
1

CS107 Lecture 8
Generics in C: Leveraging the void *

Slides by Jerry Cain and Lisa Yan, who leveraged prior work by Nick Troccoli, Julie Zelenski, Marty Stepp, Cynthia Lee, Chris Gregg, and others.

2

Why We ❤ The Stack

• It is convenient. Memory is handled automatically and is fast because old
memory is left in place and marked as usable for future function calls.

• It is fast. The stack segment is fully configured before main is called.

• It is safer. Local variables are typed, so the compiler has better information
about what operations are legal and which ones aren’t.

3

Why We ❤ The Heap

• Memory abounds! By default, the stack is relatively small—on the order of 8
MBs. The heap, however, can more easily grow to accommodate much larger
allocation requests.

• Allocations are resizable. If a dynamically allocated figure turns out to be too
small, that figure can be resized using realloc.

• Scope. The memory is not cleaned up when its function exits; instead, you
control when the memory is freed.

4

Stack and Heap

• Rule of thumb: unless a situation truly benefits from dynamic allocation, you
should bias towards the stack.

• Dynamic memory allocation is generally necessary when:
• the amount of memory needed can’t be determined until the program is running
• the memory must persist beyond the lifetime of the function that allocated it

5

CS107 Topic 4: How can we
use our knowledge of

memory and data
representation to write

code that works with any
data type?

6

Learning Goals

• Learn how to write C code that works with any data type.

• Learn about how to successfully use the void * even though they have no
type information about what they point to.

7

Plan For Today

• Overview: Generics

• Generic Swap

• Generics Pitfalls

• Announcements
• Generic Array Swap

• Generic Stack

cp -r /afs/ir/class/cs107/samples/lectures/lect8 .

8

Plan For Today

• Overview: Generics
• Generic Swap

• Generics Pitfalls

• Announcements
• Generic Array Swap

• Generic Stack

9

Generics

• We always strive to write code that is as general-purpose as possible.

• Generic code reduces code duplication and means you can make
improvements and fix bugs in one place rather than many.

• Generics is used throughout C for functions to sort any array, search any array,
free arbitrary memory, and more.

• How can we write generic code in C?

10

Plan For Today

• Overview: Generics

• Generic Swap
• Generics Pitfalls

• Announcements
• Generic Array Swap

• Generic Stack

11

You’re asked to write a function that swaps two numbers.

void swap_int(int *a, int *b) {
int temp = *a;
*a = *b;
*b = temp;

}

int main(int argc, char *argv[]) {
int x = 2;
int y = 5;
swap_int(&x, &y);
printf("x = %d, y = %d\n", x, y);
return 0;

}

Swapping ints

12

You’re asked to write a function that swaps two numbers.

void swap_int(int *a, int *b) {
int temp = *a;
*a = *b;
*b = temp;

}

int main(int argc, char *argv[]) {
int x = 2;
int y = 5;
swap_int(&x, &y);
printf("x = %d, y = %d\n", x, y);
return 0;

}

Swapping ints

Stack
Address Value

…

0xff14 2

0xff10 5
…

x
main()

y

13

You’re asked to write a function that swaps two numbers.

void swap_int(int *a, int *b) {
int temp = *a;
*a = *b;
*b = temp;

}

int main(int argc, char *argv[]) {
int x = 2;
int y = 5;
swap_int(&x, &y);
printf("x = %d, y = %d\n", x, y);
return 0;

}

Swapping ints

Stack
Address Value

…

0xff14 2

0xff10 5
…

0xf18 0xff10

0xf10 0xff14
…

x

b

main()

swap_int()

y

a

14

You’re asked to write a function that swaps two numbers.

void swap_int(int *a, int *b) {
int temp = *a;
*a = *b;
*b = temp;

}

int main(int argc, char *argv[]) {
int x = 2;
int y = 5;
swap_int(&x, &y);
printf("x = %d, y = %d\n", x, y);
return 0;

}

Swapping ints

Stack
Address Value

…

0xff14 2

0xff10 5
…

0xf18 0xff10

0xf10 0xff14

0xf0c 2
…

x

b

main()

swap_int()

y

a
temp

15

You’re asked to write a function that swaps two numbers.

void swap_int(int *a, int *b) {
int temp = *a;
*a = *b;
*b = temp;

}

int main(int argc, char *argv[]) {
int x = 2;
int y = 5;
swap_int(&x, &y);
printf("x = %d, y = %d\n", x, y);
return 0;

}

Swapping ints

Stack
Address Value

…

0xff14 5
0xff10 5

…

0xf18 0xff10

0xf10 0xff14

0xf0c 2
…

x

b

main()

swap_int()

y

a
temp

16

You’re asked to write a function that swaps two numbers.

void swap_int(int *a, int *b) {
int temp = *a;
*a = *b;
*b = temp;

}

int main(int argc, char *argv[]) {
int x = 2;
int y = 5;
swap_int(&x, &y);
printf("x = %d, y = %d\n", x, y);
return 0;

}

Swapping ints

Stack
Address Value

…

0xff14 5

0xff10 2
…

0xf18 0xff10

0xf10 0xff14

0xf0c 2
…

x

b

main()

swap_int()

y

a
temp

17

You’re asked to write a function that swaps two numbers.

