CS107 Fall 2019, Lecture 7
Stack and Heap

Reading: K&R 5.6-5.9 or Essential C section 6 on
the heap

Warmup exercise

Welcome to Week 4! We are knee-deep in C and system memory management.

Share your CS107 experience with your neighbor:
* What is one concept you’ve found interesting/exciting so far?

* What is one tool/strategy you’ve found helpful for assignments
(diagrams, man pages, gdb print, gdb break, valgrind, printf, etc.)?

Plan For Today

* The Stack

* The Heap and Dynamic Memory

* Announcements

* Practice: Pig Latin

* Miscellaneous topics: const, struct and ternary operator

cp -r /afs/ir/class/csl1l07/samples/lectures/lect7 .

Plan For Today

e The Stack

The Stack Review

Memory
1
2 main
3 argc: 1 str:
4 Stack
5 argv: | OxfffO
: \ 4
7
8
1 int main(int argc, char *argv[]) {
[> 2 char *str = create string('a’', 4);

3 printf("%s", str); // want "aaaa"
4 return 0;
5 } Each function call has its own stack

frame for its own copy of variables.

0x0 >

The Stack Review

Memory

[i> 1 char *create_string(char ch, int num) {

2 char new_str[num + 1]; ~ [pain

3 for (int 1 = 0@; i < num; i++) { arge: | 4 | str:

4 new str[i] = ch; Stack =

5 } argv: | OxfffO

6 new _str[num] = "\@'; create string

7 return new_str; Chil g | AUm:] 4

8 }

1 int main(int argc, char *argv[]) {

2 char *str = create string('a’', 4);

3 printf("%s", str); // want "aaaa"

4 return 0;

5 } Each function call has its own stack

frame for its own copy of variables.
0x0 ©

The Stack Review

1 char *create string(char ch, int num) { Memory
[j> 2 char new str[num + 1]; ~ [pain

3 for (int 1 = 0@; i < num; i++) { arge: [| str:

4 new str[i] = ch; Stack =3

5 } argv: | OxfffO

6 new _str[num] = "\@'; create string

7 return new_str; chil g [NUM:| 4

8 }

1 int main(int argc, char *argv[]) {

2 char *str = create string('a’', 4);

3 printf("%s", str); // want "aaaa"

4 } return 0; ew str-

c _ _str:

0x0 /

The Stack Review

.) Memory

1 char *create_string(char ch, int num) {

2 char new_str[num + 1]; ~ [main

3 for (int 1 = 0@; i < num; i++) { arge: |4 | str:

4 new str[i] = ch; Stack

5 } argv: | OxfffO

6 new _str[num] = "\@'; create string
[j> 7 return new_str; chil g | nuUm: 4

3 } Returns e.g. 0xff50

I\OI

1 int main(int argc, char *argv[]) { 'al

2 char *str = create string('a’', 4); A

3 printf("%s", str); // want "aaaa" '3

4 return 0; s |2

5 } -

0x0 8

coNOTUITD WDN B

uihwNnPRE

The Stack

char *create string(char ch, int num) {
|char new _str[num + 17; stack-allocated
for (int 1 = 0; 1 < num; i++) {

new str[i] = ch;

}
new _str[num] = "\@';
return new _str;

}

int main(int argc, char *argv[]) {
char *str = create string('a’', 4);
printf("%s", str); // want "aaaa"
return 0;

}

Stack =9

Ox0

Review

Memory

main
argc: 1 str: 0xFf50

argv: | OxfffO

create strin
ch: 'q'

new_str:

The Stack

Memory

char *create string(char ch, int num) {
|char new_strnum + 1]; |.stack-allocated o
-For‘ (1n‘t 1 = @; 1 < num; 1++) { argc: 1 str: 0xff50
new str[i] = ch; Stack =3
} argv: | OxfffO
new str[num] = '\0"';
return new_str;

coNOTUITD WDN B

¥

int main(int argc, char *argv[]) {
char *str = create string('a’', 4);
printf("%s", str); // want "aaaa"
return 0;

vih WN R

0x0 O

coNOTUITD WDN B

uihwNnPRE

The Stack

char *create string(char ch, int num) {
|char new _str[num + 17; stack-allocated
for (int 1 = 0; 1 < num; i++) {

new str[i] = ch; Stack =

}
new _str[num] = "\@';
return new_str;

}

int main(int argc, char *argv[]) {
char *str = create string('a’', 4);
printf("%s", str); // want "aaaa"
return 0;

}

! Stack memory gets reused by other
function calls when a function returns!

