
1
This document is copyright (C) Stanford Computer Science and Nick Troccoli, licensed under Creative Commons Attribution 2.5 License. All rights reserved.

Based on slides created by Marty Stepp, Cynthia Lee, Chris Gregg, Jerry Cain, Lisa Yan and others.

CS107, Lecture 1
Welcome to CS107!

reading:
General Information handout

Bryant & O’Hallaron, Ch. 1
Honor Code and Collaboration Page

http://web.stanford.edu/class/archive/cs/cs107/cs107.1212/handouts/1-General-Information.pdf
http://web.stanford.edu/class/archive/cs/cs107/cs107.1212/collaboration.html

2

Plan For Today
• Introduction
• CS107 Course Policies
• Unix and the Command Line
• Getting Started With C

3

CS107 on Zoom
• You are encouraged to share video!
• Post questions/comments/followups on the discussion forum thread for that

day’s lecture. We’ll take periodic “question breaks” to address them. We
won’t be using Zoom chat. Everyone is muted by default.

4

Plan For Today
• Introduction
• CS107 Course Policies
• Unix and the Command Line
• Getting Started With C

5

What is CS107?
The CS106 series:
• Taught you how to solve problems as a programmer
• Many times, CS106 instructors had to say, “just don’t worry about that,” or “it

probably doesn’t make sense why that happens, but ignore it for now”

CS107 finally takes you behind the scenes:
• Not quite down to hardware or physics/electromagnetism (that’s for later...)
• It’s how things work inside C++/Python/Java, and how your programs map

onto the components of computer systems
• Not only does it just feel good to know how these work, it can also inform

projects you work on in the future.

6

What is CS107?
Computer Organization and Systems
• How languages like C++ and Java

represent data under the hood
• How programming structures are

encoded in bits and bytes
• How to efficiently manipulate and

manage memory
• How computers compile programs
• Uses the C programming language
• Programming style and software

development practices

7

CS107 Learning Goals
The goals for CS107 are for students to gain mastery of

- writing C programs with complex use of memory and pointers
- an accurate model of the address space and compile/runtime behavior

of C programs
to achieve competence in

- translating C to/from assembly
- writing programs that respect the limitations of computer arithmetic
- identifying bottlenecks and improving runtime performance
- working effectively in a Unix development environment

and have exposure to
- a working understanding of the basics of computer architecture

8

Course Overview
1. Bits and Bytes - How can a computer represent integer numbers?
2. Chars and C-Strings - How can a computer represent and manipulate more

complex data like text?
3. Pointers, Stack and Heap – How can we effectively manage all types of

memory in our programs?
4. Generics - How can we use our knowledge of memory and data

representation to write code that works with any data type?
5. Assembly - How does a computer interpret and execute C programs?
6. Heap Allocators - How do core memory-allocation operations

like malloc and free work?

9

CS107 Online
• This quarter, we are making many adjustments and changes to make CS107

the best it can be in an online format.
• We are working to emphasize community and connection.
• We understand the unprecedented situation this quarter presents for

everyone involved.
• We will constantly evaluate and listen to ensure the class is going as smoothly

as possible for everyone.
• Please communicate with us if any personal circumstances or issues arise! We

are here to support you.

10

CS107 Online
• This quarter, we are making many adjustments and changes to make CS107

the best it can be in an online format.
• We are working to emphasize community and connection.
• We understand the unprecedented situation this quarter presents for

everyone involved.
• We will constantly evaluate and listen to ensure the class is going as smoothly

as possible for everyone.
• Please communicate with us if any personal circumstances or issues arise! We

are here to support you.

11

A Wonderful Community ❤

I have a horrible fear of snakes.

I don’t feel to confident in
the 106b material because I
took it during the pass/fail
quarter

I have a great dog; his name is Enzo.

I’m a first-gen college student

I love 70s music!

I enjoy poke bowls, finishing coding
assignments, and researching insect
venation. A strange combination, I
know...

I'm the only law student I know taking the class

I'm a transfer student from last year.

In need of a study buddy

I never coded before I got to Stanford

I have watched NBA basketball every
season since 2003. I've seen the entirety of
LeBron's NBA career. He's the GOAT.

I'm a volunteer firefighter/EMT in the DC area and in NY

12

A Wonderful Community ❤

Currently quarantining in Seattle with other Stanford
friends for the fall quarter :)

I'm 53 years old and took my first SCPD course in 1992!

I love waffles

Since the beginning of quarantine, I’ve committed
myself to living more sustainably. I might even
renovate an old Van or Bus and road trip in it!