void swap_int(int *a, int *b) {
int temp = *a;
*a = *b;
*b = temp;

}

int main(int argc, char *argv[]) {
int x = 2;
int y = 5;
swap_int(&x, &y);
printf("x = %d, y = %d\n", x, y);
return 0;

}

Swapping ints

Stack
Address Value

…

0xff14 5

0xff10 2
…

x
main()

y

18

You’re asked to write a function that swaps two numbers.

void swap_int(int *a, int *b) {
int temp = *a;
*a = *b;
*b = temp;

}

int main(int argc, char *argv[]) {
int x = 2;
int y = 5;
swap_int(&x, &y);
printf("x = %d, y = %d\n", x, y);
return 0;

}

Swapping ints

Stack
Address Value

…

0xff14 5

0xff10 2
…

x
main()

y

19

You’re asked to write a function that swaps two numbers.

void swap_int(int *a, int *b) {
int temp = *a;
*a = *b;
*b = temp;

}

int main(int argc, char *argv[]) {
int x = 2;
int y = 5;
swap_int(&x, &y);
printf("x = %d, y = %d\n", x, y);
return 0;

}

Swapping ints

Stack
Address Value

…

0xff14 5

0xff10 2
…

x
main()

y

20

void swap_short(short *a, short *b) {
short temp = *a;
*a = *b;
*b = temp;

}

int main(int argc, char *argv[]) {
short x = 2;
short y = 5;
swap_short(&x, &y);
printf("x = %hd, y = %hd\n", x, y);
return 0;

}

Swapping shorts

21

void swap_short(short *a, short *b) {
short temp = *a;
*a = *b;
*b = temp;

}

int main(int argc, char *argv[]) {
short x = 2;
short y = 5;
swap_short(&x, &y);
printf("x = %hd, y = %hd\n", x, y);
return 0;

}

Swapping shorts

Stack
Address Value

…

0xff12 2

0xff10 5
…

0xf18 0xff10

0xf10 0xff12

0xf0e 2
…

x

b

main()

swap_short()

y

a
temp

22

void swap_string(char **a, char **b) {
char *temp = *a;
*a = *b;
*b = temp;

}

int main(int argc, char *argv[]) {
char *x = "2";
char *y = "5";
swap_string(&x, &y);
printf("x = %s, y = %s\n", x, y);
return 0;

}

Swapping C Strings

23

void swap_string(char **a, char **b) {
char *temp = *a;
*a = *b;
*b = temp;

}

int main(int argc, char *argv[]) {
char *x = "2";
char *y = "5";
swap_string(&x, &y);
printf("x = %s, y = %s\n", x, y);
return 0;

}

Swapping C Strings

Address Value
…

0xff18 0xc

0xff10 0xe
…

0xf '\0'

0xe '5'

0xd '\0'

0xc '2'
…

x
main()

y

DATA SEGMENT

24

void swap_string(char **a, char **b) {
char *temp = *a;
*a = *b;
*b = temp;

}

int main(int argc, char *argv[]) {
char *x = "2";
char *y = "5";
swap_string(&x, &y);
printf("x = %s, y = %s\n", x, y);
return 0;

}

Swapping C Strings

Address Value
…

0xff18 0xc

0xff10 0xe
…

0xf18 0xff10

0xf10 0xff18
…

0xf '\0'

0xe '5'

0xd '\0'

0xc '2'
…

x

b

main()

swap_string()

y

a

DATA SEGMENT

25

void swap_string(char **a, char **b) {
char *temp = *a;
*a = *b;
*b = temp;

}

int main(int argc, char *argv[]) {
char *x = "2";
char *y = "5";
swap_string(&x, &y);
printf("x = %s, y = %s\n", x, y);
return 0;

}

Swapping C Strings

Address Value
…

0xff18 0xc

0xff10 0xe
…

0xf18 0xff10

0xf10 0xff18

0xf08 0xc
…

0xf '\0'

0xe '5'

0xd '\0'

0xc '2'
…

x

b

main()

swap_string()

y

a
temp

DATA SEGMENT

26

void swap_string(char **a, char **b) {
char *temp = *a;
*a = *b;
*b = temp;

}

int main(int argc, char *argv[]) {
char *x = "2";
char *y = "5";
swap_string(&x, &y);
printf("x = %s, y = %s\n", x, y);
return 0;

}

Swapping C Strings

Address Value
…

0xff18 0xe
0xff10 0xe

…

0xf18 0xff10

0xf10 0xff18

0xf08 0xc
…

0xf '\0'

0xe '5'

0xd '\0'

0xc '2'
…

x

b

main()

swap_string()

y

a
temp

DATA SEGMENT

27

void swap_string(char **a, char **b) {
char *temp = *a;
*a = *b;
*b = temp;

}

int main(int argc, char *argv[]) {
char *x = "2";
char *y = "5";
swap_string(&x, &y);
printf("x = %s, y = %s\n", x, y);
return 0;

}

Swap

Address Value
…

0xff18 0xe

0xff10 0xc
…

0xf18 0xff10

0xf10 0xff18

0xf08 0xc
…

0xf '\0'

