CS107 Lecture 8

Generics in C: Leveraging the void *

Slides by Jerry Cain and Lisa Yan, who leveraged prior work by Nick Troccoli, Julie Zelenski, Marty Stepp, Cynthia Lee, Chris Gregg, and others. 1

Why We " The Stack

* It is convenient. Memory is handled automatically and is fast because old
memory is left in place and marked as usable for future function calls.

* It is fast. The stack segment is fully configured before main is called.

* It is safer. Local variables are typed, so the compiler has better information
about what operations are legal and which ones aren’t.

Why We “" The Heap

* Memory abounds! By default, the stack is relatively small—on the order of 8
MBs. The heap, however, can more easily grow to accommodate much larger
allocation requests.

 Allocations are resizable. If a dynamically allocated figure turns out to be too
small, that figure can be resized using realloc.

* Scope. The memory is not cleaned up when its function exits; instead, you
control when the memory is freed.

Stack and Heap

e Rule of thumb: unless a situation truly benefits from dynamic allocation, you
should bias towards the stack.

* Dynamic memory allocation is generally necessary when:
* the amount of memory needed can’t be determined until the program is running
* the memory must persist beyond the lifetime of the function that allocated it

CS107 Topic 4: How can we
use our knowledge of
memory and data
representation to write
code that works with any
data type?

Learning Goals

* Learn how to write C code that works with any data type.

* Learn about how to successfully use the void * even though they have no
type information about what they point to.

Plan For Today

e Overview: Generics

* Generic Swap
* Generics Pitfalls

* Announcements

* Generic Array Swap

 Generic Stack

cp -r /afs/ir/class/csl1l07/samples/lectures/lect8 .

Plan For Today

* Overview: Generics
* Generic Swap

* Generics Pitfalls

* Announcements

* Generic Array Swap
* Generic Stack

* We always strive to write code that is as general-purpose as possible.

* Generic code reduces code duplication and means you can make
improvements and fix bugs in one place rather than many.

* Generics is used throughout C for functions to sort any array, search any array,
free arbitrary memory, and more.

* How can we write generic code in C?

Plan For Today

* Overview: Generics
* Generic Swap

* Generics Pitfalls

* Announcements

* Generic Array Swap
* Generic Stack

10

Swapping ints

You’'re asked to write a function that swaps two numbers.

void swap_int(int *a, int *b) {
int temp = *a;
temp;

*3
*b
}

int main(int argc, char *argv[]) {
int x = 2;
int y = 5;
swap_int(&x, &y);
printf("x = %d, y = %d\n", X, y);
return 0;

11

Swapping ints

Stack

You’'re asked to write a function that swaps two numbers. Addrese Value

void swap_int(int *a, int *b) { : X Oxffla 2
int temp = *aj; main() y Oxffl1e
3 = *b;
*b = temp;

¥

int main(int argc, char *argv[]) {
int x = 2;
int y = 5;
swap_int(&x, &y);
printf("x = %d, y = %d\n", X, y);
return 0;

12

Swapping ints

Stack

You’'re asked to write a function that swaps two numbers. Address Value

void swap_int(int *a, int *b) { : X Oxffl4 2
int temp = *aj; main() y Oxffl1e
3 = *b;
*b = temp;

b 0oxf18

) swap_int()[a oxfle

int main(int argc, char *argv[]) {
int x = 2;
int y = 5;
swap_int(&x, &y);
printf("x = %d, y = %d\n", X, y);
return 0;

13

Swapping ints

, . . Stack
You're asked to write a function that swaps two numbers. Addrece Value
void swap_int(int *a, int *b) { : X Oxffla 2

int temp = *a; main() y Oxffl1e

*a = *p;

*b = temp; o b oxf18
) swap_int() a oxfle
int main(int argc, char *argv[]) { _ temp oxfoc

int x = 2;

int y = 5;

swap_int(&x, &y);
printf("x = %d, y = %d\n", X, y);
return 0;

14

Swapping ints

, . . Stack
You're asked to write a function that swaps two numbers. Addrece Value
void swap_int(int *a, int *b) { : X Oxffla 5

int temp = *aj; main() y Oxffl1e

*a = *p;

*b = temp; o b oxf1s
) swap_int() a oxfle
int main(int argc, char *argv[]) { _ temp oxfoc

int x = 2;

int y = 5;

swap_int(&x, &y);
printf("x = %d, y = %d\n", X, y);
return 0;

15

Swapping ints

, . . Stack
You're asked to write a function that swaps two numbers. Addrece Value
void swap_int(int *a, int *b) { : X Oxffla

int temp = *aj; main() y Oxffl1e

*a = *p;

*b = temp; B b oxfis
) swap_int() a oxfle
int main(int argc, char *argv[]) { _ temp oxfoc

int x = 2;

int y = 5;

swap_int(&x, &y);
printf("x = %d, y = %d\n", X, y);
return 0;