I taught physics for 2 years with the Peace Corps in Guinea, West Africa

I'm taking this pass/no pass

I am nervous of finding motivation/ self discipline with classes being online

I hiked the entire Appalachian Trail one summer. It was
over 2,000 miles and took five and half months.

13

Teaching Team

14

Companion Class: CS107A
• CS107A is an extra 1-unit “Pathfinders” or “ACE” section with additional course

support, practice and instruction.
• Meets for an additional weekly section and has additional review sessions
• Entry by application – see the FAQ on the course website for details

15

Course Website

cs107.stanford.edu

*lecture videos on Canvas

https://cs107.stanford.edu/

16

Question Break!

17

Plan For Today
• Introduction
• CS107 Course Policies
• Unix and the Command Line
• Getting Started With C

18

Textbooks
• Computer Systems: A Programmer’s Perspective

by Bryant & O’Hallaron, 3rd Edition
• 3rd edition matters – important updates to course

materials

• A C programming reference of your choice
• The C Programming Language by Kernighan and

Ritchie (free link on course website Resources page)
• Other C programming books, websites, or reference

sheets

19

Course Structure
• Lectures: understand concepts, see demos
• Labs: learn tools, study code, discuss with peers
• Assignments: build programming skills, synthesize lecture/lab content

• assign0: out later today, due next Monday (covers today’s lecture)

Monday Tues-Thurs Friday
Week N Lecture: part A
Week N+1 Lecture: part B

assignN released
Lab

Great preview of homework!

20

Grading

***** 45% Assignments
** 20% Final Project
** 10% Mid-quarter Assessment
** 15% Lab Participation
* 10% Lecture Check-in Quizzes

21

Grading

***** 45% Assignments
** 20% Final Project
** 10% Mid-quarter Assessment
** 15% Lab Participation
* 10% Lecture Check-in Quizzes

22

Assignments
• 6 programming assignments completed

individually using Unix command line tools
• Free software, pre-installed on Myth machines /

available on course website
• We will give out starter projects for each

assignment

• Graded on functionality (behavior) and style
(elegance)
• Functionality graded using automated tools, given

as point score
• Style graded via automated tests and TA code

review, given as bucket score
• Grades returned via course website

23

The Style Bucket System

+ An outstanding job; could be used as course example code for good style.

ok A good job; solid effort, but also opportunities for improvement.

- Shows some effort and understanding but has larger problems that
should be focused on.

- - Shows many significant issues and does not represent passing work.

0 No work submitted, or barely any changes from the starter assignment.

24

Late Policy
• Start out with 5 “free late days”: each late day allows you to submit an

assignment up to 24 additional hours late without penalty. (No late days
permitted for final project)
• Hard deadline 48 hours after original due date
• Penalty per day after late days are exhausted (1 day: 80% cap; 2 days: 60% cap)
• Late days are “pre-granted extensions” – additional extensions for exceptional

circumstances must be approved by the instructor. Please communicate with
us! We are here to accommodate you as much as possible.

25

Question Break!

26

Grading

***** 45% Assignments
** 20% Final Project
** 10% Mid-quarter Assessment
** 15% Lab Participation
* 10% Lecture Check-in Quizzes

27

Final Project
• The final project has you implement your own “heap allocator” – a

fundamental component of many of the programs we will write this quarter.
• We first use it as clients, and then we implement it!
• Capstone project that sums up topics from throughout the quarter.
• You must do the final project in order to pass the class.

28

Question Break!

29

Grading

***** 45% Assignments
** 20% Final Project
** 10% Mid-quarter Assessment
** 15% Lab Participation
* 10% Lecture Check-in Quizzes

30

Mid-Quarter Assessment
• Available from Wed. 10/21 – Fri 10/23
• Open-book, timed assessment; you can choose when to start
• We aim for a lower-stakes assessment instead of a traditional midterm:
• Weighted 10%
• Flexible timing
• Assessment will be written to minimize time pressure
• Primary goal: reinforce concepts learned to that point

• Covers material from assign1-3 and lightly touches on assign4

31

Question Break!

32

Grading

***** 45% Assignments
** 20% Final Project
** 10% Mid-quarter Assessment
** 15% Lab Participation
* 10% Lecture Check-in Quizzes

33

Lab Sections
• Weekly 1 hour 30-minute labs led by a CA, starting next week, offered on

Tuesdays, Wednesdays and Thursdays.
• Hands-on practice in small groups with lecture material and course concepts.
• Graded on attendance + participation (verified by submitting work at the end)
• Short pre-lab exercise to do in advance of showing up for each lab
• Lab preference submissions open Tuesday 9/15 at 5PM PST and are not first-

come first-serve. You may submit your preferences anytime until Saturday
9/19 at 5PM PST. Sign up on the labs page of the course website.

