
1
This document is copyright (C) Stanford Computer Science and Nick Troccoli, licensed under Creative Commons Attribution 2.5 License. All rights reserved.

Based on slides created by Marty Stepp, Cynthia Lee, Chris Gregg, and others.

CS107 Fall 2019, Lecture 7
Stack and Heap

Reading: K&R 5.6-5.9 or Essential C section 6 on
the heap

2

Warmup exercise
Welcome to Week 4! We are knee-deep in C and system memory management.

Share your CS107 experience with your neighbor:
• What is one concept you’ve found interesting/exciting so far?
• What is one tool/strategy you’ve found helpful for assignments

(diagrams, man pages, gdb print, gdb break, valgrind, printf, etc.)?

Review

🤔

3

Plan For Today
• The Stack
• The Heap and Dynamic Memory
• Announcements
• Practice: Pig Latin
• Miscellaneous topics: const, struct and ternary operator

cp -r /afs/ir/class/cs107/samples/lectures/lect7 .

4

Plan For Today
• The Stack
• The Heap and Dynamic Memory
• Announcements
• Practice: Pig Latin
• Miscellaneous topics: const, struct and ternary operator

5

The Stack
Memory

0x0

main
argc: str:

argv:

1

0xfff0
Stack

char *create_string(char ch, int num) {
char new_str[num + 1];
for (int i = 0; i < num; i++) {

new_str[i] = ch;
}
new_str[num] = '\0';
return new_str;

}

int main(int argc, char *argv[]) {
char *str = create_string('a', 4);
printf("%s", str); // want "aaaa"
return 0;

}

1
2
3
4
5
6
7
8

1
2
3
4
5 Each function call has its own stack

frame for its own copy of variables.

Review

6

The Stack
Memory

0x0

main
argc: str:

argv:

create_string
ch: num:

1

0xfff0
Stack

'a' 4

char *create_string(char ch, int num) {
char new_str[num + 1];
for (int i = 0; i < num; i++) {

new_str[i] = ch;
}
new_str[num] = '\0';
return new_str;

}

int main(int argc, char *argv[]) {
char *str = create_string('a', 4);
printf("%s", str); // want "aaaa"
return 0;

}

1
2
3
4
5
6
7
8

1
2
3
4
5 Each function call has its own stack

frame for its own copy of variables.

Review

7

The Stack
Memory

0x0

main
argc: str:

argv:

create_string
ch: num:

new_str:

1

0xfff0
Stack

'a' 4

char *create_string(char ch, int num) {
char new_str[num + 1];
for (int i = 0; i < num; i++) {

new_str[i] = ch;
}
new_str[num] = '\0';
return new_str;

}

int main(int argc, char *argv[]) {
char *str = create_string('a', 4);
printf("%s", str); // want "aaaa"
return 0;

}

1
2
3
4
5
6
7
8

1
2
3
4
5

Review

8

The Stack
Memory

0x0

main
argc: str:

argv:

create_string
ch: num:

new_str:

1

0xfff0
Stack

'a' 4

'\0'
'a'
'a'
'a'
'a'

char *create_string(char ch, int num) {
char new_str[num + 1];
for (int i = 0; i < num; i++) {

new_str[i] = ch;
}
new_str[num] = '\0';
return new_str;

}

int main(int argc, char *argv[]) {
char *str = create_string('a', 4);
printf("%s", str); // want "aaaa"
return 0;

}

1
2
3
4
5
6
7
8

1
2
3
4
5

Returns e.g. 0xff50

Review

9

The Stack
Memory

0x0

main
argc: str:

argv:

create_string
ch: num:

new_str:

1

0xfff0
Stack

'a' 4

'\0'
'a'
'a'
'a'
'a'

0xff50

char *create_string(char ch, int num) {
char new_str[num + 1];
for (int i = 0; i < num; i++) {

new_str[i] = ch;
}
new_str[num] = '\0';
return new_str;

}

int main(int argc, char *argv[]) {
char *str = create_string('a', 4);
printf("%s", str); // want "aaaa"
return 0;

}

1
2
3
4
5
6
7
8

1
2
3
4
5

Review

stack-allocated

10

The Stack
Memory

0x0

main
argc: str:

argv:

1

0xfff0
Stack

0xff50

char *create_string(char ch, int num) {
char new_str[num + 1];
for (int i = 0; i < num; i++) {

new_str[i] = ch;
}
new_str[num] = '\0';
return new_str;

}

int main(int argc, char *argv[]) {
char *str = create_string('a', 4);
printf("%s", str); // want "aaaa"
return 0;

