
1

CS107 Winter 2020, Lecture 6
More Pointers and Arrays

reading:
K&R (5.2-5.5) or Essential C section 6

Slides by Jerry Cain and Lisa Yan, who leveraged prior work by Nick Troccoli, Julie Zelenski, Marty Stepp, Cynthia Lee, Chris Gregg, and others.

2

CS107 Topic 3: How can we
effectively manage all types

of memory in our
programs?

3

Plan For Today
• Pointers and addresses, a review
• Arrays of different types
• Break: Announcements
• Programming with stack memory

cp -r /afs/ir/class/cs107/samples/lectures/lect6 .

4

Warmup exercise
Compare and contrast the following declarations of x (some may not compile):

1. char *x; char x[4];

2. char *x; char &x;

3. char *x; char **x;

4. char *x; char* x;

🤔

Review

5

A most unfortunate page break
• K&R, top of p. 100

• K&R, bottom of p. 99

⚠ Arrays are NOT pointers, even if they someRmes behave like them.

Review

6

* Wars: Episode I (of 2)
In variable declaration, * creates a pointer.

char ch = 'r';

char *cptr = &ch;

char **strptr = &cptr;

ch stores a char

cptr stores an address of
a char
(points to a char)

strptr stores an address of
a char *
(points to a char *)

ch

0xf0

'r'

cptr

0xe8

0xf0

strptr

0xe0

0xe8

Review

7

Warmup exercise
Compare and contrast the following declarations of x (some may not compile):

1. char *x; char x[4];

2. char *x; char &x;

3. char *x; char **x;

4. char *x; char* x;

Pointer variable: stores
an address to a char

Array variable: contiguous
block of memory on stack

Not a valid type; & operator
means “address of”

Variable stores
an address of a char

Variable stores
an address of a char *

No difference; left is
preferred stylistically

Review

8

* Wars: Episode II (of 2)
In reading values from/storing values, * dereferences a pointer.

Review

char ch = 'r';
ch = ch + 1;

char *cptr = &ch;

char **strptr = &cptr;

Increment value stored in ch ch

0xf0

'r'

cptr

0xe8

0xf0

strptr

0xe0

0xe8

's'

9

* Wars: Episode II (of 2)
In reading values from/storing values, * dereferences a pointer.

Review

char ch = 'r';
ch = ch + 1;

char *cptr = &ch;
*cptr = *cptr + 1;

Increment value stored in ch

Increment value stored at
memory address in cptr
(increment char pointed to)

ch

0xf0

's'

cptr

0xe8

0xf0

strptr

0xe0

0xe8

char **strptr = &cptr;

't'

10

0xe8

0xf0

* Wars: Episode II (of 2)
In reading values from/storing values, * dereferences a pointer.

Review

char ch = 'r';
ch = ch + 1;

char *cptr = &ch;
*cptr = *cptr + 1;

char **strptr = &cptr;
*strptr = *strptr + 1;

Increment value stored in ch

Increment value stored at
memory address in cptr
(increment char pointed to)

Increment value stored at
memory address in cptr
(increment address pointed to)

cptr

strptr

0xe0

0xe8

ch

0xe8

0xf1

0xf1

?

0xf0

't'

11

0xffe808

0xffe800

Pen and paper: A * Wars Story
void binky() {

int a = 10;
int b = 20;
int *p = &a;
int *q = &b;

*p = *q;
p = q;

}

🤔

1
2
3
4
5
6
7
8
9

• Lines 2-5: Draw a diagram.
• Line 7: Update your diagram.
• Line 8: Update your diagram.

a
0xffe800

10 p

b

0xffe804

20

0xffe810

0xffe804q

arrptr.c

12

Pen and paper: A * Wars Story
void binky() {

int a = 10;
int b = 20;
int *p = &a;
int *q = &b;

*p = *q;
p = q;

}

1
2
3
4
5
6
7
8
9

• Lines 2-5: Draw a diagram.
• Line 7: Update your diagram.
• Line 8: Update your diagram.