34

Grading

***** 45% Assignments
** 20% Final Project
** 10% Mid-quarter Assessment
** 15% Lab Participation
* 10% Lecture Check-in Quizzes

35

Lecture Check-in Quizzes
• Main lecture material is pre-recorded in short video “bytes” (get it?) and

posted in advance of live lecture.
• Short “lecture check-in quizzes” after each ~1-2 videos, permitting multiple

attempts, due by that live lecture.
• Each day’s worth of lecture quizzes are weighted the same in aggregate.
• Live lecture times will be 30-45 minutes max, and we instead review concepts

further, answer questions, and do additional exercises.
• You can submit questions in advance of the live lectures or bring questions!

36

Lecture Watch Parties 🎉
• All lecture content (including live sessions) is recorded and available on Canvas.

Main lecture material is pre-recorded; live sessions are posted afterwards.
• We will be facilitating lecture watch parties to encourage you to (optionally)

watch lecture videos with others!
• Using Nooks (new website)
• Starting next week - More info to come soon

37

Grading

***** 45% Assignments
** 20% Final Project
** 10% Mid-quarter Assessment
** 15% Lab Participation
* 10% Lecture Check-in Quizzes

Note: C- or above required for an S.

38

Question Break!

39

Getting Help
• Post on the Discussion Forum
• Online discussion forum for students; post questions, answer other students’ questions
• Best for course material discussions, course policy questions or general assignment

questions (DON’T POST ASSIGNMENT CODE!)

• Visit Helper Hours
• 24/7 open community where you can chat about course topics or just hang out
• Using Nooks (more info to come soon!)
• Work anytime with other students or come at scheduled times for TA help; schedule will

be posted on course website tomorrow.
• Best for group work, coding/debugging questions (with TAs only!) or longer course

material discussions

• Email the Course Staff
• cs107@cs.stanford.edu – please do not email CAs individually
• Best for private matters (e.g. grading questions, OAE accommodations).

mailto:cs107@cs.stanford.edu

40

Stanford Honor Code
• The Honor Code is an undertaking of the students, individually and collectively:

• that they will not give or receive aid in examinations; that they will not give or receive unpermitted aid in class work,
in the preparation of reports, or in any other work that is to be used by the instructor as the basis of grading;

• that they will do their share and take an active part in seeing to it that others as well as themselves uphold the spirit
and letter of the Honor Code.

• The faculty on its part manifests its confidence in the honor of its students by refraining from proctoring examinations and
from taking unusual and unreasonable precautions to prevent the forms of dishonesty mentioned above. The faculty will
also avoid, as far as practicable, academic procedures that create temptations to violate the Honor Code.

• While the faculty alone has the right and obligation to set academic requirements, the students and faculty will work
together to establish optimal conditions for honorable academic work.

see also: http://honorcode.stanford.edu/

It is your responsibility to ensure you have read and are familiar with the honor code guidelines posted on the main page
of the CS107 course website. Please read them and come talk to us if you have any questions or concerns.

http://honorcode.stanford.edu/

41

Honor Code and CS107
• Please help us ensure academic integrity:
• Indicate any assistance received on HW (books, friends, etc.).
• Do not look at other people's solution code or answers
• Do not give your solutions to others or post them on the web or our Piazza forum.
• Report any inappropriate activity you see performed by others.

• Assignments are checked regularly for similarity with help of software tools.

• If you realize that you have made a mistake, you may retract your submission
to any assignment at any time, no questions asked.

• If you need help, please contact us and we will help you.
• We do not want you to feel any pressure to violate the Honor Code in order to succeed

in this course.

42

OAE Accommodations
• Please email the course staff (cs107@cs.stanford.edu) as soon as possible with

any accommodations you may need for the course.
• We are eager to do everything we can to support you and make you successful

in CS107!

43

Question Break!

44

Plan For Today
• Introduction
• CS107 Course Policies
• Unix and the Command Line
• Getting Started With C

45

What is Unix?
• Unix: a set of standards and tools commonly used in software development.
• macOS and Linux are operating systems built on top of Unix

• You can navigate a Unix system using the command line (“terminal”)
• Every Unix system works with the same tools and commands

46

What is the Command Line?
• The command-line is a text-based interface (i.e., terminal interface) to

navigate a computer, instead of a Graphical User Interface (GUI).

