
1

CS107 Lecture 9
More Generics in C: Function pointers

Slides by Jerry Cain and Lisa Yan, who leveraged prior work by Nick Troccoli, Julie Zelenski, Marty Stepp, Cynthia Lee, Chris Gregg, and others.

Reading: K&R 5.11

2

Learning Goals
• Learn how to write C code that works with any data type.
• Learn how to pass functions as parameters
• Learn how to write functions that accept functions as parameters

3

Plan For Today
• Finish up: Generic Stack
• Function Pointers
• Example: Bubble Sort

cp -r /afs/ir/class/cs107/samples/lectures/lect9 .

4

Plan For Today
• Finish up: Generic Stack
• Function Pointers
• Example: Bubble Sort

5

Plan For Today
• Finish up: Generic Stack
• Function Pointers
• Example: Bubble Sort

6

Bubble Sort
• Let’s write a function to sort a list of integers. We’ll use the bubble sort

algorithm.

• Bubble sort repeatedly passes over the array, exchanging neighboring
elements when they’re out of order.

4 2 12 -5 56 14

7

Bubble Sort
• Let’s write a function to sort a list of integers. We’ll use the bubble sort

algorithm.

• Bubble sort repeatedly passes over the array, exchanging neighboring
elements when they’re out of order.

4 2 12 -5 56 14

8

Bubble Sort
• Let’s write a function to sort a list of integers. We’ll use the bubble sort

algorithm.

• Bubble sort repeatedly passes over the array, exchanging neighboring
elements when they’re out of order.

2 4 12 -5 56 14

9

Bubble Sort
• Let’s write a function to sort a list of integers. We’ll use the bubble sort

algorithm.

• Bubble sort repeatedly passes over the array, exchanging neighboring
elements when they’re out of order.

2 4 12 -5 56 14

10

Bubble Sort
• Let’s write a function to sort a list of integers. We’ll use the bubble sort

algorithm.

• Bubble sort repeatedly passes over the array, exchanging neighboring
elements when they’re out of order.

2 4 12 -5 56 14

11

Bubble Sort
• Let’s write a function to sort a list of integers. We’ll use the bubble sort

algorithm.

• Bubble sort repeatedly passes over the array, exchanging neighboring
elements when they’re out of order.

2 4 -5 12 56 14

12

Bubble Sort
• Let’s write a function to sort a list of integers. We’ll use the bubble sort

algorithm.

• Bubble sort repeatedly passes over the array, exchanging neighboring
elements when they’re out of order.

2 4 -5 12 56 14

13

Bubble Sort
• Let’s write a function to sort a list of integers. We’ll use the bubble sort

algorithm.

• Bubble sort repeatedly passes over the array, exchanging neighboring
elements when they’re out of order.

2 4 -5 12 56 14

14

Bubble Sort
• Let’s write a function to sort a list of integers. We’ll use the bubble sort

algorithm.

• Bubble sort repeatedly passes over the array, exchanging neighboring
elements when they’re out of order.

2 4 -5 12 14 56

15

Bubble Sort
• Let’s write a function to sort a list of integers. We’ll use the bubble sort

algorithm.

• Bubble sort repeatedly passes over the array, exchanging neighboring
elements when they’re out of order.

2 4 -5 12 14 56

16

Bubble Sort
• Let’s write a function to sort a list of integers. We’ll use the bubble sort

algorithm.

• Bubble sort repeatedly passes over the array, exchanging neighboring
elements when they’re out of order.

2 4 -5 12 14 56

17

Bubble Sort
• Let’s write a function to sort a list of integers. We’ll use the bubble sort

algorithm.

• Bubble sort repeatedly passes over the array, exchanging neighboring
elements when they’re out of order.

2 -5 4 12 14 56

18

Bubble Sort
• Let’s write a function to sort a list of integers. We’ll use the bubble sort

algorithm.

• Bubble sort repeatedly passes over the array, exchanging neighboring
elements when they’re out of order.

2 -5 4 12 14 56

19

Bubble Sort
• Let’s write a function to sort a list of integers. We’ll use the bubble sort

algorithm.

• Bubble sort repeatedly passes over the array, exchanging neighboring
elements when they’re out of order.

2 -5 4 12 14 56

20

Bubble Sort
• Let’s write a function to sort a list of integers. We’ll use the bubble sort

algorithm.

• Bubble sort repeatedly passes over the array, exchanging neighboring
elements when they’re out of order.

2 -5 4 12 14 56

21

Bubble Sort
• Let’s write a function to sort a list of integers. We’ll use the bubble sort

algorithm.

• Bubble sort repeatedly passes over the array, exchanging neighboring
elements when they’re out of order.