16

Swapping ints

Stack

You’'re asked to write a function that swaps two numbers. Addrese Value

void swap_int(int *a, int *b) { : X Oxffla
int temp = *aj; main() y Oxffle 2
3 = *b;
*b = temp;

¥

int main(int argc, char *argv[]) {
int x = 2;
int y = 5;
swap_int(&x, &y);
printf("x = %d, y = %d\n", X, y);
return 0;

17

Swapping ints

Stack

You’'re asked to write a function that swaps two numbers. Addrese Value

void swap_int(int *a, int *b) { : X Oxffla
int temp = *aj; main() y Oxffle 2
3 = *b;
*b = temp;

¥

int main(int argc, char *argv[]) {
int x = 2;
int y = 5;
swap_int(&x, &y);
printf("x = %d, y = %d\n", x, y);
return 0;

18

Swapping ints

Stack

You’'re asked to write a function that swaps two numbers. Addrese Value

void swap_int(int *a, int *b) { : X Oxffla
int temp = *aj; main() y Oxffle 2
3 = *b;
*b = temp;

¥

int main(int argc, char *argv[]) {
int x = 2;
int y = 5;
swap_int(&x, &y);
printf("x = %d, y = %d\n", X, y);
return 0;

19

Swapping shorts

void swap_short(short *a, short *b) {
short temp = *a;

*a = *b;
*b = temp;
}
int main(int argc, char *argv[]) {
short x = 2;
short y = 5;

swap_short(&x, &y);
printf("x = %hd, y = %hd\n", x, y);
return 0;

20

Swapping shorts

Stack

void swap_short(short *a, short *b) { Address Value

short temp = *a;

*a —_ *bo
Xp = temp: , X Oxff12 2
= Lemp, main()
} y Oxfflog 5
int main(int argc, char *argv[]) { B b oxfi18
SEOPE X = éf swap_short() a oxflo
SOt ¥y = 2, temp oxfoe

swap_short(&x, &y); —
printf("x = %hd, y = %hd\n", x, y);
return 0;

21

Swapping C Strings

void swap string(char **a, char **b) {
char *temp = *a;

*a = *Db;
*b = temp;
}
int main(int argc, char *argv[]) {

char *x = "2";

char *y = "5";

swap_string(&x, &y);

printf("x = %s, y = %s\n", X, y);
return 0;

22

Swapping C Strings

void swap string(char **a, char **b) {
char *temp = *a;

*a = *Db;
*b = temp;
}
int main(int argc, char *argv[]) {

char *x = "2";

char *y = "5";

swap_string(&x, &y);

printf("x = %s, y = %s\n", X, y);
return 0;

Address Value

. X Oxfflgly @Oxc
main()

y Oxffl Pxe
[oxf '\9'
Pxe 'S5’
DATA SEGMENT oxd | "\@'
@XcC ‘2"

23

Swapping C Strings

void swap string(char **a, char **b) {

char *temp = *a; Address Value

*a = *b;

‘b = temp; nain() X Oxffls
} y ©oxffle
int main(int argc, char *argv[]) { {:

char *x = "2"; ‘

) swap strin

Char‘ *y — ll5ll. p— g()

swap_ strlng(&x, &y);

printf("x = %s, y = %s\n", X, y);

return 0;
} DATA SEGMENT

24

Swapping C Strings

void swap string(char **a, char **b) {

char *temp = *a; Address Value

¥a = *b: §
} y Oxfflof, exe
int main(int argc, char *argv[]) { b oxfi
cEar IX = :2:3 swap_string() a oxfi
char 7y = "> ; , temp oxfes
swap_string(&x, &y); —
printf("x = %s, y = %s\n", X, y); - ——
return 0; oxt I\ '\e
} oxe ‘5’
DATA SEGMENT oxd | T\e
OXC ‘2
o P 5

Swapping C Strings

void swap string(char **a, char **b) {

char *temp = *a; Address Value

3 = *b; oxFF18 |p BX

*b = temp; main() | ¢ —

} y Oxffl oxe
int main(int argc, char *argv[]) { b exf1
char *x = "2%; swap_string() a oxfle
char ¥y = "5°; temp oxfes

swap_string(&x, &y); _=EMP

printf("x = %s, y = %s\n", X, y); — o

return 0; oxt e

} oxe ‘5’

DATA SEGMENT oxd| [\e

OXC ‘2

o 6

void swap string(char **a, char **b) {
char *temp = *a;

Address Value

¥a = *b; §
} y oxffigf
int main(int argc, char *argv[]) { b oxfi8
cEar IX = ngnf swap_string() a oxfle
char 7y = temp 0xfo8
swap_ strlng(&x, &y); =
printf("x = %s, y = %s\n", X, y); - :
return 0; @X‘c \@
} Oxe

DATA SEGMENT

7

void swap string(char **a, char **b) {
char *temp = *a;

Address Value

o - o oxFF18 [Oy
*b = temp; main() XX X€
} y Oxffl (5)'(e
int main(int argc, char *argv[]) { oxff "\o'
char *x = "2"; Oxe o
char *y = "5"; DATA SEGMENT .,
swap_ strlng(&x, &y); ox >é
printf("x = %s, y = %s\n", X, y); | oxc 2
return 0; .