Graphical User Interface Text-based interface

47

Command Line Vs. GUI
Just like a GUI file explorer interface, a terminal interface:
• shows you a specific place on your computer at any given time.
• lets you go into folders and out of folders.
• lets you create new files and edit files.
• lets you execute programs.

Graphical User Interface Command-line interface

48

Why Use Unix / the Command Line?
• You can navigate almost any device using the same tools and commands:
• Servers
• Laptops and desktops
• Embedded devices (Raspberry Pi, etc.)
• Mobile Devices (Android, etc.)

• Used frequently by software engineers:
• Web development: running servers and web tools on servers
• Machine learning: processing data on servers, running algorithms
• Systems: writing operating systems, networking code and embedded software
• Mobile Development: running tools, managing libraries
• And more…

• We’ll use Unix and the command line to implement and execute our programs.

49

Demo: Using Unix and the
Command Line

50

Unix Commands Recap
• cd – change directories (..)
• ls – list directory contents
• mkdir – make directory
• emacs – open text editor
• rm – remove file or folder
• man – view manual pages

See the Resources page of the course website for more commands, and a
complete reference.

51

Learning Unix and the Command Line
• Using Unix and the command line can be intimidating at first:
• It looks retro!
• How do I know what to type?

• It’s like learning a new language:
• At first, you may have to constantly look things up (Resources page on course website!)
• It’s important to spend as much time as possible (during labs and assignments) building

muscle memory with the tools

52

Question Break!

53

Plan For Today
• Introduction
• CS107 Course Policies
• Unix and the Command Line
• Getting Started With C

54

The C Language
C was created around 1970 to make writing Unix and Unix tools easier.
• Part of the C/C++/Java family of languages (C++ and Java were created later)
• Design principles:
• Small, simple abstractions of hardware
• Minimalist aesthetic
• Prioritizes efficiency and minimalism over safety and high-level abstractions

55

C vs. C++ and Java
They all share:
• Syntax
• Basic data types
• Arithmetic, relational, and logical

operators

C doesn’t have:
• More advanced features like

operator overloading, default
arguments, pass by reference, classes
and objects, ADTs, etc.
• Extensive libraries (no graphics,

networking, etc.) – this means not
much to learn C!
• many compiler and runtime checks

(this may cause security
vulnerabilities!)

56

Programming Language Philosophies
C is procedural: you write functions, rather than define new variable types with
classes and call methods on objects. C is small, fast and efficient.

C++ is procedural, with objects: you write functions, and define new variable
types with classes, and call methods on objects.

Python is also procedural, but dynamically typed: you still write functions and
call methods on objects, but the development process is very different.

Java is object-oriented: virtually everything is an object, and everything you
write needs to conform to the object-oriented design pattern.

57

Why C?
• Many tools (and even other languages, like Python!) are built with C.
• C is the language of choice for fast, highly efficient programs.
• C is popular for systems programming (operating systems, networking, etc.)
• C lets you work at a lower level to manipulate and understand the underlying

system.

58

Programming Language Popularity

https://www.tiobe.com/tiobe-index/

https://www.tiobe.com/tiobe-index/

59

Our First C Program
/*
* hello.c
* This program prints a welcome message
* to the user.
*/

#include <stdio.h> // for printf

int main(int argc, char *argv[]) {
printf("Hello, world!\n");
return 0;

}

60

Our First C Program
/*
* hello.c
* This program prints a welcome message
* to the user.
*/

#include <stdio.h> // for printf

int main(int argc, char *argv[]) {
printf("Hello, world!\n");
return 0;

}
Program comments
You can write block or inline comments.

61

Our First C Program
/*
* hello.c
* This program prints a welcome message
* to the user.
*/

#include <stdio.h> // for printf

int main(int argc, char *argv[]) {
printf("Hello, world!\n");
return 0;

} Import statements
C libraries are written with angle brackets.
Local libraries have quotes:
#include "lib.h"

62

Our First C Program
/*
* hello.c
* This program prints a welcome message
* to the user.
*/

#include <stdio.h> // for printf

int main(int argc, char *argv[]) {
printf("Hello, world!\n");
return 0;

}

Main function – entry point for the program
Should always return an integer (0 = success)

63

Our First C Program
/*
* hello.c
* This program prints a welcome message
* to the user.
*/