2 -5 4 12 14 56

In general, bubble sort requires up to n - 1 passes to sort an array of
length n, though it may end sooner if a pass doesn’t swap anything

22

Bubble Sort
• Let’s write a function to sort a list of integers. We’ll use the bubble sort

algorithm.

• Bubble sort repeatedly passes over the array, exchanging neighboring
elements when they’re out of order.

-5 2 4 12 14 56

Only two more passes are needed to arrive at the above. The first
exchanges the 2 and the -5, and the second leaves everything as is.

23

Integer Bubble Sort
void bubble_sort(int arr[], size_t n) {

for (size_t i = 0; i < n - 1; i++) {
bool swapped = false;
for (size_t j = 0; j < n - 1; j++) {

if (arr[j] > arr[j + 1]) { // out of order, so swap!
swapped = true;
swap(&arr[j], &arr[j + 1], sizeof(int));

}
}

if (!swapped) return;
}

} How can we make this function
generic, to sort an array of any type?

24

Integer Bubble Sort
void bubble_sort(int arr[], size_t n) {

for (size_t i = 0; i < n - 1; i++) {
bool swapped = false;
for (size_t j = 0; j < n - 1; j++) {

if (arr[j] > arr[j + 1]) { // out of order, so swap!
swapped = true;
swap(&arr[j], &arr[j + 1], sizeof(int));

}
}

if (!swapped) return;
}

} Let’s start by making the parameters
and swap generic.

25

Generic Bubble Sort
void bubble_sort(void *arr, size_t n, size_t width) {

for (size_t i = 0; i < n - 1; i++) {
bool swapped = false;
for (size_t j = 0; j < n - 1; j++) {

if (arr[j] > arr[j + 1]) { // out of order, so swap!
swapped = true;
swap(&arr[j], &arr[j + 1], width);

}
}

if (!swapped) return;
}

} Let’s start by making the parameters
and swap generic.

26

Recall Key Idea: Locating ith Elem
A common generics idiom is getting a pointer to the ith element of a generic
array. From last lecture, we know how locate the last element:

void swap_ends(void *arr, size_t count, size_t width) {
swap(arr, (char *)arr + (count – 1) * width, width);

}

How can we generalize this to get the ith element?

void *addr = (char *)arr + i * width;

27

Generic Bubble Sort

Let’s start by making the parameters
and swap generic.

void bubble_sort(void *arr, size_t n, size_t width) {

for (size_t i = 0; i < n - 1; i++) {
bool swapped = false;
for (size_t j = 0; j < n - 1; j++) {

void *first = (char *) arr + j * width;
void *second = (char *) arr + (j + 1) * width;
if (arr[j] > arr[j + 1]) { // out of order, so swap!

swapped = true;
swap(first, second, width);

}
}

if (!swapped) return;
}

}

28

Generic Bubble Sort

Wait a minute…this doesn’t work! We can’t
dereference void *s OR compare any element
with >, since they may not be numbers!

!

void bubble_sort(void *arr, size_t n, size_t width) {

for (size_t i = 0; i < n - 1; i++) {
bool swapped = false;
for (size_t j = 0; j < n - 1; j++) {

void *first = (char *) arr + j * width;
void *second = (char *) arr + (j + 1) * width;
if (*first > *second) { // out of order, so swap!

swapped = true;
swap(first, second, width);

}
}

if (!swapped) return;
}

}

29

A Generics Conundrum
• We’ve hit a snag: There’s no way to generically compare elements. They could

be any type, and < isn’t always the right way to compare (e.g. think C strings)
• How can we write code to compare any two elements of the same type?
• That’s not something that a generic bubble sort knows how to do. The caller,

however, should know—because they’re supplying the data.

30

Generic Bubble Sort
void bubble_sort(void *arr, size_t n, size_t width) {

for (size_t i = 0; i < n - 1; i++) {
bool swapped = false;
for (size_t j = 0; j < n - 1; j++) {

void *first = (char *) arr + j * width;
void *second = (char *) arr + (j + 1) * width;
if (*first > *second) { // out of order, so swap!

swapped = true;
swap(first, second, width);

}
}

if (!swapped) return;
}

}

bubble_sort (inner voice): hey, you,
person who invoked me. Do you know
how to compare the items at these two
addresses?

31

Generic Bubble Sort
void bubble_sort(void *arr, size_t n, size_t width) {

for (size_t i = 0; i < n - 1; i++) {
bool swapped = false;
for (size_t j = 0; j < n - 1; j++) {

void *first = (char *) arr + j * width;
void *second = (char *) arr + (j + 1) * width;
if (*first > *second) { // out of order, so swap!

swapped = true;
swap(first, second, width);

}
}

if (!swapped) return;
}

}

Caller: yeah, I know how to compare them.
You don’t know what data type they are, but I
do. I have a function that can do the
comparison for you and tell you the result.