28

void swap string(char **a, char **b) {
char *temp = *a;

Address Value

o - o oxFF18 [Oy
*b = temp; main() XX X€
} y Oxffl Oxc
int main(int argc, char *argv[]) { oxff "\o'
char *x = "2"; Oxe o
char *y = "5"; DATA SEGMENT .,
swap_ strlng(&x, &y); ox >?
printf("x = %s, y = %s\n", X, y); | oxc 2
return 0; .

29

void swap string(char **a, char **b) {
char *temp = *a;

Address Value

*a = *b; .
*b = temp; main() [X ©Oxffl18 Pxe
} y Oxffl OXC
int main(int argc, char *argv[]) { oxff "\o'
char *x = "2%; Oxe@p "o
char *y = "5"; DATA SEGMENT oxd o'
swap_ strlng(&x, &y);
printf("x = %s, y = %s\n", X, y); | oxc| 2
return 0; .

30

What if we could write one function to swap two values of any single type?

void swap_int(int *a, int *b) { .. }

void swap float(float *a, float *b) { .. }
void swap size t(size t *a, size t *b) { .. }
void swap _double(double *a, double *b) { .. }

void swap string(char **a, char **b) { .. }

void swap _mystruct(mystruct *a, mystruct *b) { .. }

31

Generic Swap

void swap_int(int *a, int *b) {
int temp = *a;
*a *b;
*b = temp;

¥

void swap_short(short *a, short *b) {
short temp = *a;
*a *b;
*b = temp;

¥

void swap string(char **a, char **b) {
char *temp = *a;
*a *b;
*b = temp;

Generic Swap

void swap int(int *a, int *b) {
int temp = *a;
temp;

*3
*b
}

void swap_short(short *a, short *b) {
short temp = *a;
*a *b;
*b = temp;

¥

void swap_string(char **a, char **b) {
char *temp = *a;
*a *b;
*b = temp;

All 3:

Take pointers to values to
swap

Create temporary storage to
store one of the values
Move data at b into where a
points

Move data in temporary
storage into where b points

33

Generic Swap

void swap(pointer to datal, pointer to data2) {
store a copy of datal in temporary storage
copy data2 to location of datal
copy data in temporary storage to location of data2

34

Generic Swap

void swap(pointer to datal, pointer to data2) {
store a copy of datal in temporary storage
copy data2 to location of datal
copy data in temporary storage to location of data2

int temp = *datalptr; 4 bytes

short temp = *datalptr; 2 bytes

char *temp = *datalptr; 8 bytes

Problem: each type may need a different size temp!
35

Generic Swap

void swap(pointer to datal, pointer to data2) {
store a copy of datal in temporary storage
copy data2 to location of datal
copy data in temporary storage to location of data2

*datalPtr = *data2ptr; 4 bytes

*datalPtr = *data2ptr; 2 bytes

*datalPtr

*data2ptr; 8 bytes

Problem: each type needs to copy a different amount of data!
36

Generic Swap

void swap(pointer to datal, pointer to data2) {
store a copy of datal in temporary storage
copy data2 to location of datal
copy data in temporary storage to location of data2

}
*data2ptr = temp; 4 bytes
*data2ptr = temp; 2 bytes
*data2ptr = temp; 8 bytes

Problem: each type needs to copy a different amount of data!

37

C knows the size of temp,

and knows how many bytes
to copy, because the
variables are strongly

typed.

Is there a way to make a
version that doesn't care
about the variable types?

Generic Swap

void swap(pointer to datal, pointer to data2) {
store a copy of datal in temporary storage
copy data2 to location of datal
copy data in temporary storage to location of data2

40

Generic Swap

void swap(pointer to datal, pointer to data2) {
store a copy of datal in temporary storage
copy data2 to location of datal
copy data in temporary storage to location of data2

41

Generic Swap

void swap(void *datalptr, void *dataz2ptr) {
store a copy of datal in temporary storage
copy data2 to location of datal
copy data in temporary storage to location of data2

42

Generic Swap

void swap(void *datalptr, void *data2ptr) {
// store a copy of datal in temporary storage
// copy data2 to location of datal
// copy data in temporary storage to location of data2

43

Generic Swap

void swap(void *datalptr, void *data2ptr) {
// store a copy of datal in temporary storage
// copy data2 to location of datal
// copy data in temporary storage to location of data2

If we don’t know the data type, we don’t know
how many bytes it is. Let’s take that as another
parameter.

44

Generic Swap

void swap(void *datalptr, void *data2ptr, size t nbytes) {
// store a copy of datal in temporary storage
// copy data2 to location of datal
// copy data in temporary storage to location of data2

If we don’t know the data type, we don’t know
how many bytes it is. Let’s take that as another
parameter.