}

1
2
3
4
5
6
7
8

1
2
3
4
5

Review

stack-allocated

11

The Stack
Memory

0x0

main
argc: str:

argv:

1

0xfff0
Stack

0xff50

char *create_string(char ch, int num) {
char new_str[num + 1];
for (int i = 0; i < num; i++) {

new_str[i] = ch;
}
new_str[num] = '\0';
return new_str;

}

int main(int argc, char *argv[]) {
char *str = create_string('a', 4);
printf("%s", str); // want "aaaa"
return 0;

}

1
2
3
4
5
6
7
8

1
2
3
4
5

⚠ Stack memory gets reused by other
function calls when a function returns!

Review

stack-allocated

12

Stacked Against Us

How do we make sure memory content persists
after a function exits?

If we’re committed to stack-only memory: let the
caller allocate memory and pass it to the callee.

(we’ll learn heap memory later today)

13

Programming with the stack (1/2)
Strategy #1: Allow callee to modify exis_ng arrays.

void binky(char *ptr) {
ptr[0] = 'B';

}

int main(int argc, char *argv[]) {
char arr[] = "asdf";
modify_array(arr);
printf("%s", arr); // Bsdf
return 0;

}

14

Programming with the stack (2/2)
Strategy #2: Pass in a pre-allocated buffer that the caller can write to.

void pig_latin(char *out, char *in) {
/* write changes to out */

}

int main(int argc, char *argv[]) {
char str[] = "be";
char converted[50]; // output buffer
pig_latin(converted, str);
printf("%s %s", str, converted); // be ebay
return 0;

}

15

Plan For Today
• The Stack
• The Heap and Dynamic Memory
• Announcements
• Practice: Pig Latin
• Miscellaneous topics: const, struct and ternary operator

16

A heap of possibilities

How do we make sure memory content persists
after a function exits?

Let the callee allocate memory on the heap,
with the guarantee that the caller

will later free this memory.

17

The Heap
• The heap is a part of memory that you can

manage yourself.
• Unlike the stack, the memory will only get

reused when you explicitly clean it up.
• Unlike the stack, the heap grows upwards as

more memory is allocated.

The heap is dynamic memory – memory that can
be allocated, resized, and freed during program
runtime.

18

malloc

void *malloc(size_t size);
To allocate memory on the heap, use the malloc function (“memory allocate”)
and specify the number of bytes you’d like.

• This function returns a pointer to the starting address of the new memory.
• void *means a pointer to generic memory. You can set another pointer

equal to it without any casting.
• The memory is not cleared out before being allocated to you!
• If malloc returns NULL, then there wasn’t enough memory for this request.

19

1
2
3
4
5
6
7
8
9

1
2
3
4
5
6

The Heap
char *create_string(char ch, int num) {

char *new_str = malloc(sizeof(char) * (num + 1));
assert(new_str != NULL);
for (int i = 0; i < num; i++) {

new_str[i] = ch;
}
new_str[num] = '\0';
return new_str;

}

int main(int argc, char *argv[]) {
char *str = create_string('a', 4);
printf("%s", str); // want "aaaa”
... // free str memory
return 0;

}
0x0

main
argc: str:

argv:

create_string
ch: num:

new_str:

1

0xfff0Stack

'a' 4

?
?
?
?
?

0xed0

Heap

20

Stack

The Heap
char *create_string(char ch, int num) {

char *new_str = malloc(sizeof(char) * (num + 1));
assert(new_str != NULL);
for (int i = 0; i < num; i++) {

new_str[i] = ch;
}
new_str[num] = '\0';
return new_str;

}

int main(int argc, char *argv[]) {
char *str = create_string('a', 4);
printf("%s", str); // want "aaaa”
... // free str memory
return 0;

}

1
2
3
4
5
6
7
8
9

1
2
3
4
5
6

0x0

main
argc: str:

argv:

create_string
ch: num:

new_str:

1

0xfff0

'a' 4

'\0'
'a'
'a'
'a'
'a'

0xed0

Heap

Returns e.g. 0xed0

21

1
2
3
4
5
6
7
8
9

1
2
3
4
5
6

The Heap
char *create_string(char ch, int num) {

char *new_str = malloc(sizeof(char) * (num + 1));
assert(new_str != NULL);
for (int i = 0; i < num; i++) {

new_str[i] = ch;
}
new_str[num] = '\0';
return new_str;

}

int main(int argc, char *argv[]) {
char *str = create_string('a', 4);
printf("%s", str); // want "aaaa”
... // free str memory
return 0;