0xe '5'

0xd '\0'

0xc '2'
…

x

b

main()

swap_string()

y

a
temp

DATA SEGMENT

28

void swap_string(char **a, char **b) {
char *temp = *a;
*a = *b;
*b = temp;

}

int main(int argc, char *argv[]) {
char *x = "2";
char *y = "5";
swap_string(&x, &y);
printf("x = %s, y = %s\n", x, y);
return 0;

}

Swap

Address Value
…

0xff18 0xe

0xff10 0xc
…

0xf '\0'

0xe '5'

0xd '\0'

0xc '2'
…

x
main()

y

DATA SEGMENT

29

void swap_string(char **a, char **b) {
char *temp = *a;
*a = *b;
*b = temp;

}

int main(int argc, char *argv[]) {
char *x = "2";
char *y = "5";
swap_string(&x, &y);
printf("x = %s, y = %s\n", x, y);
return 0;

}

Swap

Address Value
…

0xff18 0xe

0xff10 0xc
…

0xf '\0'

0xe '5'

0xd '\0'

0xc '2'
…

x
main()

y

DATA SEGMENT

30

void swap_string(char **a, char **b) {
char *temp = *a;
*a = *b;
*b = temp;

}

int main(int argc, char *argv[]) {
char *x = "2";
char *y = "5";
swap_string(&x, &y);
printf("x = %s, y = %s\n", x, y);
return 0;

}

Swap

Address Value
…

0xff18 0xe

0xff10 0xc
…

0xf '\0'

0xe '5'

0xd '\0'

0xc '2'
…

x
main()

y

DATA SEGMENT

31

Generic Swap

What if we could write one function to swap two values of any single type?

void swap_int(int *a, int *b) { … }
void swap_float(float *a, float *b) { … }
void swap_size_t(size_t *a, size_t *b) { … }
void swap_double(double *a, double *b) { … }
void swap_string(char **a, char **b) { … }
void swap_mystruct(mystruct *a, mystruct *b) { … }
…

32

void swap_int(int *a, int *b) {
int temp = *a;
*a = *b;
*b = temp;

}

void swap_short(short *a, short *b) {
short temp = *a;
*a = *b;
*b = temp;

}

void swap_string(char **a, char **b) {
char *temp = *a;
*a = *b;
*b = temp;

}

Generic Swap

33

void swap_int(int *a, int *b) {
int temp = *a;
*a = *b;
*b = temp;

}

void swap_short(short *a, short *b) {
short temp = *a;
*a = *b;
*b = temp;

}

void swap_string(char **a, char **b) {
char *temp = *a;
*a = *b;
*b = temp;

}

Generic Swap

All 3:
• Take pointers to values to

swap
• Create temporary storage to

store one of the values
• Move data at b into where a

points
• Move data in temporary

storage into where b points

34

void swap(pointer to data1, pointer to data2) {
store a copy of data1 in temporary storage
copy data2 to location of data1
copy data in temporary storage to location of data2

}

Generic Swap

35

void swap(pointer to data1, pointer to data2) {
store a copy of data1 in temporary storage
copy data2 to location of data1
copy data in temporary storage to location of data2

}

4 bytes

2 bytes

8 bytes

Problem: each type may need a different size temp!

Generic Swap

int temp = *data1ptr;

short temp = *data1ptr;

char *temp = *data1ptr;

36

void swap(pointer to data1, pointer to data2) {
store a copy of data1 in temporary storage
copy data2 to location of data1
copy data in temporary storage to location of data2

}

4 bytes

2 bytes

8 bytes

Problem: each type needs to copy a different amount of data!

Generic Swap

*data1Ptr = *data2ptr;

*data1Ptr = *data2ptr;

*data1Ptr = *data2ptr;

37

void swap(pointer to data1, pointer to data2) {
store a copy of data1 in temporary storage
copy data2 to location of data1
copy data in temporary storage to location of data2

}

4 bytes

2 bytes

8 bytes

Problem: each type needs to copy a different amount of data!

Generic Swap

*data2ptr = temp;

*data2ptr = temp;

*data2ptr = temp;

38

C knows the size of temp,
and knows how many bytes

to copy, because the
variables are strongly

typed.

39

Is there a way to make a
version that doesn’t care
about the variable types?

40

void swap(pointer to data1, pointer to data2) {
store a copy of data1 in temporary storage
copy data2 to location of data1
copy data in temporary storage to location of data2

}

Generic Swap

41

void swap(pointer to data1, pointer to data2) {
store a copy of data1 in temporary storage
copy data2 to location of data1
copy data in temporary storage to location of data2

}

Generic Swap

42

void swap(void *data1ptr, void *data2ptr) {
store a copy of data1 in temporary storage
copy data2 to location of data1
copy data in temporary storage to location of data2

}

Generic Swap

43

void swap(void *data1ptr, void *data2ptr) {
// store a copy of data1 in temporary storage
// copy data2 to location of data1
// copy data in temporary storage to location of data2

}

Generic Swap

44

void swap(void *data1ptr, void *data2ptr) {
// store a copy of data1 in temporary storage
// copy data2 to location of data1
// copy data in temporary storage to location of data2

}

Generic Swap

If we don’t know the data type, we don’t know
how many bytes it is. Let’s take that as another
parameter.