45

Generic Swap

void swap(void *datalptr, void *data2ptr, size t nbytes) {
// store a copy of datal in temporary storage
// copy data2 to location of datal
// copy data in temporary storage to location of data2

Let’s start by making space to store the temporary
value. How can we make nbytes of temp space?

46

Generic Swap

void swap(void *datalptr, void *data2ptr, size t nbytes) {
void temp; ???
// store a copy of datal in temporary storage
// copy data2 to location of datal
// copy data in temporary storage to location of data2

Let’s start by making space to store the temporary
value. How can we make nbytes of temp space?

47

Generic Swap

void swap(void *datalptr, void *data2ptr, size t nbytes) {
char temp[nbytes];
// store a copy of datal in temporary storage
// copy data2 to location of datal
// copy data in temporary storage to location of data2

temp is nbytes of memory,
since each char is 1 byte!

48

Generic Swap

void swap(void *datalptr, void *data2ptr, size t nbytes) {
char temp[nbytes];
// store a copy of datal in temporary storage
// copy data2 to location of datal
// copy data in temporary storage to location of data2

Now, how can we copy in what
datalptr points to into temp?

49

Generic Swap

void swap(void *datalptr, void *data2ptr, size t nbytes) {
char temp[nbytes];
// store a copy of datal in temporary storage
temp = *datalptr; ??°?
// copy data2 to location of datal
// copy data in temporary storage to location of data2

Now, how can we copy in what
datalptr points to into temp?

50

Generic Swap

void swap(void *datalptr, void *data2ptr, size t nbytes) {
char temp[nbytes];
// store a copy of datal in temporary storage
temp = *datalptr; ??°?
// copy data2 to location of datal
// copy data in temporary storage to location of data2

We can’t dereference a void * (or set an array
equal to something). C doesn’t know what it
points to! Therefore, it doesn’t know how many
bytes there it should be looking at.

51

memcpy is a function that copies a specified amount of bytes at one address to
another address. (It assumes the two figures don’t overlap.)

void *memcpy(void *dest, const void *src, size t n);

It copies the next n bytes that sxrc points to to the location contained in dest.
(It also returns dest).

memcpy must take pointers to the bytes to work with to

nt x = 5; know where they live and where they should be copied to.

int y = 4;
memcpy (&x, &y, sizeof(x)); // like x =y

52

memmove

memmove is like memcpy, except that it supports overlapping memory regions.

void *memmove(void *dest, const void *src, size t n);

It copies the next n bytes that sxrc points to to the location contained in dest.
(It also returns dest, tough the return value is generally ignored.)

53

memmove

When might memmove be useful?

1 2 3 4 5 6 7/

54

Generic Swap

void swap(void *datalptr, void *data2ptr, size t nbytes) {
char temp[nbytes];
// store a copy of datal in temporary storage
temp = *datalptr; ??°?
// copy data2 to location of datal
// copy data in temporary storage to location of data2

We can’t dereference a void *. C doesn’t know
what it points to! Therefore, it doesn’t know how
many bytes there it should be looking at.

55

Generic Swap

void swap(void *datalptr, void *data2ptr, size t nbytes) {
char temp[nbytes];
// store a copy of datal in temporary storage
temp = *datalptr; ???
// copy data2 to location of datal
// copy data in temporary storage to location of data2

How can memcpy or memmove help us here?

void *memcpy(void *dest, const void *src, size t n);

void *memmove(void *dest, const void *src, size t n);

56

Generic Swap

void swap(void *datalptr, void *data2ptr, size t nbytes) {
char temp[nbytes];
// store a copy of datal in temporary storage
memcpy(temp, datalptr, nbytes);
// copy data2 to location of datal
// copy data in temporary storage to location of data2

57

Generic Swap

void swap(void *datalptr, void *data2ptr, size t nbytes) {
char temp[nbytes];
// store a copy of datal in temporary storage
memcpy(temp, datalptr, nbytes);
// copy data2 to location of datal
// copy data in temporary storage to location of data2

We can copy the bytes ourselves into temp! This is
equivalent to temp = *datalptr in non-generic
versions, but this works for any type of any size.

58

Generic Swap

void swap(void *datalptr, void *data2ptr, size t nbytes) {
char temp[nbytes];
// store a copy of datal in temporary storage
memcpy (temp, datalptr, nbytes);
// copy data2 to location of datal
// copy data in temporary storage to location of data2

How can we copy data2 to the location of datal?

59

Generic Swap

void swap(void *datalptr, void *data2ptr, size t nbytes) {
char temp[nbytes];
// store a copy of datal in temporary storage
memcpy (temp, datalptr, nbytes);
// copy data2 to location of datal
*datalptr = *data2ptr; ???
// copy data in temporary storage to location of data2

How can we copy data2 to the location of datal?

