for (s = str; *s; s++) ;

5 return (s - str); ; — ‘b’

6 } a'
str oxfo - —T» ‘5!

Some notes:

* The size t(unsighed long) represents size of objects in bytes.

* Line 4: Recall the character '\@" has ASCII value 0.

This function exclusively uses pointer arithmetic.

* Line 4: ++ operator on pointers needs to know that s points to chars!

* Line 5: - operator on pointers needs to know both s and str point to chars!

strlen_code.c 18

Write your own: strlen

1 /* Based on FreeBSD 6.2's strlen */ '\0"

2 size t freebsd strlen(char *str) { =N

3 char *s; D

4 for (s = str; *s; s++) ;

5 return (s - str); ‘b’

6 } 'a'
% % str Oxfo T ‘5!

1 /* Usj_ng array j_ndexj_ng */ Line 4: Which |OOp co.ndition?

2 size t my strlen(char *str) { |A. str[n], orequivalently,

3 int n = 0 str[n] != "\@’

4 while (p) { B. str + n I=""

5 N++; C. str + n = NULL

6 } D. Something else _—

7 return n; Bonus: Can we write a strlen function Kh

8 } for other array types (e.g., int arrays)? L

strlen for other array types?

* No! Arrays in general are not null-terminated. int arr[] = {3, 4, 5, 6};

* For strings, C designer Dennis Ritchie decided to ~
use a special terminating character (' \0"').
Other array types don’t have this (e.g., what’s
a “null-terminating integer”?)

arr —

Wl lhlu|lo|:

When writing functions for other array types, you need to
explicitly pass in the length of an array:

void traverse int array(int arr[], int len);

* Note: assign2’s const char *envp[] has a NULL pointer
placed after its last entry, but this is extremely uncommon.

20

Questions?

Plan For Today

* Double pointers, a review

cp -r /afs/ir/class/csl1l07/samples/lectures/lect6 . -

C parameters are pass-by-value v

A parameter is the callee’s variable—distinct from caller’s variable.
In all cases (other than array-as-parameter case), values are copied.

callee| void change(char ch) { void change(char *p ch) {
ch = toupper(ch); *p _ch = toupper(*p _ch);
} }
caller | int main(...) { int main(...) {
char letter = 'a’; char letter = 'a’;
change(letter); change(&letter);
return 0; return 0;
} }
letter is unchanged letter is changed

To achieve pass-by-reference, manually use pointers.

23

The same applies to pointer parameters

‘cauee‘void change(char *str) { void change(char **p_str) {
str = str + 1; *p_str = *p str + 1;
} }
‘ca"er‘int main(...) { int main(...) {
char *name = "drain"; char *name = "drain";
change(name); change(&name);
return 0; return 0;
} }
name is unchanged name is changed

Tip: Always draw a picture!!

24

Skip spaces

void skip_ spaces(char **p str) { A 1 a1] e

1

2 int num = strspn(*p_str, " "); ' 1l

3 *p str = *p str + num; ctp [:i:::T\‘\~
4 }

5

6

. :

3

int main(int argc, char *argv[]){
char *str = " Hil";
skip_spaces(&str);

printf("%s", str); // "Hi!" str

9 return 0; p_str
10 }
What diagram most accurately depicts C. Lt tH |] e
program state at Line 4 (before | (‘j |
skip_spaces returns to main)? str p_str =

25

Skip spaces

void skip_ spaces(char **p str) { A 1 a1] e

1

2 int num = strspn(*p_str, " "); ' 1l

3 *p str = *p str + num; ctp [:i:::T\‘\~
4 }

5

6

7

3

int main(int argc, char *argv[]){

k — " N LA
ch?r str Hi!"; B ol] R i] 1 e
skip spaces(&str);
printf("%s", str); // "Hi!" str
9 return O: p_str C++ pass by reference
10 }
What diagram most accurately depicts C. Lt tH |] e
program state at Line 4 (before |
. . t t
skip spaces returnstomain)? >t b_StF

26

Questions?

Plan For Today

* Break: Announcements

cp -r /afs/ir/class/csl1l07/samples/lectures/lect6 . -

Announcements

* lab2 check-in
 assign2: lots of string practice, some double pointers
* Read Piazza FAQ for each assignment

* Education Research Survey: http://bit.ly/2TwXjcS

* Social Good Fellowship: https://web.stanford.edu/class/cs107/resources/cs-
sg-fellowship.pdf

e CS198: deadline Thursday 1/30, 11:59PM cs198.stanford.edu

29

http://bit.ly/2TwXjcS
https://web.stanford.edu/class/cs107/resources/cs-sg-fellowship.pdf
http://cs198.stanford.edu/

Joke break

4 ® . What data type do you need

to store this number?