45

void swap(void *data1ptr, void *data2ptr, size_t nbytes) {
// store a copy of data1 in temporary storage
// copy data2 to location of data1
// copy data in temporary storage to location of data2

}

Generic Swap

If we don’t know the data type, we don’t know
how many bytes it is. Let’s take that as another
parameter.

46

void swap(void *data1ptr, void *data2ptr, size_t nbytes) {
// store a copy of data1 in temporary storage
// copy data2 to location of data1
// copy data in temporary storage to location of data2

}

Generic Swap

Let’s start by making space to store the temporary
value. How can we make nbytes of temp space?

47

void swap(void *data1ptr, void *data2ptr, size_t nbytes) {
void temp; ???
// store a copy of data1 in temporary storage
// copy data2 to location of data1
// copy data in temporary storage to location of data2

}

Generic Swap

Let’s start by making space to store the temporary
value. How can we make nbytes of temp space?

48

void swap(void *data1ptr, void *data2ptr, size_t nbytes) {
char temp[nbytes];
// store a copy of data1 in temporary storage
// copy data2 to location of data1
// copy data in temporary storage to location of data2

}

Generic Swap

temp is nbytes of memory,
since each char is 1 byte!

49

void swap(void *data1ptr, void *data2ptr, size_t nbytes) {
char temp[nbytes];
// store a copy of data1 in temporary storage
// copy data2 to location of data1
// copy data in temporary storage to location of data2

}

Generic Swap

Now, how can we copy in what
data1ptr points to into temp?

50

void swap(void *data1ptr, void *data2ptr, size_t nbytes) {
char temp[nbytes];
// store a copy of data1 in temporary storage
temp = *data1ptr; ???
// copy data2 to location of data1
// copy data in temporary storage to location of data2

}

Generic Swap

Now, how can we copy in what
data1ptr points to into temp?

51

void swap(void *data1ptr, void *data2ptr, size_t nbytes) {
char temp[nbytes];
// store a copy of data1 in temporary storage
temp = *data1ptr; ???
// copy data2 to location of data1
// copy data in temporary storage to location of data2

}

Generic Swap

We can’t dereference a void * (or set an array
equal to something). C doesn’t know what it
points to! Therefore, it doesn’t know how many
bytes there it should be looking at.

52

memcpy
memcpy is a function that copies a specified amount of bytes at one address to
another address. (It assumes the two figures don’t overlap.)

void *memcpy(void *dest, const void *src, size_t n);

It copies the next n bytes that src points to to the location contained in dest.
(It also returns dest).

int x = 5;
int y = 4;
memcpy(&x, &y, sizeof(x)); // like x = y

memcpy must take pointers to the bytes to work with to
know where they live and where they should be copied to.

53

memmove
memmove is like memcpy, except that it supports overlapping memory regions.

void *memmove(void *dest, const void *src, size_t n);

It copies the next n bytes that src points to to the location contained in dest.
(It also returns dest, tough the return value is generally ignored.)

54

memmove
When might memmove be useful?

1 2 3 4 5 6 7

4 5 6 7 5 6 7

55

void swap(void *data1ptr, void *data2ptr, size_t nbytes) {
char temp[nbytes];
// store a copy of data1 in temporary storage
temp = *data1ptr; ???
// copy data2 to location of data1
// copy data in temporary storage to location of data2

}

Generic Swap

We can’t dereference a void *. C doesn’t know
what it points to! Therefore, it doesn’t know how
many bytes there it should be looking at.

56

void swap(void *data1ptr, void *data2ptr, size_t nbytes) {
char temp[nbytes];
// store a copy of data1 in temporary storage
temp = *data1ptr; ???
// copy data2 to location of data1
// copy data in temporary storage to location of data2

}

Generic Swap

How can memcpy or memmove help us here?

void *memcpy(void *dest, const void *src, size_t n);

void *memmove(void *dest, const void *src, size_t n);

57

void swap(void *data1ptr, void *data2ptr, size_t nbytes) {
char temp[nbytes];
// store a copy of data1 in temporary storage
memcpy(temp, data1ptr, nbytes);
// copy data2 to location of data1
// copy data in temporary storage to location of data2

}

Generic Swap

58

void swap(void *data1ptr, void *data2ptr, size_t nbytes) {
char temp[nbytes];
// store a copy of data1 in temporary storage
memcpy(temp, data1ptr, nbytes);
// copy data2 to location of data1
// copy data in temporary storage to location of data2

}

Generic Swap

We can copy the bytes ourselves into temp! This is
equivalent to temp = *data1ptr in non-generic
versions, but this works for any type of any size.

59

void swap(void *data1ptr, void *data2ptr, size_t nbytes) {
char temp[nbytes];
// store a copy of data1 in temporary storage
memcpy(temp, data1ptr, nbytes);
// copy data2 to location of data1
// copy data in temporary storage to location of data2

}

Generic Swap

How can we copy data2 to the location of data1?