60

Generic Swap

void swap(void *datalptr, void *data2ptr, size t nbytes) {
char temp[nbytes];
// store a copy of datal in temporary storage
memcpy (temp, datalptr, nbytes);
// copy data2 to location of datal
memcpy(datalptr, data2ptr, nbytes);
// copy data in temporary storage to location of data2

How can we copy data2 to the location of datal?
memcpy!

61

Generic Swap

void swap(void *datalptr, void *data2ptr, size t nbytes) {
char temp[nbytes];
// store a copy of datal in temporary storage
memcpy (temp, datalptr, nbytes);
// copy data2 to location of datal
memcpy (datalptr, data2ptr, nbytes);
// copy data in temporary storage to location of data2

How can we copy temp’s data to the location of
data2?

62

Generic Swap

void swap(void *datalptr, void *data2ptr, size t nbytes) {
char temp[nbytes];
// store a copy of datal in temporary storage

memcpy (temp, datalptr, nbytes);
// copy data2 to location of datal

memcpy (datalptr, data2ptr, nbytes);
// copy data in temporary storage to location of data2

memcpy(data2ptr, temp, nbytes);

How can we copy temp’s data to the location of
data2? memcpy!

63

Generic Swap

void swap(void *datalptr, void *data2ptr, size t nbytes) {
char temp[nbytes];
// store a copy of datal in temporary storage

memcpy (temp, datalptr, nbytes);
// copy data2 to location of datal

memcpy (datalptr, data2ptr, nbytes);
// copy data in temporary storage to location of data2

memcpy(data2ptr, temp, nbytes);

int x = 2;
int y = 5;
swap(&x, &y, sizeof(x));

64

Generic Swap

void swap(void *datalptr, void *data2ptr, size t nbytes) {
char temp[nbytes];
// store a copy of datal in temporary storage

memcpy (temp, datalptr, nbytes);
// copy data2 to location of datal

memcpy (datalptr, data2ptr, nbytes);
// copy data in temporary storage to location of data2

memcpy(data2ptr, temp, nbytes);

short x = 2;
short y = 5;
swap(&x, &y, sizeof(x));

65

Generic Swap

void swap(void *datalptr, void *data2ptr, size t nbytes) {
char temp[nbytes];
// store a copy of datal in temporary storage

memcpy (temp, datalptr, nbytes);
// copy data2 to location of datal

memcpy (datalptr, data2ptr, nbytes);
// copy data in temporary storage to location of data2

memcpy(data2ptr, temp, nbytes);

char *x = "2";
char *y = "5";
swap(&x, &y, sizeof(x));

66

Generic Swap

void swap(void *datalptr, void *data2ptr, size t nbytes) {
char temp[nbytes];
// store a copy of datal in temporary storage

memcpy (temp, datalptr, nbytes);
// copy data2 to location of datal

memcpy (datalptr, data2ptr, nbytes);
// copy data in temporary storage to location of data2

memcpy(data2ptr, temp, nbytes);

mystruct x = {..};
mystruct y = {..};
swap(&x, &y, sizeof(x));

67

* We can use void * and memcpy to handle memory as generic bytes.

* If we are given where the data of importance is, and how big it is, we can
handle it!

void swap(void *datalptr, void *data2ptr, size t nbytes) {
char temp[nbytes];
memcpy (temp, datalptr, nbytes);
memcpy(datalptr, data2ptr, nbytes);
memcpy (data2ptr, temp, nbytes);

68

Plan For Today

* Overview: Generics
* Generic Swap

* Generics Pitfalls

* Announcements

* Generic Array Swap
* Generic Stack

69

void * Pitfalls

* void *s are powerful, but dangerous - C cannot do any type checking!

* E.g. with int, C would never let you swap half of an int. With void *s, this can
happen!

70

Plan For Today

* Overview: Generics
* Generic Swap

* Generics Pitfalls

* Announcements

* Generic Array Swap
* Generic Stack

/1

Announcements

* assign3
* Remember to git add any custom files you make for your custom_tests

* You do not have to worry about memory leaks if a heap error occurs. Restated, if

assert ends your program because it caught a legitimate runtime error, you’re off the
hook

72

Mid-Lecture Check-In

We can now answer the following questions:

What varia

2. What varia
on the stac

ole type represents a "generic pointer"?

ole type can we use to create a specific number of bytes of space

<?

3. How can we copy generic memory from one location to another?

What is the difference between memcpy and memmove?

