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CS107 Lecture 9
More Generics in C: Function pointers

Slides by Jerry Cain and Lisa Yan, who leveraged prior work by Nick Troccoli, Julie Zelenski, Marty Stepp, Cynthia Lee, Chris Gregg, and others.

Reading: K&R 5.11
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Learning Goals
• Learn how to write C code that works with any data type.
• Learn how to pass functions as parameters
• Learn how to write functions that accept functions as parameters
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Plan For Today
• Finish up: Generic Stack
• Function Pointers
• Example: Bubble Sort

cp -r /afs/ir/class/cs107/samples/lectures/lect9 .
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Bubble Sort
• Let’s write a function to sort a list of integers.  We’ll use the bubble sort 

algorithm.

• Bubble sort repeatedly passes over the array, exchanging neighboring 
elements when they’re out of order.

4 2 12 -5 56 14
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Bubble Sort
• Let’s write a function to sort a list of integers.  We’ll use the bubble sort 

algorithm.

• Bubble sort repeatedly passes over the array, exchanging neighboring 
elements when they’re out of order.

2 -5 4 12 14 56

In general, bubble sort requires up to n - 1 passes to sort an array of 
length n, though it may end sooner if a pass doesn’t swap anything
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Bubble Sort
• Let’s write a function to sort a list of integers.  We’ll use the bubble sort 

algorithm.

• Bubble sort repeatedly passes over the array, exchanging neighboring 
elements when they’re out of order.

-5 2 4 12 14 56

Only two more passes are needed to arrive at the above.  The first 
exchanges the 2 and the -5, and the second leaves everything as is.
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Integer Bubble Sort
void bubble_sort(int arr[], size_t n) {

for (size_t i = 0; i < n - 1; i++) {
bool swapped = false;
for (size_t j = 0; j < n - 1; j++) {

if (arr[j] > arr[j + 1]) { // out of order, so swap!                       
swapped = true;
swap(&arr[j], &arr[j + 1], sizeof(int));

}
}

if (!swapped) return;
}

} How can we make this function 
generic, to sort an array of any type?
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Integer Bubble Sort
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} Let’s start by making the parameters 
and swap generic.
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Generic Bubble Sort
void bubble_sort(void *arr, size_t n, size_t width) {

for (size_t i = 0; i < n - 1; i++) {
bool swapped = false;
for (size_t j = 0; j < n - 1; j++) {

if (arr[j] > arr[j + 1]) { // out of order, so swap!                       
swapped = true;
swap(&arr[j], &arr[j + 1], width);

}
}

if (!swapped) return;
}

} Let’s start by making the parameters 
and swap generic.
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Recall Key Idea: Locating ith Elem
A common generics idiom is getting a pointer to the ith element of a generic 
array.  From last lecture, we know how locate the last element:

void swap_ends(void *arr, size_t count, size_t width) {
swap(arr, (char *)arr + (count – 1) * width, width);

}

How can we generalize this to get the ith element?

void *addr = (char *)arr + i * width;



27

Generic Bubble Sort

Let’s start by making the parameters 
and swap generic.

void bubble_sort(void *arr, size_t n, size_t width) {

for (size_t i = 0; i < n - 1; i++) {
bool swapped = false;
for (size_t j = 0; j < n - 1; j++) {

void *first = (char *) arr + j * width;
void *second = (char *) arr + (j + 1) * width;
if (arr[j] > arr[j + 1]) { // out of order, so swap!                       

swapped = true;
swap(first, second, width);

}
}

if (!swapped) return;
}

}
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Generic Bubble Sort

Wait a minute…this doesn’t work!  We can’t 
dereference void *s OR compare any element 
with >, since they may not be numbers!

!

void bubble_sort(void *arr, size_t n, size_t width) {

for (size_t i = 0; i < n - 1; i++) {
bool swapped = false;
for (size_t j = 0; j < n - 1; j++) {

void *first = (char *) arr + j * width;
void *second = (char *) arr + (j + 1) * width;
if (*first > *second) { // out of order, so swap!                       

swapped = true;
swap(first, second, width);

}
}

if (!swapped) return;
}

}
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A Generics Conundrum
• We’ve hit a snag: There’s no way to generically compare elements.  They could 

be any type, and < isn’t always the right way to compare (e.g. think C strings)
• How can we write code to compare any two elements of the same type?
• That’s not something that a generic bubble sort knows how to do.  The caller, 

however, should know—because they’re supplying the data.
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Generic Bubble Sort
void bubble_sort(void *arr, size_t n, size_t width) {

for (size_t i = 0; i < n - 1; i++) {
bool swapped = false;
for (size_t j = 0; j < n - 1; j++) {

void *first = (char *) arr + j * width;
void *second = (char *) arr + (j + 1) * width;
if (*first > *second) { // out of order, so swap!                       

swapped = true;
swap(first, second, width);