}
0x0

main
argc: str:

argv:

create_string
ch: num:

new_str:

1

0xfff0

'a' 4

'\0'
'a'
'a'
'a'
'a'

0xed0

Heap

0xed0

Stack

22

1
2
3
4
5
6
7
8
9

1
2
3
4
5
6

The Heap
char *create_string(char ch, int num) {

char *new_str = malloc(sizeof(char) * (num + 1));
assert(new_str != NULL);
for (int i = 0; i < num; i++) {

new_str[i] = ch;
}
new_str[num] = '\0';
return new_str;

}

int main(int argc, char *argv[]) {
char *str = create_string('a', 4);
printf("%s", str); // want "aaaa”
... // free str memory
return 0;

}
0x0

main
argc: str:

argv:

1

0xfff0

'\0'
'a'
'a'
'a'
'a'

Heap

0xed0

Stack

23

1
2
3
4
5
6
7
8
9

1
2
3
4
5
6

The Heap
char *create_string(char ch, int num) {

char *new_str = malloc(sizeof(char) * (num + 1));
assert(new_str != NULL);
for (int i = 0; i < num; i++) {

new_str[i] = ch;
}
new_str[num] = '\0';
return new_str;

}

int main(int argc, char *argv[]) {
char *str = create_string('a', 4);
printf("%s", str); // want "aaaa”
... // free str memory
return 0;

}
0x0

main
argc: str:

argv:

1

0xfff0

'\0'
'a'
'a'
'a'
'a'

Heap

0xed0

Stack

24

Exercise: malloc multiples
Let’s write a function that returns an array of the first len multiples of mult.

int *array_of_multiples(int mult, int len) {
/* TODO: arr declaration here */

for (int i = 0; i < len; i++) {
arr[i] = mult * (i + 1);

}
return arr;

}

Line 2: How should we declare arr?

1
2
3
4
5
6
7
8

A. int arr[len];
B. int arr[] = malloc(sizeof(int));
C. int *arr = malloc(sizeof(int) * len);
D. int *arr = malloc(sizeof(int) * (len+1));
E. Something else

🤔

25

Exercise: malloc multiples
Let’s write a function that returns an array of the first len multiples of mult.

int *array_of_multiples(int mult, int len) {
/* TODO: arr declaration here */

for (int i = 0; i < len; i++) {
arr[i] = mult * (i + 1);

}
return arr;

}

Line 2: How should we declare arr?

1
2
3
4
5
6
7
8

A. int arr[len];
B. int arr[] = malloc(sizeof(int));
C. int *arr = malloc(sizeof(int) * len);
D. int *arr = malloc(sizeof(int) * (len+1));
E. Something else

• Use a pointer to store the address
returned by malloc.

• Malloc’s argument is the number of
bytes to allocate.
⚠This code is missing an assertion.

26

Always assert with the heap
Let’s write a func_on that returns an array of the first len mul_ples of mult.

int *array_of_multiples(int mult, int len) {
int *arr = malloc(sizeof(int) * len);
assert(arr != NULL);
for (int i = 0; i < len; i++) {

arr[i] = mult * (i + 1);
}
return arr;

}

• If an alloca_on error occurs (e.g. out of heap memory!), malloc will return
NULL. This is an important case to check for robustness.

• assert will crash the program if the provided condi_on is false. A memory
alloca_on error is significant and we should terminate the program.

1
2
3
4
5
6
7
8

27

Other heap allocations: calloc
void *calloc(size_t nmemb, size_t size);

calloc is like malloc that zeros out the memory for you—thanks, calloc!

• You might notice its interface is also a little different—it takes two parameters,
which are multiplied to calculate the number of bytes (nmemb * size).

• calloc is more expensive than malloc because it zeros out memory. Use only
when necessary!

// allocate and zero 20 ints
int *scores = calloc(20, sizeof(int));

// alternate (but slower)
int *scores = malloc(20 * sizeof(int));
for (int i = 0; i < 20; i++) scores[i] = 0;

28

Other heap allocations: strdup
char *strdup(char *s);

strdup is a convenience function that returns a null-terminated, heap-
allocated string with the provided text, instead of you having to malloc and
copy in the string yourself.

char *str = strdup("Hello, world!"); // on heap
str[0] = 'h';

29

Cleaning Up with free
void free(void *ptr);

• If we allocated memory on the heap and no longer need it, it is our
responsibility to delete it.

• To do this, use the free command and pass in the starting address on the
heap for the memory you no longer need.