0xffe808

0xffe800a
0xffe800

10 p

b

0xffe804

20

0xffe810

0xffe804q

20

arrptr.c

13

Pen and paper: A * Wars Story
void binky() {

int a = 10;
int b = 20;
int *p = &a;
int *q = &b;

*p = *q;
p = q;

}

1
2
3
4
5
6
7
8
9

• Lines 2-5: Draw a diagram.
• Line 7: Update your diagram.
• Line 8: Update your diagram.

0xffe808

0xffe800a
0xffe800

20 p

b

0xffe804

20

0xffe810

0xffe804q

0xffe804

arrptr.c

14

Beyond char* and char[]
Recall: sizeof() returns the size of a variable type in bytes at compile time.

sizeof(char *) // 8

What will sizeof(arr) return in the following cases?

🤔

3. char *arr[] = {
"have a",
"nice",
"day"

};

2. int arr[] = {1, 32, 128, 256};

1. char arr[] = "rey";
A. 4
B. 8
C. 16

D. 24
E. 32
F. Other

15

Pointer arithmetic
Array indexing is “syntactic sugar” for pointer arithmetic:

ptr + i ó &ptr[i]
*(ptr + i) ó ptr[i]

• This means too-large/negative subscripts will compile J

arr[99] arr[-1]

• You can use either syntax on either pointer or array.

⚠ Pointer arithmeRc does not work in bytes; it works on the type it points to.
On int* addresses scale by sizeof(int), on char* scale by sizeof(char) .

16

Demo: Pointer arithmetic

arrptr.c

17

Useful Linux commands
Working with mulRple terminals:
• Create new terminal, click and drag

to resize, then ssh into both
• Useful to keep gdb open in one

window, editor in another
•⚠ Don’t edit the same file in two

different windows

Working with one terminal:
• clear (or Ctrl-k/⌘-k)

clears current terminal output
• Ctrl-z

temporarily suspends current job
(editor, gdb, etc.)

• jobs lists all jobs
• fg %1 continues job [1]

(see jobs for job list)
• kill %1 kills job

(“force quit” – only use if necessary)

Whatever your workflow is, be sure to
quit all jobs (“close all windows”) when
you log out/disconnect internet

18

Some notes:
• The size_t (unsigned long) represents size of objects in bytes.
• Line 4: Recall the character '\0' has ASCII value 0.
This funcRon exclusively uses pointer arithmeRc.
• Line 4: ++ operator on pointers needs to know that s points to chars!
• Line 5: - operator on pointers needs to know both s and str point to chars!

Code study: strlen
/* Based on FreeBSD 6.2's strlen */
size_t freebsd_strlen(char *str) {

char *s;
for (s = str; *s; s++) ;
return (s - str);

}

1
2
3
4
5
6

str 0xf0

0xf5 '\0'

0xf4 'a'

0xf3 'b'

0xf2 'b'

0xf1 'a'

0xf0 'j'

s ?0xf5

strlen_code.c

19

/* Using array indexing */
size_t my_strlen(char *str) {

int n = 0;
while (___?___) {

n++;
}
return n;

}

Write your own: strlen
/* Based on FreeBSD 6.2's strlen */
size_t freebsd_strlen(char *str) {

char *s;
for (s = str; *s; s++) ;
return (s - str);

}

1
2
3
4
5
6

🤔

1
2
3
4
5
6
7
8

Line 4: Which loop condition?
A. str[n], or equivalently,

str[n] != '\0'
B. str + n != ""
C. str + n != NULL
D. Something else
Bonus: Can we write a strlen function
for other array types (e.g., int arrays)?

Bonus

str 0xf0

0xf5 '\0'

0xf4 'a'

0xf3 'b'

0xf2 'b'

0xf1 'a'

0xf0 'j'

20

strlen for other array types?
• No! Arrays in general are not null-terminated.
• For strings, C designer Dennis Ritchie decided to

use a special terminating character ('\0').
Other array types don’t have this (e.g., what’s
a “null-terminating integer”?)