60

void swap(void *data1ptr, void *data2ptr, size_t nbytes) {
char temp[nbytes];
// store a copy of data1 in temporary storage
memcpy(temp, data1ptr, nbytes);
// copy data2 to location of data1
*data1ptr = *data2ptr; ???
// copy data in temporary storage to location of data2

}

Generic Swap

How can we copy data2 to the location of data1?

61

void swap(void *data1ptr, void *data2ptr, size_t nbytes) {
char temp[nbytes];
// store a copy of data1 in temporary storage
memcpy(temp, data1ptr, nbytes);
// copy data2 to location of data1
memcpy(data1ptr, data2ptr, nbytes);
// copy data in temporary storage to location of data2

}

Generic Swap

How can we copy data2 to the location of data1?
memcpy!

62

void swap(void *data1ptr, void *data2ptr, size_t nbytes) {
char temp[nbytes];
// store a copy of data1 in temporary storage
memcpy(temp, data1ptr, nbytes);
// copy data2 to location of data1
memcpy(data1ptr, data2ptr, nbytes);
// copy data in temporary storage to location of data2

}

Generic Swap

How can we copy temp’s data to the location of
data2?

63

void swap(void *data1ptr, void *data2ptr, size_t nbytes) {
char temp[nbytes];
// store a copy of data1 in temporary storage
memcpy(temp, data1ptr, nbytes);
// copy data2 to location of data1
memcpy(data1ptr, data2ptr, nbytes);
// copy data in temporary storage to location of data2
memcpy(data2ptr, temp, nbytes);

}

Generic Swap

How can we copy temp’s data to the location of
data2? memcpy!

64

void swap(void *data1ptr, void *data2ptr, size_t nbytes) {
char temp[nbytes];
// store a copy of data1 in temporary storage
memcpy(temp, data1ptr, nbytes);
// copy data2 to location of data1
memcpy(data1ptr, data2ptr, nbytes);
// copy data in temporary storage to location of data2
memcpy(data2ptr, temp, nbytes);

}

Generic Swap

int x = 2;
int y = 5;
swap(&x, &y, sizeof(x));

65

void swap(void *data1ptr, void *data2ptr, size_t nbytes) {
char temp[nbytes];
// store a copy of data1 in temporary storage
memcpy(temp, data1ptr, nbytes);
// copy data2 to location of data1
memcpy(data1ptr, data2ptr, nbytes);
// copy data in temporary storage to location of data2
memcpy(data2ptr, temp, nbytes);

}

Generic Swap

short x = 2;
short y = 5;
swap(&x, &y, sizeof(x));

66

void swap(void *data1ptr, void *data2ptr, size_t nbytes) {
char temp[nbytes];
// store a copy of data1 in temporary storage
memcpy(temp, data1ptr, nbytes);
// copy data2 to location of data1
memcpy(data1ptr, data2ptr, nbytes);
// copy data in temporary storage to location of data2
memcpy(data2ptr, temp, nbytes);

}

Generic Swap

char *x = "2";
char *y = "5";
swap(&x, &y, sizeof(x));

67

void swap(void *data1ptr, void *data2ptr, size_t nbytes) {
char temp[nbytes];
// store a copy of data1 in temporary storage
memcpy(temp, data1ptr, nbytes);
// copy data2 to location of data1
memcpy(data1ptr, data2ptr, nbytes);
// copy data in temporary storage to location of data2
memcpy(data2ptr, temp, nbytes);

}

Generic Swap

mystruct x = {…};
mystruct y = {…};
swap(&x, &y, sizeof(x));

68

C Generics

• We can use void * and memcpy to handle memory as generic bytes.

• If we are given where the data of importance is, and how big it is, we can
handle it!

void swap(void *data1ptr, void *data2ptr, size_t nbytes) {
char temp[nbytes];
memcpy(temp, data1ptr, nbytes);
memcpy(data1ptr, data2ptr, nbytes);
memcpy(data2ptr, temp, nbytes);

}

69

Plan For Today

• Overview: Generics

• Generic Swap

• Generics Pitfalls
• Announcements
• Generic Array Swap

• Generic Stack

70

void * Pitfalls

• void *s are powerful, but dangerous - C cannot do any type checking!

• E.g. with int, C would never let you swap half of an int. With void *s, this can
happen!

71

Plan For Today

• Overview: Generics

• Generic Swap

• Generics Pitfalls

• Announcements
• Generic Array Swap

• Generic Stack

72

Announcements

• assign3
• Remember to git add any custom files you make for your custom_tests
• You do not have to worry about memory leaks if a heap error occurs. Restated, if
assert ends your program because it caught a legitimate runtime error, you’re off the
hook

73

Mid-Lecture Check-In

We can now answer the following questions:

1. What variable type represents a "generic pointer"?

2. What variable type can we use to create a specific number of bytes of space
on the stack?

3. How can we copy generic memory from one location to another?

4. What is the difference between memcpy and memmove?

5. What are the benefits of generic functions in C? What are the challenges?

74

Plan For Today

• Overview: Generics

• Generic Swap

• Generics Pitfalls

• Announcements
• Generic Array Swap
• Generic Stack

75

Swap Ends

You’re asked to write a function that swaps the first and last elements in an
array of numbers.

void swap_ends_int(int arr[], size_t nelems) {
int tmp = arr[0];
arr[0] = arr[nelems – 1];
arr[nelems – 1] = tmp;

}

int main(int argc, char *argv[]) {
int nums[] = {5, 2, 3, 4, 1};
size_t nelems = sizeof(nums) / sizeof(nums[0]);
swap_ends_int(nums, nelems);
printf("nums[0] = %d, nums[4] = %d\n", nums[0], nums[4]);
return 0;

}

Wait – we just wrote a generic
swap function. Let’s use that!