Ox0

Review

Memory

main

argc:

1 str:

0xff50

argv:

OxfffO

11

Stacked Against Us

How do we make sure memory content persists
after a function exits?

If we're committed to stack-only memory: let the
caller allocate memory and pass it to the callee.

(we’ll learn heap memory later today)

12

Programming with the stack (1/2)

Strategy #1: Allow callee to modify existing arrays.

void b1nky(char *ptr) {
ptr[e] = ;
}

int main(int argc, char *argv[]) {
char arr[] = "asdf";
modify array(arr);

printf("%s", arr); // Bsdf
return 0;

13

Programming with the stack (2/2)

Strategy #2: Pass in a pre-allocated buffer that the caller can write to.

void pig latin(char *out, char *in) {
/* write changes to out */
}

int main(int argc, char *argv[]) {
char str[] = "be";
char converted[50]; // output buffer
pig latin(converted, str);

printf("%s %s", str, converted); // be ebay
return 9;

14

Plan For Today

* The Heap and Dynamic Memory

15

A heap of possibilities

How do we make sure memory content persists
after a function exits?

Let the callee allocate memory on the heap,
with the guarantee that the caller
will later free this memory.

16

The Heap

* The heap is a part of memory that you can
manage yourself.

* Unlike the stack, the memory will only get
reused when you explicitly clean it up.

* Unlike the stack, the heap grows upwards as
more memory is allocated.

The heap is dynamic memory — memory that can
be allocated, resized, and freed during program
runtime.

Ox7ffffffff000 sMB

reserved

Ox7ffff7ffe000 | Shared library Sized for
text/data library

Grows on

demand
0x602010

0x600000 Global data Sized for

executable
Text
0x400000 (machine code)

Low addresses
deliberately unmapped

17

malloc

void *malloc(size t size);

To allocate memory on the heap, use the malloc function (“memory allocate”)
and specify the number of bytes you’d like.

 This function returns a pointer to the starting address of the new memory.

* void *means a pointer to generic memory. You can set another pointer
equal to it without any casting.

* The memory is not cleared out before being allocated to you!
e f malloc returns NULL, then there wasn’t enough memory for this request.

18

The Heap

char_*create string(char ch, int num) {
char *new str = malloc(sizeof(char) * (num + 1));
assert(new str != NULL);:
for (int 1 = 0; 1 < num; i++) {
new_str[i] = ch; Stack
}
new _str[num] = "\0';
return new_str;
}
int main(int argc, char *argv[]) {
char *str = create_string('a', 4); _J—
printf("%s", str); // want "aaaa” Heap
o // free str memory
return 0;
}

0x0

main

arge: [4 | str:

argv: | OxfffO

create string

ch: ‘g num:

4

new_str:

19

The Heap

1 char *create string(char ch, int num) { - _

2 char *new str = malloc(sizeof(char) * (num + 1)); 2ai1n

3 assert(new_str != NULL); arge:| 4| st

& for (ne i e i< num; i) | stack gly [ste 0t

6 } Returns e.g. Oxed0 create string

7 new _str[num] = '\0'; B ‘=’ I 4
[>8 return new_str;

9 } new_str:

1 int main(int argc, char *argv[]) {

2 char *str = create_string('a’, 4); _J—

3 printf("%s", str); // want "aaaa” Heap

4 o // free str memory

5 return 0;

6 }

0x0

20

The Heap

1 char *create string(char ch, int num) { - _

2 char *new_str = malloc(sizeof(char) * (num + 1)); DA g |

3 assert(new_str != NULL); arge:| 4 | str:

4 for (int 1 = 0; 1 < num; i++) { |

5 new str[i] = ch; Stack - argv: | OxfffO

6 } create string

7 new_str[num] = '\@'; Chil g | NUM:| 4
[>8 return new_str;

9 } _ new_str:

1 int main(int argc, char *argv[]) {

2 char *str = create_string('a’, 4); _J—

3 printf("%s", str); // want "aaaa” Heap

4 o // free str memory

5 return 0;