• Note: assign2’s const char *envp[] has a NULL pointer
placed after its last entry, but this is extremely uncommon.

arr

…

0xfec 6

0xfe8 5

0xfe4 4

0xfe0 3

…

int arr[] = {3, 4, 5, 6};

When writing functions for other array types, you need to
explicitly pass in the length of an array:

void traverse_int_array(int arr[], int len);

21

Ques%ons?

22

Plan For Today
• Pointers and addresses, a review
• Arrays of different types
• Double pointers, a review
• Programming with stack memory
• Announcements
• Other topics: const, struct and ternary

cp -r /afs/ir/class/cs107/samples/lectures/lect6 .

23

C parameters are pass-by-value

void change(char ch) {
ch = toupper(ch);

}

int main(...) {
char letter = 'a';
change(letter);
return 0;

}

void change(char *p_ch) {
*p_ch = toupper(*p_ch);

}

int main(...) {
char letter = 'a';
change(&letter);
return 0;

}

Review

A parameter is the callee’s variable—distinct from caller’s variable.
In all cases (other than array-as-parameter case), values are copied.

To achieve pass-by-reference, manually use pointers.

letter is unchanged letter is changed

caller

callee

24

void change(char *str) {
str = str + 1;

}

int main(...) {
char *name = "drain";
change(name);
return 0;

}

void change(char **p_str) {
*p_str = *p_str + 1;

}

int main(...) {
char *name = "drain";
change(&name);
return 0;

}

Tip: Always draw a picture!!

name is unchanged name is changed

The same applies to pointer parameters

caller

callee

25

Skip spaces
void skip_spaces(char **p_str) {

int num = strspn(*p_str, " ");
*p_str = *p_str + num;

}
int main(int argc, char *argv[]){

char *str = " Hi!";
skip_spaces(&str);
printf("%s", str); // "Hi!"
return 0;

}

🤔

1
2
3
4
5
6
7
8
9

10

What diagram most accurately depicts
program state at Line 4 (before
skip_spaces returns to main)?

str

' ' ' ' 'H' 'i' '!' '\0'

p_str

str
p_str

' ' ' ' 'H' 'i' '!' '\0'

str

' ' ' ' 'H' 'i' '!' '\0'

p_str

A.

B.

C.

26

Skip spaces

str

' ' ' ' 'H' 'i' '!' '\0'

p_str

str
p_str

' ' ' ' 'H' 'i' '!' '\0'

str

' ' ' ' 'H' 'i' '!' '\0'

p_str

A.

B.

C.

C++ pass by reference

void skip_spaces(char **p_str) {
int num = strspn(*p_str, " ");
*p_str = *p_str + num;

}
int main(int argc, char *argv[]){

char *str = " Hi!";
skip_spaces(&str);
printf("%s", str); // "Hi!"
return 0;

}

1
2
3
4
5
6
7
8
9

10

What diagram most accurately depicts
program state at Line 4 (before
skip_spaces returns to main)?

27

Questions?

28

Plan For Today
• Pointers and addresses, a review
• Arrays of different types
• Double pointers, a review
• Break: Announcements
• Programming with stack memory

cp -r /afs/ir/class/cs107/samples/lectures/lect6 .

29

Announcements
• lab2 check-in
• assign2: lots of string practice, some double pointers
• Read Piazza FAQ for each assignment

• Education Research Survey: http://bit.ly/2TwXjcS
• Social Good Fellowship: https://web.stanford.edu/class/cs107/resources/cs-

sg-fellowship.pdf
• CS198: deadline Thursday 1/30, 11:59PM cs198.stanford.edu

http://bit.ly/2TwXjcS
https://web.stanford.edu/class/cs107/resources/cs-sg-fellowship.pdf
http://cs198.stanford.edu/

30

Joke break

What data type do you need
to store this number?

INT_MAX: 2147483647
UINT_MAX: 4294967295
FLOAT_MAX: 3.40282e+38

(we’ll come back to this in 2 weeks)

31

Plan For Today
• Pointers and addresses, a review
• Arrays of different types
• Double pointers, a review
• Break: Announcements
• Programming with stack memory

cp -r /afs/ir/class/cs107/samples/lectures/lect6 .