32

Generic Bubble Sort
void bubble_sort(void *arr, size_t n, size_t width,

function_type cmpfn) {
for (size_t i = 0; i < n - 1; i++) {

bool swapped = false;
for (size_t j = 0; j < n - 1; j++) {

void *first = (char *) arr + j * width;
void *second = (char *) arr + (j + 1) * width;
if (cmpfn(first, second) > 0) { // out of order, so swap!

swapped = true;
swap(first, second, width);

}
}

if (!swapped) return;
}

}

How can we compare these elements? They
can pass us this function as a parameter. The
function’s job is to tell us how two elements
compare.

33

Generic Bubble Sort
void bubble_sort(void *arr, size_t n, size_t width,

int (*cmpfn)(const void *a, const void *b)) {
for (size_t i = 0; i < n - 1; i++) {

bool swapped = false;
for (size_t j = 0; j < n - 1; j++) {

void *first = (char *) arr + j * width;
void *second = (char *) arr + (j + 1) * width;
if (cmpfn(first, second) > 0) { // out of order, so swap!

swapped = true;
swap(first, second, width);

}
}

if (!swapped) return;
}

}

How can we compare these elements? They
can pass us this function as a parameter. The
function’s job is to tell us how two elements
compare.

34

Function Pointers
A function pointer is the type used to pass a function as a parameter. Here is
how the parameter’s type is declared:

int (*cmpfn)(const void *a, const void *b)

35

Function Pointers
A function pointer is the type used to pass a function as a parameter. Here is
how the parameter’s type is declared:

int (*cmpfn)(const void *a, const void *b)

Return type
(int)

36

Function Pointers
A function pointer is the type used to pass a function as a parameter. Here is
how the parameter’s type is declared:

int (*cmpfn)(const void *a, const void *b)

Function pointer name
(cmpfn)

37

Function Pointers
A function pointer is the type used to pass a function as a parameter. Here is
how the parameter’s type is declared:

int (*cmpfn)(const void *a, const void *b)

Function parameters
(two void *s that promise to read but not change the data)

38

Comparison Functions
• Function pointers are used in cases like this to compare two values of the same

type. These are called comparison functions.
• When implementing a comparison function, it’s often expected the return

value provide comparison information the same way strcmp does.
• < 0 if first value is "less" than the second
• > 0 if first value is "greater" than the second
• 0 if first value and second value are equivalent

int (*cmpfn)(const void *a, const void *b)

39

Function Pointers

int int_cmp(const void *ptr1, const void *ptr2) {
...

}

int main(int argc, char *argv[]) {
int numbers[] = {4, 2, -5, 1, 12, 56};
size_t count = sizeof(numbers)/sizeof(numbers[0]);
bubble_sort(numbers, count, sizeof(int), int_cmp);
return 0;

}
bubble_sort is generic and works for any type.
But the caller knows the specific type of data
being sorted and provides a comparison
function specifically for that data type.

40

Function Pointers

int int_cmp(const void *a, const void *b) {
return *(const int *)a - *(const int *)b;

}
This function is created by the caller
specifically to compare integers, knowing
their addresses are necessarily disguised as
const void *so that bubble_sort can work
for any array type..

41

Comparison Functions
• Exercise: how can we write a comparison function for bubble sort to sort

strings in alphabetical order?
• When implementing a comparison function, it’s often expected the return

value provide comparison information the same way strcmp does.
• < 0 if first value is "less" than the second
• > 0 if first value is "greater" than the second
• 0 if first value and second value are equivalent

int (*cmpfn)(const void *a, const void *b)

42

String Comparison Function

int str_cmp(const void *a, const void *b) {
const char *str1 = *(const char **)a;
const char *str2 = *(const char **)b;
return strcmp(str1, str2);

}

int main(int argc, char *argv[]) {
char *names[] = {"Nathan", "Monica", "Brent", "Sasha"};
size_t count = sizeof(names)/sizeof(names[0]);
bubble_sort(names, count, sizeof(char *), str_cmp);
return 0;

}

43

Recap
• We can pass functions as parameters to pass logic throughout our programs.
• Comparison functions are often passed as parameters to generically compare

two elements. There are other use cases for function pointers, and you’ll see
several in this week’s lab and assignment.

• Functions handling generic data must use pointers to the data they care about,
since the data could be any size. That’s why function pointers are so important
when implementing generics.

44

Plan For Today
• Finish up: Generic Stack
• Function Pointers
• Example: Bubble Sort

Next time: Floats in C

