
	 1	

Nick Troccoli CS 107 Fall 2020

Mid-Quarter	Assessment	Solutions

1. Sticky Search
// blank 1
strcmp(searchIn, searchFor) == 0
or
strstr(searchIn, searchFor) != NULL && (strlen(searchIn) == strlen(searchFor))

// blank 2
strncmp(searchIn, searchFor, strlen(searchFor)) == 0
or
strstr(searchIn, searchFor) == searchIn

// blank 3
if (strlen(searchIn) < strlen(searchFor)) {
 return NULL;
}
char *endStr = searchIn + strlen(searchIn) - strlen(searchFor);
if (strcmp(endStr, searchFor) == 0) {
 return endStr;
}

// blank 4
strstr(searchIn, searchFor);

2. Spring Cleaning
Part 1: springCleaning

Sample Solution 1

void springCleaning(int *arr[], size_t nelems) {
 for (int i = 0; i < nelems; i += 2) {
 *(arr[i]) += *(arr[i + 1]);
 free(arr[i + 1]);
 arr[i + 1] = arr[i];
 }
}

	 2	

Sample Solution 2

void springCleaning(int *arr[], size_t nelems) {
 for (int i = 0; i < nelems; i += 2) {
 *(arr[i + 1]) += *(arr[i]);
 free(arr[i]);
 arr[i] = arr[i + 1];
 }
}

Part 2: Memory Errors

The first memory error is that the size passed to malloc is incorrect. It uses the number of elements instead
of the number of bytes. The malloc size should multiply the specified value by sizeof(int *).

The second memory error is that the heap-allocated integers are freed twice in the loop at the end, since
springCleaning modifies the array such that each pair of pointers points to the same heap-allocated integer.
To correctly free the heap-allocated integers, we would only want to free pointers at odd-numbered
indexes, since that’s the last time we will use the heap-allocated integer it points to.

	 3	

3. A Roll Of The Dice
Sample Solution

int *getDiceRolls(int *lengthPtr) {
 int capacity = 2;
 int *rolls = malloc(capacity * sizeof(int));
 assert(rolls != NULL);
 int used = 0;

 int roll = rollDice();
 while (roll != 1) {
 if (used == capacity) {
 capacity += 2;
 rolls = realloc(rolls, capacity * sizeof(int));
 assert(rolls != NULL);
 }

 rolls[used] = roll;
 used++;
 roll = rollDice();
 }

 *lengthPtr = used;
 return rolls;
}

	 4	

4. containsLargerThan
Part 1: containsLargerThan

bool containsLargerThan(void *base, size_t nelems,
 size_t elem_size_bytes, void *elem,
 int (*cmp_fn)(const void *, const void *)) {
 for (int i = 0; i < nelems; i++) {
 void *ith = (char *)base + i * elem_size_bytes;
 if (cmp_fn(ith, elem) > 0) {
 return true;
 }

 // or if (cmp_fn(elem, ith) < 0) return true;
 }

 return false;
}

Part 2: cmpStringsDesc

int cmpStringsDesc(const void *a, const void *b) {
 const char *strA = *(const char **)a;
 const char *strB = *(const char **)b;

 return strlen(strB) - strlen(strA);
}

5. uchars
Part 1: filluchars

unsigned int filluchars(uchar a, uchar b, uchar c, uchar d) {
 return (a << 24) | (b << 16) | (c << 8) | d;
}

Part 2: pulluchar

uchar pulluchar(unsigned int value, int ucharLocation) {
 return (value >> (ucharLocation << 3)) & 0xff;
}