76

Swap Ends

You’re asked to write a function that swaps the first and last elements in an
array of numbers.

void swap_ends_int(int arr[], size_t nelems) {
swap(arr, arr + nelems – 1, sizeof(arr[0]));

}

int main(int argc, char *argv[]) {
int nums[] = {5, 2, 3, 4, 1};
size_t nelems = sizeof(nums) / sizeof(nums[0]);
swap_ends_int(nums, nelems);
printf("nums[0] = %d, nums[4] = %d\n", nums[0], nums[4]);
return 0;

}

77

Swap Ends

Let’s write out what some other versions would look like (just in case).

void swap_ends_int(int arr[], size_t nelems) {
swap(arr, arr + nelems – 1, sizeof(arr[0]));

}

void swap_ends_short(short arr[], size_t nelems) {
swap(arr, arr + nelems – 1, sizeof(arr[0]));

}

void swap_ends_string(char *arr[], size_t nelems) {
swap(arr, arr + nelems – 1, sizeof(arr[0]));

}

void swap_ends_float(float arr[], size_t nelems) {
swap(arr, arr + nelems – 1, sizeof(arr[0]));

}

The code seems to be the
same regardless of the type!

78

Swap Ends

Let’s write a version of swap_ends that works for any type of array.

void swap_ends(void *arr, size_t nelems) {
swap(arr, arr + nelems – 1, sizeof(*arr));

}

Is this generic? Does this work?

79

Swap Ends

Let’s write a version of swap_ends that works for any type of array.

void swap_ends(void *arr, size_t nelems) {
swap(arr, arr + nelems – 1, sizeof(*arr));

}

Is this generic? Does this work?
Unfortunately not. We don’t know the element
size. And pointer arithmetic depends on the type of
data being addressed. With void *s, we lose that
information!

80

Swap Ends

Let’s write a version of swap_ends that works for any type of array.

void swap_ends(void *arr, size_t nelems) {
swap(arr, arr + nelems – 1, sizeof(*arr));

}

We need to know the element size, so
let’s add a parameter.

81

Swap Ends

Let’s write a version of swap_ends that works for any type of array.

void swap_ends(void *arr, size_t nelems, size_t elem_bytes) {
swap(arr, arr + nelems – 1, elem_bytes);

}

We need to know the element size, so
let’s add a parameter. This, however, is
still not quite right yet.

82

Pointer Arithmetic

arr + nelems – 1

Let’s say nelems = 4. How many bytes beyond arr is this?

If it’s an array of…

ints?

83

Pointer Arithmetic

arr + nelems – 1

Let’s say nelems = 4. How many bytes beyond arr is this?

If it’s an array of…

ints: adds 3 places to arr, and 3 * sizeof(int) = 12 bytes

84

Pointer Arithmetic

arr + nelems – 1

Let’s say nelems = 4. How many bytes beyond arr is this?

If it’s an array of…

ints: adds 3 places to arr, and 3 * sizeof(int) = 12 bytes

shorts?

85

Pointer Arithmetic

arr + nelems – 1

Let’s say nelems = 4. How many bytes beyond arr is this?

If it’s an array of…

ints: adds 3 places to arr, and 3 * sizeof(int) = 12 bytes

shorts: adds 3 places to arr, and 3 * sizeof(short) = 6 bytes

86

Pointer Arithmetic

arr + nelems – 1

Let’s say nelems = 4. How many bytes beyond arr is this?

If it’s an array of…

ints: adds 3 places to arr, and 3 * sizeof(int) = 12 bytes

shorts: adds 3 places to arr, and 3 * sizeof(short) = 6 bytes

char *s: adds 3 places to arr, and 3 * sizeof(char *) = 24 bytes

In each case, we need to know the element size to do the arithmetic.

87

Swap Ends

Let’s write a version of swap_ends that works for any type of array.

void swap_ends(void *arr, size_t nelems, size_t elem_bytes) {
swap(arr, arr + nelems – 1, elem_bytes);

}

How many bytes past arr should we go to
get to the last element?

(nelems – 1) * elem_bytes

88

Swap Ends

Let’s write a version of swap_ends that works for any type of array.

void swap_ends(void *arr, size_t nelems, size_t elem_bytes) {
swap(arr, arr + (nelems – 1) * elem_bytes, elem_bytes);

}

How many bytes past arr should we go to
get to the last element?

(nelems – 1) * elem_bytes

89

Swap Ends

Let’s write a version of swap_ends that works for any type of array.

void swap_ends(void *arr, size_t nelems, size_t elem_bytes) {
swap(arr, arr + (nelems – 1) * elem_bytes, elem_bytes);

}

But C still can’t do arithmetic with a
void*. We need to tell it to not worry
about it, and just add bytes. How can we
do this?