5. What are the benefits of generic functions in C? What are the challenges?

73

Plan For Today

* Overview: Generics
* Generic Swap

* Generics Pitfalls

* Announcements

* Generic Array Swap
* Generic Stack

74

You’'re asked to write a function that swaps the first and last elements in an

array of numbers.

void swap_ends_int(int arr[], size_t nelems) {
int tmp = arr[0];
arr[@] = arr[nelems - 1];
arr[nelems - 1] = tmp;

¥

int main(int argc, char *argv[]) {
int nums[] = {5, 2, 3, 4, 1};

Wait — we just wrote a generic
swap function. Let’s use that!

size_t nelems = sizeof(nums) / sizeof(nums[@]);

swap_ends_int(nums, nelems);

printf("nums[@] = %d, nums[4] = %d\n", nums[@], nums[4]);

return 0;

You’'re asked to write a function that swaps the first and last elements in an
array of numbers.

void swap_ends_int(int arr[], size_t nelems) {
swap(arr, arr + nelems - 1, sizeof(arr[0]));
}

int main(int argc, char *argv[]) {
int nums[] = {5, 2, 3, 4, 1};
size t nelems = sizeof(nums) / sizeof(nums[0@]);
swap_ends_int(nums, nelems);
printf("nums[@] = %d, nums[4] = %d\n", nums[@], nums[4]);
return 0;

76

Let’s write out what some other versions would look like (just in case).

void swap_ends_int(int arr[], size_t nelems) {
swap(arr, arr + nelems - 1, sizeof(arr[0]));
}

void swap_ends_short(short arr[], size t nelems) {
swap(arr, arr + nelems - 1, sizeof(arr[0]));
}

void swap_ends_string(char *arr[], size_t nelems) {

swap(arr, arr + nelems - 1, sizeof(arr[@])); The code seems to be the
}

same regardless of the type!

void swap_ends float(float arr[], size t nelems) {
swap(arr, arr + nelems - 1, sizeof(arr[0]));

} 77

Let’s write a version of swap ends that works for any type of array.

void swap_ends(void *arr, size t nelems) {
swap(arr, arr + nelems - 1, sizeof(*arr));
}

Is this generic? Does this work?

78

Let’s write a version of swap ends that works for any type of array.

void swap_ends(void *arr, size t nelems) {

¥

swap(arr, arr + nelems - 1, sizeof(*arr));

Is this generic? Does this work?

Unfortunately not. We don’t know the element
size. And pointer arithmetic depends on the type of
data being addressed. With void *s, we lose that

information!

79

Let’s write a version of swap ends that works for any type of array.

void swap_ends(void *arr, size t nelems) {
swap(arr, arr + nelems - 1, sizeof(*arr));
}

We need to know the element size, so
let’s add a parameter.

80

Let’s write a version of swap ends that works for any type of array.

void swap_ends(void *arr, size t nelems, size t elem_bytes) {
swap(arr, arr + nelems - 1, elem_bytes);
}

We need to know the element size, so
let’s add a parameter. This, however, is
still not quite right yet.

81

Pointer Arithmetic

arr + nelems - 1

Let’s say nelems = 4. How many bytes beyond arr is this?

If it’s an array of...
ints?

82

Pointer Arithmetic

arr + nelems - 1

Let’s say nelems = 4. How many bytes beyond arr is this?

If it’s an array of...

ints: adds 3 placesto arr,and 3 * sizeof (int) =12 bytes

83

Pointer Arithmetic

arr + nelems - 1

Let’s say nelems = 4. How many bytes beyond arr is this?

If it’s an array of...
ints: adds 3 placesto arr,and 3 * sizeof (int) =12 bytes

shorts?

84

Pointer Arithmetic

arr + nelems - 1
Let’s say nelems = 4. How many bytes beyond arr is this?

If it’s an array of...
ints: adds 3 placesto arr,and 3 * sizeof (int) =12 bytes

shorts: adds 3 placesto arr,and 3 * sizeof (short) =6 bytes

85

Pointer Arithmetic

arr + nelems - 1

Let’s say nelems = 4. How many bytes beyond arr is this?

If it’s an array of...
ints: adds 3 placesto arr,and 3 * sizeof (int) =12 bytes

shorts: adds 3 placesto arr,and 3 * sizeof (short) =6 bytes
char *s: adds 3 places to arr, and 3 * sizeof (char *) = 24 bytes

In each case, we need to know the element size to do the arithmetic.

86

Let’s write a version of swap ends that works for any type of array.

void swap_ends(void *arr, size t nelems, size t elem bytes) {
swap(arr, arr + nelems - 1, elem bytes);
}

How many bytes past arr should we go to
get to the last element?

(nelems — 1) * elem_bytes

87

Let’s write a version of swap _ends that works for any type of array.

void swap_ends(void *arr, size t nelems, size t elem bytes) {
swap(arr, arr + (nelems - 1) * elem bytes, elem bytes);
}

How many bytes past arr should we go to
get to the last element?

(nelems — 1) * elem_bytes

88

Let’s write a version of swap _ends that works for any type of array.

void swap_ends(void *arr, size t nelems, size t elem bytes) {

¥

swap(arr, arr + (nelems - 1) * elem_bytes, elem_bytes);

But C still can’t do arithmetic with a
void*. We need to tell it to not worry
about it, and just add bytes. How can we
do this?