}
}

if (!swapped) return;
}

}

bubble_sort (inner voice): hey, you, 
person who invoked me.  Do you know 
how to compare the items at these two 
addresses?
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Generic Bubble Sort
void bubble_sort(void *arr, size_t n, size_t width) {

for (size_t i = 0; i < n - 1; i++) {
bool swapped = false;
for (size_t j = 0; j < n - 1; j++) {

void *first = (char *) arr + j * width;
void *second = (char *) arr + (j + 1) * width;
if (*first > *second) { // out of order, so swap!                       

swapped = true;
swap(first, second, width);

}
}

if (!swapped) return;
}

}

Caller: yeah, I know how to compare them.  
You don’t know what data type they are, but I 
do.  I have a function that can do the 
comparison for you and tell you the result.
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Generic Bubble Sort
void bubble_sort(void *arr, size_t n, size_t width,

function_type cmpfn) {
for (size_t i = 0; i < n - 1; i++) {

bool swapped = false;
for (size_t j = 0; j < n - 1; j++) {

void *first = (char *) arr + j * width;
void *second = (char *) arr + (j + 1) * width;
if (cmpfn(first, second) > 0) { // out of order, so swap!                       

swapped = true;
swap(first, second, width);

}
}

if (!swapped) return;
}

}

How can we compare these elements?  They 
can pass us this function as a parameter.  The 
function’s job is to tell us how two elements 
compare.
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Generic Bubble Sort
void bubble_sort(void *arr, size_t n, size_t width,

int (*cmpfn)(const void *a, const void *b)) {
for (size_t i = 0; i < n - 1; i++) {

bool swapped = false;
for (size_t j = 0; j < n - 1; j++) {

void *first = (char *) arr + j * width;
void *second = (char *) arr + (j + 1) * width;
if (cmpfn(first, second) > 0) { // out of order, so swap!                       

swapped = true;
swap(first, second, width);

}
}

if (!swapped) return;
}

}

How can we compare these elements?  They 
can pass us this function as a parameter.  The 
function’s job is to tell us how two elements 
compare.
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Function Pointers
A function pointer is the type used to pass a function as a parameter.  Here is 
how the parameter’s type is declared:

int (*cmpfn)(const void *a, const void *b)
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Return type
(int)
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Function Pointers
A function pointer is the type used to pass a function as a parameter.  Here is 
how the parameter’s type is declared:

int (*cmpfn)(const void *a, const void *b)

Function pointer name
(cmpfn)
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Function Pointers
A function pointer is the type used to pass a function as a parameter.  Here is 
how the parameter’s type is declared:

int (*cmpfn)(const void *a, const void *b)

Function parameters
(two void *s that promise to read but not change the data)
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Comparison Functions
• Function pointers are used in cases like this to compare two values of the same 

type.  These are called comparison functions.
• When implementing a comparison function, it’s often expected the return 

value provide comparison information the same way strcmp does.
• < 0 if first value is "less" than the second
• > 0 if first value is "greater" than the second
• 0 if first value and second value are equivalent

int (*cmpfn)(const void *a, const void *b)
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Function Pointers

int int_cmp(const void *ptr1, const void *ptr2) {
...  

}

int main(int argc, char *argv[]) {
int numbers[] = {4, 2, -5, 1, 12, 56};
size_t count = sizeof(numbers)/sizeof(numbers[0]);
bubble_sort(numbers, count, sizeof(int), int_cmp);
return 0;

}
bubble_sort is generic and works for any type.  
But the caller knows the specific type of data 
being sorted and provides a comparison 
function specifically for that data type.
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Function Pointers

int int_cmp(const void *a, const void *b) {
return *(const int *)a - *(const int *)b;

}
This function is created by the caller 
specifically to compare integers, knowing 
their addresses are necessarily disguised as 
const void *so that bubble_sort can work 
for any array type..
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Comparison Functions
• Exercise: how can we write a comparison function for bubble sort to sort 

strings in alphabetical order?
• When implementing a comparison function, it’s often expected the return 

value provide comparison information the same way strcmp does.
• < 0 if first value is "less" than the second
• > 0 if first value is "greater" than the second
• 0 if first value and second value are equivalent

int (*cmpfn)(const void *a, const void *b)
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String Comparison Function

int str_cmp(const void *a, const void *b) {
const char *str1 = *(const char **)a;
const char *str2 = *(const char **)b;
return strcmp(str1, str2);

}

int main(int argc, char *argv[]) {
char *names[] = {"Nathan", "Monica", "Brent", "Sasha"};
size_t count = sizeof(names)/sizeof(names[0]);
bubble_sort(names, count, sizeof(char *), str_cmp);
return 0;

}
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Recap
• We can pass functions as parameters to pass logic throughout our programs.
• Comparison functions are often passed as parameters to generically compare 

two elements.  There are other use cases for function pointers, and you’ll see 
several in this week’s lab and assignment.

• Functions handling generic data must use pointers to the data they care about, 
since the data could be any size.  That’s why function pointers are so important 
when implementing generics.
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Plan For Today
• Finish up: Generic Stack
• Function Pointers
• Example: Bubble Sort

Next time: Floats in C