6 }

0x0

21

-

OooNOTUVTPhhWDNE
-

ouviph WNE

-

The Heap

char *create_string(char ch, int num) {

char *new_str = malloc(sizeof(char) * (num + 1));

assert(new_str != NULL);

for (int 1 = 0; 1 < num; i++) {
new str[i] = ch;

}

new str[num] = '\0';
return new_str;

int main(int argc, char *argv[]) {
char *str = create_string('a', 4);
printf("%s", str); // want "aaaa”
o // free str memory
return 0;

Stack =

Heap j

0x0

main
arge: [4 | str: oxed
argv: | OxfffO

I\OI

lal

lal

lal

lal

22

The Heap

1 char *create string(char ch, int num) { - _

2 char *new str = malloc(sizeof(char) * (num + 1)); 2ai1n

3 assert(new_str != NULL); arge:| 1 | St oxed

& for (ne i e i< num; i) | sack 4 |sreloato

6 }

7 new _str[num] = '"\0';

3 return new_str;

9 } -

1 int main(int argc, char *argv[]) { —

2 char *str = create_string('a’, 4); _J— \0

3 printf("%s", str); // want "aaaa” Heap a

4 ‘e // free str memory a

5 return 9; 'a’

6 } 'a’
0x0

23

Exercise: malloc multiples

Let’s write a function that returns an array of the first len multiples of muilt.
1 int *array_of multiples(int mult, int len) {

2 /* TODO: arr declaration here */
3

4 for (int 1 = 0@; 1 < len; i++) {
5 arr[i] = mult * (1 + 1);

6 }

V4 return arr;

8 }

Line 2: How should we declare arr?

int arr[len];

int arr[] = malloc(sizeof(int));

int *arr malloc(sizeof(int) * len);
int *arr = malloc(sizeof(int) * (len+l)); &
Something else

1
= o)
) .

moOw >

p

24

Exercise: malloc multiples

Let’s write a function that returns an array of the first len multiples of muilt.

1 int *array_of multiples(int mult, int len) {
/* TODO: arr declaration here */

for (int 1 = 0@; 1 < len; i++) {

NOOuUuTh WN

arr[i] mult * (i + 1);
} e Use a pointer to store the address
return arr; returned by malloc.
8 } * Malloc’s argument is the number of
Line 2: How should we declare arr? bytes to allocate.
int arr[len]; ! This code is missing an assertion.

int arr[] = malloc(sizeof(int));
int *arr = malloc(sizeof(int) * len);

int *arr = malloc(sizeof(int) * (len+l));
Something else

25

Always assert with the heap

Let’s write a function that returns an array of the first len multiples of muilt.
1 int *array_of multiples(int mult, int len) {

2 int *arr = malloc(sizeof(int) * 1len);
[> 3 assert(arr != NULL);

4 for (int 1 = 0@; 1 < len; i++) {

5 arr[i] = mult * (1 + 1);

6 }

V4 return arr;

8 }

* If an allocation error occurs (e.g. out of heap memory!), malloc will return
NULL. This is an important case to check for robustness.

 assert will crash the program if the provided condition is false. A memory

allocation error is significant and we should terminate the program.
26

Other heap allocations: calloc

void *calloc(size t nmemb, size t size);

calloc is like malloc that zeros out the memory for you—thanks, calloc!

* You might notice its interface is also a little different—it takes two parameters,

which are multiplied to calculate the number of bytes (nmemb * size).
// allocate and zero 20 ints
int *scores = calloc(20, sizeof(int));

// alternate (but slower)
int *scores = malloc(20 * sizeof(int));
for (int 1 = 0; 1 < 20; i++) scores[i] = O;

* calloc is more expensive than malloc because it zeros out memory. Use only
when necessary!

27

Other heap allocations: strdup

char *strdup(char *s);

strdup is a convenience function that returns a null-terminated, heap-
allocated string with the provided text, instead of you having to malloc and

copy in the string yourself.

char *str = strdup("Hello, world!"); // on heap
str[@] = 'h';

28

Cleaning Up with free

void free(void *ptr);

* If we allocated memory on the heap and no longer need it, it is our
responsibility to delete it.

* To do this, use the free command and pass in the starting address on the
heap for the memory you no longer need.