89

Let’s write a version of swap _ends that works for any type of array.

void swap_ends(void *arr, size t nelems, size t elem bytes) {

¥

swap(arr, (char *)arr + (nelems - 1) * elem bytes, elem bytes);

But C still can’t do arithmetic with a
void*. We need to tell it to not worry
about it, and just add bytes. How can we
do this?

char * pointers already add bytes!

90

You’'re asked to write a function that swaps the first and last elements in an
array of numbers. Well, now it can swap for an array of anything!

void swap_ends(void *arr, size t nelems, size t elem bytes) {
swap(arr, (char *)arr + (nelems - 1) * elem bytes, elem bytes);
}

91

You’'re asked to write a function that swaps the first and last elements in an
array of numbers. Well, now it can swap for an array of anything!

void swap_ends(void *arr, size t nelems, size t elem bytes) {
swap(arr, (char *)arr + (nelems - 1) * elem bytes, elem bytes);
}

int nums[] = {5, 2, 3, 4, 1};
size t nelems = sizeof(nums) / sizeof(nums[@O]);
swap_ends(nums, nelems, sizeof(nums[@]));

92

You’'re asked to write a function that swaps the first and last elements in an
array of numbers. Well, now it can swap for an array of anything!

void swap_ends(void *arr, size t nelems, size t elem bytes) {

¥

swap(arr, (char *)arr + (nelems - 1) * elem bytes, elem bytes);

short nums[] = {5, 2, 3, 4, 1};
size t nelems = sizeof(nums) / sizeof(nums[@O]);
swap_ends(nums, nelems, sizeof(nums[@]));

93

You’'re asked to write a function that swaps the first and last elements in an
array of numbers. Well, now it can swap for an array of anything!

void swap_ends(void *arr, size t nelems, size t elem bytes) {
swap(arr, (char *)arr + (nelems - 1) * elem bytes, elem bytes);
}

Char\ *Str‘S[] — {IIHiII, llHel]—OII, llHowdyll};
size t nelems = sizeof(strs) / sizeof(strs[@]);
swap_ends(strs, nelems, sizeof(strs[0]));

94

You’'re asked to write a function that swaps the first and last elements in an
array of numbers. Well, now it can swap for an array of anything!

void swap_ends(void *arr, size t nelems, size t elem bytes) {
swap(arr, (char *)arr + (nelems - 1) * elem bytes, elem bytes);
}

mystruct structs[] = ..;
size t nelems = .;

swap_ends(structs, nelems, sizeof(structs[0]));

95

Exercise: Array Rotation

Exercise: You're asked to provide an implementation for a function called
rotate with the following prototype:

void rotate(void *front, void *separator, void *end);

The expectation is that £ront is the base address of an array, end is the past-

the-end address of the array, and separator is the address of some element

in between. rotate moves all elements in between £front and separator
to the end of the array, and all elements between separator and end move

to the front.

96

Exercise: Array Rotation

Exercise: A properly implemented rotate will prompt the following program to
generate the provided output.

int main(int argc, char *argv[]) {
int array[10] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
print_int _array(array, 10); // intuit implementation ©
rotate(array, array + 5, array + 10);
print_int_array(array, 10);
rotate(array, array + 1, array + 10);
print_int_array(array, 10);
rotate(array + 4, array + 5, array + 6);
print_int_array(array, 10);
return 0; Output:
} myth52:~/lect8$./rotate
Array: 1, 2, 3, 4, 5, 6, 7, 8, 9, 1
Array: 6, 7, 8, 9, 10, 1,
Array: 7, 8, 9, 10, 1, 2,
Array: 7, 8, 9, 10, 2, 1,
myth52:~/lect8$

97

Demo: Array Rotation

tttttttt

Exercise: Array Rotation

Exercise: A properly implemented rotate will prompt the following program to
generate the provided output.

And here’s that properly implemented function!

void rotate(void *front, void *separator, void *end) {
size t width = (char *) end - (char *) front;

size t prefix _width = (char *) separator - (char *) front;

size t suffix width = width - prefix width;

char temp[prefix width];

memcpy (temp, front, prefix width);

memmove (front, separator, suffix width);
memcpy((char *) end - prefix width, temp, prefix width);

99

Plan For Today

* Overview: Generics
* Generic Swap

* Generics Pitfalls

* Announcements

* Generic Array Swap
* Generic Stack

100

* C generics are particularly powerful in helping us create generic data
structures.

* Let’s see how we might go about making a Stack in C.

101

Refresher: Stacks

e A Stack is a data structure representing a
stack of things.

* Objects can be pushed on top of or

popped from the top of the stack. push pop, peek
* Only the top of the stack can be accessed; \ /
no other items are immediately visible.
e Main operations: S
* push(value): add an element to the top of 2
the stack 10
e pop(): remove and return the top element in stack

the stack

102

Refresher: Stacks

A stack is sometimes implemented using a linked list.
e "bottom" = tail of linked list
 "top" = head of linked list

Stack<int> s;
s.push(42); 17 —| -3 o 42
s.push(-3);
s.push(17);

Problem: C is not object-oriented! We can’t call methods on variables, and we
don’t have templates.