• Example:
char *bytes = malloc(4);
…
free(bytes);

30

free details
Even if you have multiple pointers to the
same block of memory, each memory
block should only be freed once.

You must free the address you
received in the previous allocation
call; you cannot free just part of a
previous allocation.

char *bytes = malloc(4);
char *ptr = bytes;
…
free(bytes);
…
free(ptr); ❌Memory at this

address was already
freed!

char *bytes = malloc(4);
char *ptr = malloc(10);
…
free(bytes);
…
free(ptr + 1);

✅

❌

✅

31

Memory Leaks
A memory leak is when you allocate memory on the heap, but you fail to free it.
• Your program should be responsible for cleaning up any memory that

it allocates but no longer needs.
• If you never free any memory and allocate an extremely large amount,

you may run out of memory in the heap!
However, memory leaks rarely (if ever) cause crashes.
• For your own programs, focus first on your logic and implementation, then

ensure that you free memory as appropriate.
• Valgrind is a very helpful tool for finding memory leaks!

32

realloc

void *realloc(void *ptr, size_t size);

• The realloc func_on takes an exis_ng alloca_on pointer and enlarges to a new
requested size. It returns the new pointer.

• If there is enough space aler the exis_ng memory block on the heap for the
new size, realloc simply adds that space to the alloca_on.

• If there is not enough space, realloc moves the memory to a larger loca7on,
frees the old memory for you, and returns a pointer to the new loca7on.

33

Cleaning Up with free and realloc

You only need to free the new memory coming out of realloc—the previous
(smaller) one was already reclaimed by realloc.

char *str = strdup("Hello");
assert(str != NULL);
…
// want to make str longer to hold "Hello world!"
char *addition = " world!";
str = realloc(str, strlen(str) + strlen(addition) + 1);
assert(str != NULL);
strcat(str, addition);
printf("%s", str);
free(str);

34

Heap allocator analogy: A hotel
Request memory by size (malloc)
• Receive room key to first of connecting rooms

Need more room? (realloc)
• Extend into connecting room if available
• If not, trade for new digs, bellman moves your

stuff for you

Check out when done (free)
• You remember your room number though

Errors! What happens if you…
• Forget to check out?
• Bust through connecting door to neighbor? What

if the room is in use? Yikes…
• Return to room after checkout?

35

Plan For Today
• The Stack
• The Heap and Dynamic Memory
• Announcements
• Practice: Pig Latin
• Miscellaneous topics: const, struct and ternary operator

36

Announcements
• We will send out exam accommodation emails this week (OAE, university

athletics)
• Assignment 1 grades released later today
• Assignment 3 released tonight

• Memory, pointers, and stack/heap
• Emphasis on debugging

37

Debugging
1. Observe the bug.
2. Create a simple, reproducible input.
3. Narrow the search space.
4. Analyze using GDB and pictures.
5. Devise and run experiments until you identify the root cause.
6. Modify code to squash bug.

Starting with this assignment, we will only be able to help you
with debugging in helper hours if you fill out the signup form
with information from these steps!

38

Joke break

You should not be code golfing with
your CS107 assignment grade J

39

Plan For Today
• The Stack
• The Heap and Dynamic Memory
• Announcements
• Practice: Pig Latin
• Miscellaneous topics: const, struct and ternary operator

40

Heap allocation interface: A summary
void *malloc(size_t size);
void *calloc(size_t nmemb, size_t size);
void *realloc(void *ptr, size_t size);
char *strdup(char *s);
void free(void *ptr);

Compare and contrast the heap memory functions we’ve learned today.

🤔

41

Heap allocation interface: A summary

Heap memory allocation guarantee:
• NULL on failure, so check with assert
• Memory is contiguous; it is not recycled

unless you call free
• realloc preserves existing data
• calloc zero-initializes bytes, malloc

and realloc do not

Undefined behavior occurs:
• If you overflow (i.e., you access

beyond bytes allocated)
• If you use aler free, or if free

is called twice on a loca_on.
• If you realloc/free non-heap

address

void *malloc(size_t size);
void *calloc(size_t nmemb, size_t size);
void *realloc(void *ptr, size_t size);
char *strdup(char *s);
void free(void *ptr);

42

Engineering principles: stack vs heap
Stack (“local variables”)

• Fast
Fast to allocate/deallocate; okay to oversize

• Convenient.
Automatic allocation/ deallocation;
declare/initialize in one step

• Reasonable type safety
Thanks to the compiler

⚠ Not especially plentiful
Total stack size fixed, default 8MB

⚠ Somewhat inflexible
Cannot add/resize at runtime, scope
dictated by control flow in/out of functions

Heap (dynamic memory)

43

Engineering principles: stack vs heap
Stack (“local variables”)

• Fast
Fast to allocate/deallocate; okay to oversize

• Convenient.
Automatic allocation/ deallocation;
declare/initialize in one step

• Reasonable type safety
Thanks to the compiler

⚠ Not especially plentiful
Total stack size fixed, default 8MB

⚠ Somewhat inflexible
Cannot add/resize at runtime, scope
dictated by control flow in/out of functions

Heap (dynamic memory)
• PlenWful.