Wed, Jan 22 [94%

240,282 800088 1. tewere
28,360,000,000,00 T_ha
O,OOO,OOO,OOO,OOOO (we’ll come back to this in 2 weeks)

Sunny
San Diego, Wed 4:10 PM

Plan For Today

* Programming with stack memory

cp -r /afs/ir/class/csl1l07/samples/lectures/lect6 . 31

Memory Layout**

* The stack is the place where all local variables and
parameters live for each function.*

* A function’s stack frame goes away when the function
returns.

* The stack grows downwards when a new function is

called. It shrinks upwards when the function is
finished.

*gcc, our compiler, uses option -00 to force everything (including
parameters) on the stack (see week 6, “registers,” for more info)

**Assume all 18 exabytes of system memory accessible (read
about “virtual memory” for more info)

Ox7ffffffff000 sMB

reserved

Ox7ffff7ffe000 | Shared library Sized for
text/data library

Grows on

demand
0x602010

0x600000 Global data Sized for

executable
Text
0x400000 (machine code)

Low addresses
deliberately unmapped

32

The Stack

* The stack behaves like a...well...stack! A new function call pushes on a new
frame. A completed function call pops off the most recent frame.

* A stack overflow is when you use up all stack memory. E.g. a recursive call
with too many function calls.

.Interesting and important fact: C does not clear out memory when a
function’s frame is removed. Instead, it just marks that memory as usable for
the next function call. This is more efficient!

33

coNOTUITD WDN B

uihwNnPRE

\'
[

The Stack

char *create_string(char ch, int num) {
char new str[num + 1];
for (int 1 = 0@; i < num; i++) {
new str[i] = ch;
}
new _str[num] = "\@';
return new _str;
}
int main(int argc, char *argv[]) {
char *str = create string('a’', 4);
printf("%s", str); // want "aaaa"
return 0;
}

stack chaos.c

Stack

Ox0

Memory

main
argc: 1

argv: | OxfffO

34

The Stack

Memory
1 char *create_string(char ch, int num) {
2 char new str[num + 1]; main
3 for (int 1 = 0; i < num; i++) { arge: [| str:
4 new str[i] = ch; Stack
5 } argv: | OxfffO
6 new str[num] = "\0@'; ‘
7 return new_str;
8 }
1 int main(int argc, char *argv[]) {
[j> 2 char *str = create string('a’', 4);
3 printf("%s", str); // want "aaaa"
4 return 0;
5 }
stack chaos.c 35
Ox0

N

coNOTUITD WDN B

uihwNnPRE

W
[

The Stack

char *create_string(char ch, int num) {
char new str[num + 1];
for (int 1 = 0@; 1 < num; i++) {
new str[i] = ch;
}
new _str[num] = "\@';
return new _str;
}
int main(int argc, char *argv[]) {
char *str = create string('a’', 4);
printf("%s", str); // want "aaaa"
return 0;
}

stack chaos.c

Stack =9

Ox0

Memory

main

arge: [4 | str:

argv: | OxfffO

create string

ch:-a- num:

36

The Stack

1 char *create string(char ch, int num) { Memory
[j> 2 char new str[num + 1]; ~ [pain

3 for (int 1 = 0@; i < num; i++) { arge: [| str:

4 new str[i] = ch; Stack =3

5 } argv: | OxfffO

6 new _str[num] = "\@'; create string

7 return new_str; chil g [NUM:| 4

8 }

1 int main(int argc, char *argv[]) {

2 char *str = create string('a’', 4);

3 printf("%s", str); // want "aaaa"

4 } return 0; ew str-

c _ _str:
stack chaos.c 37

Ox0

The Stack

.) Memory

1 char *create_string(char ch, int num) {

2 char new_str[num + 1]; ~ [main

3 for (int 1 = 0; 1 < num; i++) { arge: |4 | str:

4 new str[i] = ch; Stack

5 } argv: | OxfffO

6 new _str[num] = "\@'; create string
[j> 7 return new_str; chil g | nuUm: 4

3 } Returns e.g. 0xff50

I\OI

1 int main(int argc, char *argv[]) { 'al

2 char *str = create string('a’', 4); A

3 printf("%s", str); // want "aaaa" '3

4 return 0; s |2

5 } -
stack chaos.c 23

Ox0

The Stack

.) Memory
1 char *create_string(char ch, int num) {
2 char pew_§tr[num.+ 1]; . ~ [main
3 for (int 1 =.@; i < num; i++) { argc: [4| St oxfis0
4 new str[i] = ch; Stack =
5 } argv: | OxfffO
6 new _str[num] = "\@'; create strin
[j> 7 return new_str; chi| o
8 }

1 int main(int argc, char *argv[]) {

2 char *str = create string('a’', 4);

3 printf("%s", str); // want "aaaa"

4 return 0; :
c } _ new_str:

W
[

stack_chaos.c 59

Ox0

coNOTUITD WDN B

uihwNnPRE

W
[

The Stack

char *create_string(char ch, int num) {
char new str[num + 1];
for (int 1 = 0@; i < num; i++) {
new str[i] = ch;
}
new _str[num] = "\@';
return new _str;
}
int main(int argc, char *argv[]) {
char *str = create string('a’', 4);
printf("%s", str); // want "aaaa"
return 0;
}

stack chaos.c

Stack =9

Ox0

Memory

main

argc:

1 str:

0xff50

argv:

OxfffO

10

The Stack

.] Memory
1 char *create_string(char ch, int num) {
2 char new_str[num + 1]; ~ [main
3 for (int 1 = 0@; i < num; i++) { argc: s
: ' | 0xff50
4 new str[i] = ch; Stack = ! -
5 } argv: | OxfffO
6 new str[num] = "\@';
7 return new_str;
8 }

int main(int argc, char *argv[]) {
char *str = create string('a’', 4);
printf("%s", str); // want "aaaa"

~
uihwNnPRE

return 0;
= ! Stack memory gets reused when a function returns!
stack chaos.c 0x0 41
X

Demo: Stack chaos

stack chaos.c

Overflow

(for next time)

Stacked Against Us

How do we make sure memory content persists
after a function exits?

If we're committed to stack-only memory: let the
caller allocate memory and pass it to the callee.

(we’ll learn heap memory next week)

44

Programming with the stack (1/2)

Recall that arrays passed in as parameters are converted to pointers.
Strategy #1: Allow callee to modify existing arrays.

void b1nky(char *ptr) {
ptr[e] = ;
}

int main(int argc, char *argv[]) {
char arr[] = "asdf";
modify array(arr);
printf("%s", arr); // Bsdf
return 0;

45

Programming with the stack (2/2)

Recall that arrays passed in as parameters are converted to pointers.
Strategy #2: Pass in a pre-allocated buffer that the caller can write to.

void pig latin(char *out, char *in) {
/* write changes to out */
}

int main(int argc, char *argv[]) {
char str[] = "be";
char converted[50]; // output buffer
pig latin(converted, str);
printf("%s %s", str, converted); // be ebay
return 9;

46

Practice: Copy positive ints

Write a function copy pos that copies positive integers from in to out and
returns the number of integers copied (i.e., the length of out).

arr -2 1 (] 4 6 -8

buf 1 4 6 ? ? ?

8 int main(int argc, char *argv[]) {

9 int arr[] = {-2, 1, 0, 4, 6, -8};
10 int len = ? ; // 6
11 int buf[len];
[j>12 int buf len = copy_pos(buf, arr, len); // returns 3
13 return 9;

14 }

47

Practice: Copy positive ints

Write a function copy pos that copies positive integers from in to out and
returns the number of integers copied (i.e., the length of out).

1 int

int

copy _pos(int *out, int *in, int len) {
int num = 9;

for (int 1 = @; 1 < len; i++) { e Line 10: How do we find
} /* fill this part in */ array length with sizeof?
return num; * Line 6: Why do we return

the length of out?

* Line 4: What goes in the
for-loop? (multiple lines)

main(int argc, char *argv[]) {
int arr[] = {-2, 1, 0, 4, 6, -8};
int len = ? 5

int buf[len];
int buf _len = copy pos(buf, arr, len);
return 0; V

48

Practice: Copy positive
Integers

=3 (lecture: with array indexing)
Bonus: Try writing this with

pointer arithmetic!

int_array.c