103

Demo: Int Stack

What modifications are
necessary to make a
generic stack?

typedef struct node {
int data;
struct node *next;
} node;

How might we modify the Stack data
representation itself to be generic?

typedef struct stack {
node *top;
size t nelems;

} stack;

106

Generic Stack Structs

The primary problem is that there’s no single node type definition that can store

data and a next pointer.

* An int stack requires nodes be sizeof (int) + sizeof (void *) insize
* Achar * stack requires nodes be sizeof (char *) + sizeof (void *) in size
* A fraction stack? nodes are sizeof (fraction) + sizeof (void *) in size

typedef struct stack {
void *top;
size t width;
size t nelems;

} stack;

Why is top of type void *? Because we know
top stores the address of the first node in a list,
but there’s no data type that works for all nodes.
Our nodes will instead be dynamically allocated

figures whose size iswidth + sizeof (void *).

The first width bytes will store the data, and the
rest will store the address of the next node.

07

void stack init(stack *s) {
s->top = NULL;

s->nelems 0;

From previous slide:

typedef struct stack {
void *top;
size t width;
size t nelems;

} stack;

How might we modify this function to be
generic?

108

Generic stack _iInit

void stack init(stack *s, size t width) {
s->top = NULL;
s->width = width;
s->nelems = 0;

We should supply the element size at
initialization time so the stack can track
it and use it to know how many bytes
need to be replicated on behalf of push
and pop operations.

109

void stack push(stack *s, int data) {
node *n = malloc(sizeof(node));

n->data = data;
n->next = s->top;
s->top
S->nelems++;

From previous slide:

typedef struct stack {
void *top;
size t width;
size t nelems;

} stack;

How might we modify this function to be
generic?

110

void stack push(stack *s, int data) {
node *n = malloc(sizeof(node));
n->data = data;
n->next = s->top;
s->top = n;
s->nelems++;

Problem: we can no longer pass the data itself as

a parameter because it could be of any type and
any size.

111

void stack push(stack *s, int data) {
node *n = malloc(sizeof(node));
n->data = data;
n->next = s->top;
s->top = n;
s->nelems++;

Solution: pass a pointer to the data as a
parameter instead and dynamically allocate just
enough memory to wedge in a copy of that data
aside a pointer to the next node.

112

Generic stack_push

void stack push(stack *s, const void *data) {
void *n = malloc(s->width + sizeof(void *));
memcpy(n, data, s->width);
*(void **)((char *) n + s->width) = s->top;
s->top = n;
s->nelems++;

Solution: pass a pointer to the data as a
parameter instead and dynamically allocate
exactly enough memory to wedge in a copy of
that data aside a pointer to the next node.

113

stack_pop

int stack pop(stack *s) {
if (s->nelems == 0) {

error(1l, 0, "Cannot pop from empty stack");

How might we modify this function to be
generic?

}

node *n = s->top;
int val = n->data;
// rewire

s->top = n->next;
free(n);

s->nelems--;
return val;

From previous slide:

typedef struct stack {
void *top;
size t width;
size _t nelems;

} stack;

114

stack_pop

int stack pop(stack *s) {
if (s->nelems == 0) {
error(1l, 0, "Cannot pop from empty stack");
}

node *n = s->top;
int val = n->data;

// rewire
s->top = n->next;
free(n);

s->nelems--; — I —
return val; roblem: we can no longer return the

} data itself, because it could be any size!

rS

stack_pop

int stack pop(stack *s) {
if (s->nelems == 0) {
error(1l, 0, "Cannot pop from empty stack");
}

node *n = s->top;
int val = n->data;

// rewire
s->top = n->next;

free(n); T T o
s->nelems--: Solution: require the client supply the

return val; address of a figure where the data can be
} safely copied.

116

Generic stack_pop

void stack pop(stack *s, void *addr) {
if (s->nelems == 0) {

error(l, 0, "Cannot pop from empty stack");
}

void *n = s->top;

memcpy(addr, n, s->width);

s->top = *(void **)((char *)n + s->width);

free(n);

s->nelems--; : : :
} Solution: require the client supply the

address of a figure where the data can be
safely copied to.

Ll

Demo: Generic Stack

generic_stack.c

Recap

e void * is avariable type that represents a generic pointer to something.

* We cannot do pointer arithmetic on a void *. And you can’t dereference of
void * either.

* We can use memcpy or memmove to replicate data from one memory location
to another.

* To do any type of generic pointer math using a void *, we very often cast it
toa char *.

e void * and generics are lean and powerful, but they’re dangerous. By going
generic, we sedate the compile to ighore data types and whatever type
checking would normally apply to those data types.

119

Plan For Today

* Overview: Generics
* Generic Swap

* Generics Pitfalls

* Announcements

* Generic Array Swap
* Generic Stack

Next time: More Generics, and Function Pointers

120