* Example:
char *bytes = malloc(4);

free(bytes);

29

free detalls

Even if you have multiple pointers to the You must free the address you
same block of memory, each memory received in the previous allocation
block should only be freed once. call; you cannot free just part of a

previous allocation.

char *bytes = malloc(4); char *bytes = malloc(4);
char *ptr = bytes; char *ptr = malloc(10);
free(bytes); <:ZI free(bytes); <3
free(ptr); <3| X Memory at this free(ptr + 1); <j

address was already
freed!

30

Memory Leaks

A memory leak is when you allocate memory on the heap, but you fail to free it.

* Your program should be responsible for cleaning up any memory that
it allocates but no longer needs.

* If you never free any memory and allocate an extremely large amount,
you may run out of memory in the heap!

However, memory leaks rarely (if ever) cause crashes.

* For your own programs, focus first on your logic and implementation, then
ensure that you free memory as appropriate.

* Valgrind is a very helpful tool for finding memory leaks!

31

realloc

void *realloc(void *ptr, size t size);
* The realloc function takes an existing allocation pointer and enlarges to a new
requested size. It returns the new pointer.

* If there is enough space after the existing memory block on the heap for the
new size, realloc simply adds that space to the allocation.

* If there is not enough space, realloc moves the memory to a larger location,
frees the old memory for you, and returns a pointer to the new location.

32

Cleaning Up with free and realloc

You only need to free the new memory coming out of realloc—the previous
(smaller) one was already reclaimed by realloc.

char *str = strdup("Hello");
assert(str != NULL);

// want to make str longer to hold "Hello world!"

char *addition = " world!";

str = realloc(str, strlen(str) + strlen(addition) + 1);
assert(str != NULL);

strcat(str, addition);

printf("%s", str);

free(str);

33

Heap allocator analogy: A hotel

Request memory by size (malloc)
* Receive room key to first of connecting rooms

Need more room? (realloc)
e Extend into connecting room if available

* If not, trade for new digs, bellman moves your
stuff for you

Check out when done (free)
* You remember your room number though

Errors! What happens if you...
* Forget to check out?

e Bust through connecting door to neighbor? What
if the room is in use? Yikes...

e Return to room after checkout?

34

Plan For Today

* Annhouncements

35

Announcements

* We will send out exam accommodation emails this week (OAE, university
athletics)

* Assignment 1 grades released later today

* Assignment 3 released tonight

* Memory, pointers, and stack/heap
 Emphasis on debugging

36

Debugging

Observe the bug.

Create a simple, reproducible input.

Narrow the search space.

Analyze using GDB and pictures.

Devise and run experiments until you identify the root cause.

oS nhwWwNRE

Modify code to squash bug.

Starting with this assignment, we will only be able to help you

with debugging in helper hours if you fill out the sighup form
with information from these steps!

37

Joke break

Code golf

From Wikipedia, the free encyclopedia

Code golf is a type of recreational computer programming competition in which participants
strive to achieve the shortest possible source code that implements a certain algorithm.

& coding challenges

{ CODE GOLF
@

a=5;while (*p++) {if (p[a])—-a;++b;} You should not be code golfing with
for(a=5;%p++;++b)if(p[al)--a; your CS107 assignment grade ©

Plan For Today

* Practice: Pig Latin

39

Heap allocation interface: A summary

void *malloc(size t size);

void *calloc(size t nmemb, size t size);
void *realloc(void *ptr, size t size);
char *strdup(char *s);

void free(void *ptr);

Compare and contrast the heap memory functions we’ve learned today.

(ﬁfi
. QO

0

Heap allocation interface: A summary

void *malloc(size t size);

void *calloc(size t nmemb, size t size);
void *realloc(void *ptr, size t size);
char *strdup(char *s);

void free(void *ptr);

Heap memory allocation guarantee: Undefined behavior occurs:

* NULL on failure, so check with assert * If you overflow (i.e., you access

« Memory is contiguous; it is not recycled beyond bytes allocated)

unless you call free * If you use after free, orif free

* realloc preserves existing data s called twice on a location.