90

Swap Ends

Let’s write a version of swap_ends that works for any type of array.

void swap_ends(void *arr, size_t nelems, size_t elem_bytes) {
swap(arr, (char *)arr + (nelems – 1) * elem_bytes, elem_bytes);

}

But C still can’t do arithmetic with a
void*. We need to tell it to not worry
about it, and just add bytes. How can we
do this?

char * pointers already add bytes!

91

Swap Ends

You’re asked to write a function that swaps the first and last elements in an
array of numbers. Well, now it can swap for an array of anything!

void swap_ends(void *arr, size_t nelems, size_t elem_bytes) {
swap(arr, (char *)arr + (nelems – 1) * elem_bytes, elem_bytes);

}

92

Swap Ends

You’re asked to write a function that swaps the first and last elements in an
array of numbers. Well, now it can swap for an array of anything!

void swap_ends(void *arr, size_t nelems, size_t elem_bytes) {
swap(arr, (char *)arr + (nelems – 1) * elem_bytes, elem_bytes);

}

int nums[] = {5, 2, 3, 4, 1};
size_t nelems = sizeof(nums) / sizeof(nums[0]);
swap_ends(nums, nelems, sizeof(nums[0]));

93

Swap Ends

You’re asked to write a function that swaps the first and last elements in an
array of numbers. Well, now it can swap for an array of anything!

void swap_ends(void *arr, size_t nelems, size_t elem_bytes) {
swap(arr, (char *)arr + (nelems – 1) * elem_bytes, elem_bytes);

}

short nums[] = {5, 2, 3, 4, 1};
size_t nelems = sizeof(nums) / sizeof(nums[0]);
swap_ends(nums, nelems, sizeof(nums[0]));

94

Swap Ends

You’re asked to write a function that swaps the first and last elements in an
array of numbers. Well, now it can swap for an array of anything!

void swap_ends(void *arr, size_t nelems, size_t elem_bytes) {
swap(arr, (char *)arr + (nelems – 1) * elem_bytes, elem_bytes);

}

char *strs[] = {"Hi", "Hello", "Howdy"};
size_t nelems = sizeof(strs) / sizeof(strs[0]);
swap_ends(strs, nelems, sizeof(strs[0]));

95

Swap Ends

You’re asked to write a function that swaps the first and last elements in an
array of numbers. Well, now it can swap for an array of anything!

void swap_ends(void *arr, size_t nelems, size_t elem_bytes) {
swap(arr, (char *)arr + (nelems – 1) * elem_bytes, elem_bytes);

}

mystruct structs[] = …;
size_t nelems = …;
swap_ends(structs, nelems, sizeof(structs[0]));

96

Exercise: Array Rotation

Exercise: You’re asked to provide an implementation for a function called
rotate with the following prototype:

void rotate(void *front, void *separator, void *end);

The expectation is that front is the base address of an array, end is the past-
the-end address of the array, and separator is the address of some element
in between. rotate moves all elements in between front and separator
to the end of the array, and all elements between separator and end move
to the front.

97

Exercise: Array Rotation

Exercise: A properly implemented rotate will prompt the following program to
generate the provided output.

int main(int argc, char *argv[]) {
int array[10] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
print_int_array(array, 10); // intuit implementation J
rotate(array, array + 5, array + 10);
print_int_array(array, 10);
rotate(array, array + 1, array + 10);
print_int_array(array, 10);
rotate(array + 4, array + 5, array + 6);
print_int_array(array, 10);
return 0;

}
Output:
myth52:~/lect8$./rotate
Array: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
Array: 6, 7, 8, 9, 10, 1, 2, 3, 4, 5
Array: 7, 8, 9, 10, 1, 2, 3, 4, 5, 6
Array: 7, 8, 9, 10, 2, 1, 3, 4, 5, 6
myth52:~/lect8$

98

Demo: Array Rotation

rotate.c

99

Exercise: Array Rotation

Exercise: A properly implemented rotate will prompt the following program to
generate the provided output.

And here’s that properly implemented function!

void rotate(void *front, void *separator, void *end) {
size_t width = (char *) end - (char *) front;
size_t prefix_width = (char *) separator - (char *) front;
size_t suffix_width = width - prefix_width;

char temp[prefix_width];
memcpy(temp, front, prefix_width);
memmove(front, separator, suffix_width);
memcpy((char *) end - prefix_width, temp, prefix_width);

}

100

Plan For Today

• Overview: Generics

• Generic Swap

• Generics Pitfalls

• Announcements
• Generic Array Swap

• Generic Stack

101

Stacks

• C generics are particularly powerful in helping us create generic data
structures.

• Let’s see how we might go about making a Stack in C.

102

Refresher: Stacks

• A Stack is a data structure representing a
stack of things.

• Objects can be pushed on top of or
popped from the top of the stack.

• Only the top of the stack can be accessed;
no other items are immediately visible.

• Main operations:
• push(value): add an element to the top of

the stack
• pop(): remove and return the top element in

the stack
stack

top 31

2

bottom 10

pop, peekpush

103

A stack is sometimes implemented using a linked list.
• "bottom" = tail of linked list
• "top" = head of linked list

Stack<int> s;
s.push(42);
s.push(-3);
s.push(17);

Problem: C is not object-oriented! We can’t call methods on variables, and we
don’t have templates.