#include <stdio.h> // for printf

int main(int argc, char *argv[]) {
printf("Hello, world!\n");
return 0;

}

Main parameters – main takes two parameters,
both relating to the command line arguments
used to execute the program.

argc is the number of arguments in argv
argv is an array of arguments (char * is C string)

64

Our First C Program
/*
* hello.c
* This program prints a welcome message
* to the user.
*/

#include <stdio.h> // for printf

int main(int argc, char *argv[]) {
printf("Hello, world!\n");
return 0;

}

printf – prints output to the screen

65

Familiar Syntax
int x = 42 + 7 * -5; // variables, types
double pi = 3.14159;
char c = 'Q'; /* two comment styles */

for (int i = 0; i < 10; i++) { // for loops
if (i % 2 == 0) { // if statements

x += i;
}

}

while (x > 0 && c == 'Q' || b) { // while loops, logic
x = x / 2;
if (x == 42) { return 0; }

}

binky(x, 17, c); // function call

66

Boolean Variables
To declare Booleans, (e.g. bool b = ____), you must include stdbool.h:

#include <stdio.h> // for printf
#include <stdbool.h> // for bool

int main(int argc, char *argv[]) {
bool x = 5 > 2 && binky(argc) > 0;
if (x) {

printf("Hello, world!\n");
} else {

printf("Howdy, world!\n");
}
return 0;

}

67

Boolean Expressions
C treats a nonzero value as true, and a zero value as false:

#include <stdio.h>

int main(int argc, char *argv[]) {
int x = 5;
if (x) { // true

printf("Hello, world!\n");
} else {

printf("Howdy, world!\n");
}
return 0;

}

68

Console Output: printf
printf(text, arg1, arg2, arg3);

// Example
char *classPrefix = "CS";
int classNumber = 107;
printf("You are in %s%d", classPrefix, classNumber); // You are in CS107

printf makes it easy to print out the values of variables or expressions.
If you include placeholders in your printed text, printf will replace each
placeholder in order with the values of the parameters passed after the text.

%s (string) %d (integer) %f (double)

69

Question Break!

70

Writing, Debugging and Compiling
We will use:
• the emacs text editor to write our C programs
• the make tool to compile our C programs
• the gdb debugger to debug our programs
• the valgrind tools to debug memory errors and measure program efficiency

71

Demo: Compiling And
Running A C Program

72

Working On C Programs Recap
• ssh – remotely log in to Myth computers
• Emacs – text editor to write and edit C programs
• Use the mouse to position cursor, scroll, and highlight text
• Ctl-x Ctl-s to save, Ctl-x Ctl-c to quit

• make – compile program using provided Makefile
• ./myprogram – run executable program (optionally with arguments)
• make clean – remove executables and other compiler files
• Lecture code is accessible at /afs/ir/class/cs107/lecture-code/lect[N]
• Make your own copy: cp -r /afs/ir/class/cs107/lecture-code/lect[N] lect[N]
• See the Resources page for even more commands, and a complete reference.

73

Question Break!

74

assign0
Assignment 0 (Intro to Unix and C) has been released on the course website and
is due in one week on Mon. 9/21 at 11:59PM PST.

There are 5 parts to the assignment, which is meant to get you comfortable
using the command line, and editing/compiling/running C programs:
• Visit the Resources page to become familiar with different Unix commands
• Clone the assign0 starter project
• Answer several questions in readme.txt
• Compile a provided C program and modify it
• Submit the assignment

75

Recap
• CS107 is a programming class in C that teaches you about what goes on under

the hood of programming languages and software.
• We’ll use Unix and command line tools to write, debug and run our programs.
• Please visit the course website, cs107.stanford.edu, where you can read the

General Information Handout, information about the Honor Code in CS107,
and more about CS107 course policies and logistics.

We’re looking forward to an awesome quarter!

76

Preview: Next Time
• Make sure to reboot Boeing Dreamliners every 248 days
• Comair/Delta airline had to cancel thousands of flights days before Christmas
• Many operating systems may have issues storing timestamp values beginning

on Jan 19, 2038
• Reported vulnerability CVE-2019-3857 in libssh2 may allow a hacker to

remotely execute code

Next time: How can a computer represent integer numbers? What are the
limitations?

https://www.engadget.com/2015/05/01/boeing-787-dreamliner-software-bug/
https://arstechnica.com/uncategorized/2004/12/4490-2/
https://computer.howstuffworks.com/question75.htm
https://nvd.nist.gov/vuln/detail/CVE-2019-3857