» calloc zero-initializes bytes, malloc * If you realloc/free non-heap
and realloc do not address

41

Engineering principles: stack vs heap

Stack (“local variables”)

* Fast
Fast to allocate/deallocate; okay to oversize

* Convenient.
Automatic allocation/ deallocation;
declare/initialize in one step

* Reasonable type safety
Thanks to the compiler

! Not especially plentiful
Total stack size fixed, default 8MB

. Somewhat inflexible
Cannot add/resize at runtime, scope

dictated by control flow in/out of functions
42

Engineering principles: stack vs heap

Heap (dynamic memory)

* Plentiful.
Can provide more memory on demand!

* Very flexible.
Runtime decisions about how much/when to
allocate, can resize easily with realloc

* Scope under programmer control
Can precisely determine lifetime

! ! Lots of opportunity for error

Low type safety, forget to allocate/free
, before done, allocate wrong size, etc.,
' Memory leaks (much less critical)

43

pig_heap
(Pig Latin redux)

pig heap.c

Bonus

pig_cat
(Pig Latin concatenation)

An exercise in using realloc
You will study this code in lab3

pig heap.c

45

Plan For Today

* Miscellaneous topics: const, struct and ternary operator

46

const

Use const with pointers to indicate that the data pointed to cannot change.
char str[6] = "Hello";
const char *s = str;

= ; // 25 Cannot use s to change characters it points to
s = &str[2]; // & You can modify the actual pointer itself

C complains if you set a non-const pointer equal to a const pointer:

int binky(const char *str) {
char *modifiable_str = str;<{Z3|warning: initialization discards ‘const’
qgualifier from pointer target type

47

const can be confusing to interpret in some variable types. General rule of
thumb is that const restricts the type immediately following it.

// cannot modify this char

const char c

// cannot modify chars pointed to by str

const char *str = ..

// cannot modify chars pointed to by *strPtr

const char **p str

For CS107, your goal is to be able to use const
variables when they are declared for you.

The struct keyword defines a new variable type as a group of other variables.

|declaration | struct date {
int month; // members of each
int day; // date structure
}s
‘instantiation‘ 1. struct date today;

today.month = 1;
today.day = 27;

2. struct date new _years eve {12, 31}%;

49

Wrap the struct definition in a typedef to avoid having to include the word
struct every time you make a new variable of that type.

‘declaration ‘ typedef struct date {
int month;
int day;
} date;
‘instantiation‘ 1. date today;

today.month = 1;
today.day = 27;

2. date new years eve = {12, 31};

50

Structs are also pass-by-value

I Like other parameter types, a copy of the entire struct gets passed in for

function calls. .
void advance_day(date *d) {

void advance_day(date d) { (*d).day++;
d.day++; // equivalent:|d->day++;

} }

int main(int argc, char *argv[]) { int main(int argc, char *argv[]) {
date my_date = {1, 27}; date my date = {1, 27};
advance_day(my_date); advance_day(&my date);
printf("%d", my date.day); printf("%d", my date.day);
/] 27 // 28
return 9; return 9;

} }

my_date is unchanged You can use the arrow operator ->

on struct pointers.

51

Structs work as expected

typedef struct date {
int month;

int day;

} date;

date lunar_newyear() {
date d = {1, 25}; You can return structs
return d; // or (date) {1, 25}; <& |from functions

}

int main(int argc, char *argv[]) {

date my date = lunar_newyear(); : —

printf("%d", my date.day); // 25 sizeof a struct ==

int size = sizeof(date); /] 8 < ' |sum of the sizeofs
} return @; of its members

52

Arrays of structs also work as expected

typedef struct my_struct {
int X;
char c;

} my struct;

int main(int argc, char *argv[]) {
my struct array of structs[5];

Need the cast to

array_of structs[@] = (my struct){e, 'A'}; {1 | confirm struct
type to C

array_of structs[1].x
array_of structs[1l].c

B < '| Array indexing works too.
Why don’t we use -> here?

53

Ternary Operator

The ternary operator is a shorthand for using if/else to evaluate to a value.

condition ? expressionIfTrue : expressionIfFalse

char *param;
if (argc > 1) {
param = argv|[l];
} else {
param = "default”;
}

// equivalent to
char *param = (argc > 1) ? argv[1]

! 1t is bad style to stuff complex/
magic conditions into the ternary
operator, so use this wisely.

"default"”;

54

