CS107 Lecture 9

More Generics in C: Function pointers

Reading: K&R 5.11

Slides by Jerry Cain and Lisa Yan, who leveraged prior work by Nick Troccoli, Julie Zelenski, Marty Stepp, Cynthia Lee, Chris Gregg, and others. 1



Learning Goals

* Learn how to write C code that works with any data type.
* Learn how to pass functions as parameters

* Learn how to write functions that accept functions as parameters



Plan For Today

* Finish up: Generic Stack
* Function Pointers
* Example: Bubble Sort

cp -r /afs/ir/class/csl1l07/samples/lectures/lect9 .
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Bubble Sort

* Let’s write a function to sort a list of integers. We’'ll use the bubble sort
algorithm.

4 2 12 | -5 | 56 | 14

* Bubble sort repeatedly passes over the array, exchanging neighboring
elements when they’re out of order.
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Bubble Sort

* Let’s write a function to sort a list of integers. We’'ll use the bubble sort

algorithm.

* Bubble sort repeatedly passes over the array, exchanging neighboring
elements when they’re out of order.
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Bubble Sort

* Let’s write a function to sort a list of integers. We’'ll use the bubble sort

algorithm.

2 -5 4 12 | 14 | 56

* Bubble sort repeatedly passes over the array, exchanging neighboring
elements when they’re out of order.

In general, bubble sort requires up to n - 1 passes to sort an array of
length n, though it may end sooner if a pass doesn’t swap anything
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Bubble Sort

* Let’s write a function to sort a list of integers. We’'ll use the bubble sort
algorithm.

-5 2 4 12 | 14 | 56

* Bubble sort repeatedly passes over the array, exchanging neighboring
elements when they’re out of order.

Only two more passes are needed to arrive at the above. The first
exchanges the 2 and the -5, and the second leaves everything as is.
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Integer Bubble Sort

void bubble sort(int arr[], size t n) {

for (size t i =0; i < n - 1; i++) {
bool swapped = false;
for (size t j =0; j < n - 1; j++) {
if (arr[j] > arr[j + 1]) { // out of order, so swap!
swapped = true;
swap(&arr[j], &arr[j + 1], sizeof(int));

¥

if (!swapped) return;

) How can we make this function
generic, to sort an array of any type?
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Integer Bubble Sort

void bubble sort(int arr[], size t n) {

for (size t i =0; i < n - 1; i++) {

bool swapped = false;

for (size t j =0; j < n - 1; j++) {
if (arr[j] > arr[j + 1]) { // out of order, so swap!

swapped = true;

swap(&arr[j], &arr[j + 1], sizeof(int));

¥

if (!swapped) return;

Let’s start by making the parameters
and swap generic.
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Generic Bubble Sort

void bubble sort(void *arr, size t n, size t width) {

for (size t i =0; i < n - 1; i++) {

bool swapped = false;

for (size t j =0; j < n - 1; j++) {
if (arr[j] > arr[j + 1]) { // out of order, so swap!

swapped = true;

swap(&arr[j], &arr[j + 1], width);

¥

if (!swapped) return;

Let’s start by making the parameters
and swap generic.
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Recall Key Idea: Locating it" Elem

A common generics idiom is getting a pointer to the it" element of a generic
array. From last lecture, we know how locate the last element:

void swap_ends(void *arr, size t count, size t width) {
swap(arr, (char *)arr + (count - 1) * width, width);
}

How can we generalize this to get the it" element?

void *addr = (char *)arr + 1 * width;
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Generic Bubble Sort

void bubble sort(void *arr, size t n, size t width) {

for (size t i =0; i < n - 1; i++) {

bool swapped = false;

for (size t j =0; j < n - 1; j++) {
void *first = (char *) arr + j * width;
void *second = (char *) arr + (j + 1) * width;
if (arr[j] > arr[j + 1]) { // out of order, so swap!

swapped = true;

swap(first, second, width);

¥

if (!swapped) return;

Let’s start by making the parameters
and swap generic.

27



Generic Bubble Sort

void bubble sort(void *arr, size t n, size t width) {

for (size t 1 =0; i < n - 1; i++) {
bool swapped = false;
for (size t j =0; j < n - 1; j++) {
void *first = (char *) arr + j * width;
void *second = (char *) arr + (j + 1) * width;
if (*first > *second) { // out of order, so swap!
swapped = true;
swap(first, second, width);

}
J Wait a minute...this doesn’t work! We can’t
if (!swapped) return; dereference void *s OR compare any element
h with >, since they may not be numbers! - _
} W
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A Generics Conundrum

* We’ve hit a snag: There’s no way to generically compare elements. They could
be any type, and < isn’t always the right way to compare (e.g. think C strings)

* How can we write code to compare any two elements of the same type?

* That’s not something that a generic bubble sort knows how to do. The caller,
however, should know—because they’re supplying the data.
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Generic Bubble Sort

void bubble sort(void *arr, size t n, size t width) {

for (size t 1 =0; i < n - 1; i++) {

bool swapped = false;

for (size t j =0; j < n - 1; j++) {
void *first = (char *) arr + j * width;
void *second = (char *) arr + (j + 1) * width;
if (*first > *second) { // out of order, so swap!

swapped = true;

swap(first, second, width);

¥

if (!swapped) return;

/bubble_sort (inner voice): hey, you,
person who invoked me. Do you know
how to compare the items at these two

addresses?