Can provide more memory on demand!

• Very flexible.
Run_me decisions about how much/when to
allocate, can resize easily with realloc

• Scope under programmer control
Can precisely determine life_me

⚠ Lots of opportunity for error
Low type safety, forget to allocate/free
before done, allocate wrong size, etc.,
Memory leaks (much less cri_cal)

44

pig_heap
(Pig Latin redux)

pig_heap.c

45

pig_cat
(Pig Latin concatenation)

pig_heap.c

Bonus

An exercise in using realloc
You will study this code in lab3

46

Plan For Today
• The Stack
• The Heap and Dynamic Memory
• Announcements
• Practice: Pig Latin
• Miscellaneous topics: const, struct and ternary operator

47

const

Use const with pointers to indicate that the data pointed to cannot change.
char str[6] = "Hello";
const char *s = str;
s[0] = 'h'; // ❌ Cannot use s to change characters it points to
s = &str[2]; // ✅ You can modify the actual pointer itself

C complains if you set a non-const pointer equal to a const pointer:

int binky(const char *str) {
char *modifiable_str = str;
...

}

warning: initialization discards ‘const’
qualifier from pointer target type

48

Const
const can be confusing to interpret in some variable types. General rule of
thumb is that const restricts the type immediately following it.

// cannot modify this char
const char c = 'h';

// cannot modify chars pointed to by str
const char *str = …

// cannot modify chars pointed to by *strPtr
const char **p_str = …

For CS107, your goal is to be able to use const
variables when they are declared for you.

49

Structs
The struct keyword defines a new variable type as a group of other variables.

struct date {
int month; // members of each
int day; // date structure

};

1. struct date today;
today.month = 1;
today.day = 27;

2. struct date new_years_eve = {12, 31};

instantiation

declaration

50

Structs
Wrap the struct definition in a typedef to avoid having to include the word
struct every time you make a new variable of that type.

typedef struct date {
int month;
int day;

} date;

1. date today;
today.month = 1;
today.day = 27;

2. date new_years_eve = {12, 31};

declaraWon

instantiation

51

⚠ Like other parameter types, a copy of the en_re struct gets passed in for
func_on calls.

Structs are also pass-by-value

void advance_day(date d) {
d.day++;

}

int main(int argc, char *argv[]) {
date my_date = {1, 27};
advance_day(my_date);
printf("%d", my_date.day);
// 27
return 0;

}

void advance_day(date *d) {
(*d).day++;
// equivalent: d->day++;

}

int main(int argc, char *argv[]) {
date my_date = {1, 27};
advance_day(&my_date);
printf("%d", my_date.day);
// 28
return 0;

}

my_date is unchanged You can use the arrow operator ->
on struct pointers.

52

Structs work as expected
typedef struct date {

int month;
int day;

} date;

date lunar_newyear() {
date d = {1, 25};
return d; // or (date) {1, 25};

}

int main(int argc, char *argv[]) {
date my_date = lunar_newyear();
printf("%d", my_date.day); // 25
int size = sizeof(date); // 8
return 0;

}

You can return structs
from functions

sizeof a struct ==
sum of the sizeofs
of its members

53

Arrays of structs also work as expected
typedef struct my_struct {

int x;
char c;

} my_struct;

int main(int argc, char *argv[]) {
my_struct array_of_structs[5];

array_of_structs[0] = (my_struct){0, 'A'};

array_of_structs[1].x = 2;
array_of_structs[1].c = 'B';

}

Need the cast to
confirm struct
type to C

Array indexing works too.
Why don’t we use -> here?

54

Ternary Operator
The ternary operator is a shorthand for using if/else to evaluate to a value.

condition ? expressionIfTrue : expressionIfFalse

char *param;
if (argc > 1) {

param = argv[1];
} else {

param = "default";
}

// equivalent to
char *param = (argc > 1) ? argv[1] : "default";

⚠ It is bad style to stuff complex/
magic condi_ons into the ternary
operator, so use this wisely.