32

Memory Layout**
• The stack is the place where all local variables and

parameters live for each function.*
• A function’s stack frame goes away when the function

returns.
• The stack grows downwards when a new function is

called. It shrinks upwards when the function is
finished.

*gcc, our compiler, uses option -O0 to force everything (including
parameters) on the stack (see week 6, “registers,” for more info)
**Assume all 18 exabytes of system memory accessible (read
about “virtual memory” for more info)

33

The Stack
• The stack behaves like a…well…stack! A new function call pushes on a new

frame. A completed function call pops off the most recent frame.
• A stack overflow is when you use up all stack memory. E.g. a recursive call

with too many function calls.

⚠Interesting and important fact: C does not clear out memory when a
function’s frame is removed. Instead, it just marks that memory as usable for
the next function call. This is more efficient!

34

The Stack
Memory

0x0

main
argc:

argv:

char *create_string(char ch, int num) {
char new_str[num + 1];
for (int i = 0; i < num; i++) {

new_str[i] = ch;
}
new_str[num] = '\0';
return new_str;

}

int main(int argc, char *argv[]) {
char *str = create_string('a', 4);
printf("%s", str); // want "aaaa"
return 0;

}

1

0xfff0
Stack

1
2
3
4
5
6
7
8

1
2
3
4
5

stack_chaos.c

35

The Stack
Memory

0x0

main
argc: str:

argv:

1

0xfff0
Stack

char *create_string(char ch, int num) {
char new_str[num + 1];
for (int i = 0; i < num; i++) {

new_str[i] = ch;
}
new_str[num] = '\0';
return new_str;

}

int main(int argc, char *argv[]) {
char *str = create_string('a', 4);
printf("%s", str); // want "aaaa"
return 0;

}

1
2
3
4
5
6
7
8

1
2
3
4
5

stack_chaos.c

36

The Stack
Memory

0x0

main
argc: str:

argv:

create_string
ch: num:

1

0xfff0
Stack

'a' 4

char *create_string(char ch, int num) {
char new_str[num + 1];
for (int i = 0; i < num; i++) {

new_str[i] = ch;
}
new_str[num] = '\0';
return new_str;

}

int main(int argc, char *argv[]) {
char *str = create_string('a', 4);
printf("%s", str); // want "aaaa"
return 0;

}

1
2
3
4
5
6
7
8

1
2
3
4
5

stack_chaos.c

37

The Stack
Memory

0x0

main
argc: str:

argv:

create_string
ch: num:

new_str:

1

0xfff0
Stack

'a' 4

char *create_string(char ch, int num) {
char new_str[num + 1];
for (int i = 0; i < num; i++) {

new_str[i] = ch;
}
new_str[num] = '\0';
return new_str;

}

int main(int argc, char *argv[]) {
char *str = create_string('a', 4);
printf("%s", str); // want "aaaa"
return 0;

}

1
2
3
4
5
6
7
8

1
2
3
4
5

stack_chaos.c

38

The Stack
Memory

0x0

main
argc: str:

argv:

create_string
ch: num:

new_str:

1

0xfff0
Stack

'a' 4

'\0'
'a'
'a'
'a'
'a'

char *create_string(char ch, int num) {
char new_str[num + 1];
for (int i = 0; i < num; i++) {

new_str[i] = ch;
}
new_str[num] = '\0';
return new_str;

}

int main(int argc, char *argv[]) {
char *str = create_string('a', 4);
printf("%s", str); // want "aaaa"
return 0;

}

1
2
3
4
5
6
7
8

1
2
3
4
5

Returns e.g. 0xff50

stack_chaos.c

39

The Stack
Memory

0x0

main
argc: str:

argv:

create_string
ch: num:

new_str:

1

0xfff0
Stack

'a' 4

'\0'
'a'
'a'
'a'
'a'