N

J
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Generic Bubble Sort

void bubble sort(void *arr, size t n, size t width) {

for (size t 1 =0; i < n - 1; i++) {
bool swapped = false;
for (size t j =0; j < n - 1; j++) {
void *first = (char *) arr + j * width;
void *second = (char *) arr + (j + 1) * width;
if (*first > *second) { // out of order, so swap!
swapped = true;
swap(first, second, width);

) q R

Caller: yeah, | know how to compare them.
if (!swapped) return; You don’t know what data type they are, but |

} do. | have a function that can do the

\comparison for you and tell you the result.
31




Generic Bubble Sort

void bubble sort(void *arr, size t n, size t width,
function_type cmpfn) {
for (size t 1 =0; i < n - 1; i++) {
bool swapped = false;
for (size t j =0; j < n - 1; j++) {
void *first = (char *) arr + j * width;
void *second = (char *) arr + (j + 1) * width;
if (cmpfn(first, second) > @) { // out of order, so swap!
swapped = true;
swap(first, second, width);

} How can we compare these elements? They
can pass us this function as a parameter. The
function’s job is to tell us how two elements

} compare.

if (!swapped) return;
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Generic Bubble Sort

void bubble sort(void *arr, size t n, size t width,
int (*cmpfn)(const void *a, const void *b)) {
for (size t 1 =0; i < n - 1; i++) {
bool swapped = false;
for (size t j =0; j < n - 1; j++) {
void *first = (char *) arr + j * width;
void *second = (char *) arr + (j + 1) * width;
if (cmpfn(first, second) > @) { // out of order, so swap!
swapped = true;
swap(first, second, width);

} How can we compare these elements? They
can pass us this function as a parameter. The
function’s job is to tell us how two elements

} compare.

if (!swapped) return;
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Function Pointers

A function pointer is the type used to pass a function as a parameter. Here is
how the parameter’s type is declared:

int (*cmpfn)(const void *a, const void *b)
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Function Pointers

A function pointer is the type used to pass a function as a parameter. Here is
how the parameter’s type is declared:

int (*cmpfn)(const void *a, const void *b)

|

Return type
(int)
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Function Pointers

A function pointer is the type used to pass a function as a parameter. Here is
how the parameter’s type is declared:

int (*cmpfn)(const void *a, const void *b)

|

Function pointer name
(cmpfn)
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Function Pointers

A function pointer is the type used to pass a function as a parameter. Here is
how the parameter’s type is declared:

int (*cmpfn)(const void *a, const void *b)

|

Function parameters
(two void *s that promise to read but not change the data)
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Comparison Functions

* Function pointers are used in cases like this to compare two values of the same
type. These are called comparison functions.

* When implementing a comparison function, it’s often expected the return
value provide comparison information the same way stremp does.

e <0iffirst value is "less" than the second
* > 0if first value is "greater" than the second
* O if first value and second value are equivalent

int (*cmpfn)(const void *a, const void *b)
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Function Pointers

int int_cmp(const void *ptrl, const void *ptr2) {

}

int main(int argc, char *argv[]) {
int numbers[] = {4, 2, -5, 1, 12, 56};
size t count = sizeof(numbers)/sizeof(numbers[0]);

bubble sort(numbers, count, sizeof(int), int_cmp);
return 0;

bubble sort is generic and works for any type.
But the caller knows the specific type of data
being sorted and provides a comparison
function specifically for that data type.
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Function Pointers

int int _cmp(const void *a, const void *b) {
return *(const int *)a - *(const int *)b;
}

This function is created by the caller
specifically to compare integers, knowing
their addresses are necessarily disguised as
const void *so that bubble sort can work
for any array type..
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Comparison Functions

* Exercise: how can we write a comparison function for bubble sort to sort
strings in alphabetical order?

* When implementing a comparison function, it’s often expected the return
value provide comparison information the same way stremp does.

e <0iffirst value is "less" than the second
* > 0if first value is "greater" than the second
* O if first value and second value are equivalent

int (*cmpfn)(const void *a, const void *b)
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String Comparison Function

int str_cmp(const void *a, const void *b) {
const char *strl = *(const char **)a;
const char *str2 = *(const char **)b;
return strcmp(strl, str2);

¥

int main(int argc, char *argv[]) {
char *names[] = {"Nathan", "Monica", "Brent", "Sasha"};
size t count = sizeof(names)/sizeof(names[@]);
bubble sort(names, count, sizeof(char *), str _cmp);
return 0;
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Recap

* We can pass functions as parameters to pass logic throughout our programs.

* Comparison functions are often passed as parameters to generically compare
two elements. There are other use cases for function pointers, and you’ll see
several in this week’s lab and assignment.

* Functions handling generic data must use pointers to the data they care about,
since the data could be any size. That’s why function pointers are so important
when implementing generics.
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Plan For Today

Next time: Floats in C
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