17 -3 42

front

Refresher: Stacks

104

Demo: Int Stack

int_stack.c

105

What modifications are
necessary to make a

generic stack?

106

Stack Structs

typedef struct node {
int data;
struct node *next;

} node;

typedef struct stack {
node *top;
size_t nelems;

} stack;

How might we modify the Stack data
representation itself to be generic?

107

Generic Stack Structs

The primary problem is that there’s no single node type definition that can store
data and a next pointer.

• An int stack requires nodes be sizeof(int) + sizeof(void *) in size
• A char * stack requires nodes be sizeof(char *) + sizeof(void *) in size
• A fraction stack? nodes are sizeof(fraction) + sizeof(void *) in size

typedef struct stack {
void *top;
size_t width;
size_t nelems;

} stack;

Why is top of type void *? Because we know
top stores the address of the first node in a list,
but there’s no data type that works for all nodes.
Our nodes will instead be dynamically allocated
figures whose size is width + sizeof(void *).
The first width bytes will store the data, and the
rest will store the address of the next node.

108

stack_init

void stack_init(stack *s) {
s->top = NULL;
s->nelems = 0;

}
How might we modify this function to be
generic?

From previous slide:
typedef struct stack {

void *top;
size_t width;
size_t nelems;

} stack;

109

Generic stack_init

void stack_init(stack *s, size_t width) {
s->top = NULL;
s->width = width;
s->nelems = 0;

} We should supply the element size at
initialization time so the stack can track
it and use it to know how many bytes
need to be replicated on behalf of push
and pop operations.

110

stack_push

void stack_push(stack *s, int data) {
node *n = malloc(sizeof(node));
n->data = data;
n->next = s->top;
s->top = n;
s->nelems++;

}

How might we modify this function to be
generic?

From previous slide:
typedef struct stack {

void *top;
size_t width;
size_t nelems;

} stack;

111

stack_push

void stack_push(stack *s, int data) {
node *n = malloc(sizeof(node));
n->data = data;
n->next = s->top;
s->top = n;
s->nelems++;

}

Problem: we can no longer pass the data itself as
a parameter because it could be of any type and
any size.

112

stack_push

void stack_push(stack *s, int data) {
node *n = malloc(sizeof(node));
n->data = data;
n->next = s->top;
s->top = n;
s->nelems++;

}

Solution: pass a pointer to the data as a
parameter instead and dynamically allocate just
enough memory to wedge in a copy of that data
aside a pointer to the next node.

113

Generic stack_push

void stack_push(stack *s, const void *data) {
void *n = malloc(s->width + sizeof(void *));
memcpy(n, data, s->width);
*(void **)((char *) n + s->width) = s->top;
s->top = n;
s->nelems++;

}

Solution: pass a pointer to the data as a
parameter instead and dynamically allocate
exactly enough memory to wedge in a copy of
that data aside a pointer to the next node.

114

stack_pop

int stack_pop(stack *s) {
if (s->nelems == 0) {

error(1, 0, "Cannot pop from empty stack");
}
node *n = s->top;
int val = n->data;

// rewire
s->top = n->next;
free(n);
s->nelems--;
return val;

}

How might we modify this function to be
generic?

From previous slide:
typedef struct stack {

void *top;
size_t width;
size_t nelems;

} stack;

115

stack_pop

int stack_pop(stack *s) {
if (s->nelems == 0) {

error(1, 0, "Cannot pop from empty stack");
}
node *n = s->top;
int val = n->data;

// rewire
s->top = n->next;
free(n);
s->nelems--;
return val;

}

Problem: we can no longer return the
data itself, because it could be any size!

116

stack_pop

int stack_pop(stack *s) {
if (s->nelems == 0) {

error(1, 0, "Cannot pop from empty stack");
}
node *n = s->top;
int val = n->data;

// rewire
s->top = n->next;
free(n);
s->nelems--;
return val;

}

Solution: require the client supply the
address of a figure where the data can be
safely copied.

117

Generic stack_pop

void stack_pop(stack *s, void *addr) {
if (s->nelems == 0) {

error(1, 0, "Cannot pop from empty stack");
}

void *n = s->top;
memcpy(addr, n, s->width);
s->top = *(void **)((char *)n + s->width);
free(n);
s->nelems--;

} Solution: require the client supply the
address of a figure where the data can be
safely copied to.

118

Demo: Generic Stack

generic_stack.c

119

Recap

• void * is a variable type that represents a generic pointer to something.

• We cannot do pointer arithmetic on a void *. And you can’t dereference of
void * either.

• We can use memcpy or memmove to replicate data from one memory location
to another.

• To do any type of generic pointer math using a void *, we very often cast it
to a char *.

• void * and generics are lean and powerful, but they’re dangerous. By going
generic, we sedate the compile to ignore data types and whatever type
checking would normally apply to those data types.

120

Plan For Today

• Overview: Generics

• Generic Swap

• Generics Pitfalls

• Announcements
• Generic Array Swap

• Generic Stack

Next time: More Generics, and Function Pointers