0xff50

char *create_string(char ch, int num) {
char new_str[num + 1];
for (int i = 0; i < num; i++) {

new_str[i] = ch;
}
new_str[num] = '\0';
return new_str;

}

int main(int argc, char *argv[]) {
char *str = create_string('a', 4);
printf("%s", str); // want "aaaa"
return 0;

}

1
2
3
4
5
6
7
8

1
2
3
4
5

stack_chaos.c

40

The Stack
Memory

0x0

main
argc: str:

argv:

1

0xfff0
Stack

0xff50

char *create_string(char ch, int num) {
char new_str[num + 1];
for (int i = 0; i < num; i++) {

new_str[i] = ch;
}
new_str[num] = '\0';
return new_str;

}

int main(int argc, char *argv[]) {
char *str = create_string('a', 4);
printf("%s", str); // want "aaaa"
return 0;

}

1
2
3
4
5
6
7
8

1
2
3
4
5

stack_chaos.c

41

The Stack
Memory

0x0

main
argc: str:

argv:

1

0xfff0
Stack

0xff50

char *create_string(char ch, int num) {
char new_str[num + 1];
for (int i = 0; i < num; i++) {

new_str[i] = ch;
}
new_str[num] = '\0';
return new_str;

}

int main(int argc, char *argv[]) {
char *str = create_string('a', 4);
printf("%s", str); // want "aaaa"
return 0;

}

1
2
3
4
5
6
7
8

1
2
3
4
5

⚠ Stack memory gets reused when a function returns!
stack_chaos.c

42

Demo: Stack chaos

stack_chaos.c

43

Overflow
(for next time)

44

Stacked Against Us

How do we make sure memory content persists
after a function exits?

If we’re committed to stack-only memory: let the
caller allocate memory and pass it to the callee.

(we’ll learn heap memory next week)

45

Programming with the stack (1/2)
Recall that arrays passed in as parameters are converted to pointers.
Strategy #1: Allow callee to modify existing arrays.

void binky(char *ptr) {
ptr[0] = 'B';

}

int main(int argc, char *argv[]) {
char arr[] = "asdf";
modify_array(arr);
printf("%s", arr); // Bsdf
return 0;

}

46

Programming with the stack (2/2)
Recall that arrays passed in as parameters are converted to pointers.
Strategy #2: Pass in a pre-allocated buffer that the caller can write to.

void pig_latin(char *out, char *in) {
/* write changes to out */

}

int main(int argc, char *argv[]) {
char str[] = "be";
char converted[50]; // output buffer
pig_latin(converted, str);
printf("%s %s", str, converted); // be ebay
return 0;

}

47

Practice: Copy positive ints
Write a function copy_pos that copies positive integers from in to out and
returns the number of integers copied (i.e., the length of out).

int main(int argc, char *argv[]) {
int arr[] = {-2, 1, 0, 4, 6, -8};
int len = ______?______; // 6
int buf[len];
int buf_len = copy_pos(buf, arr, len); // returns 3
return 0;

}

8
9

10
11
12
13
14

-2 1 0 4 6 -8

? ? ? ? ? ?

arr

buf 1 4 6

48

int copy_pos(int *out, int *in, int len) {
int num = 0;
for (int i = 0; i < len; i++) {

/* fill this part in */
}
return num;

}
int main(int argc, char *argv[]) {

int arr[] = {-2, 1, 0, 4, 6, -8};
int len = ______?______;
int buf[len];
int buf_len = copy_pos(buf, arr, len);
return 0;

}

Practice: Copy positive ints
Write a function copy_pos that copies positive integers from in to out and
returns the number of integers copied (i.e., the length of out).

🤔

• Line 10: How do we find
array length with sizeof?

• Line 6: Why do we return
the length of out?

• Line 4: What goes in the
for-loop? (multiple lines)

1
2
3
4
5
6
7
8
9

10
11
12
13
14

49

Practice: Copy positive
integers

int_array.c

(lecture: with array indexing)
Bonus: Try writing this with
pointer arithmetic!

