CS107 Lecture 2 Bits and Bytes; Integer Representations

reading:
Bryant \& O'Hallaron, Ch. 2.2-2.3

CS107 Topic 1: How can a computer represent integer numbers?

Demo: Unexpected Behavior

Lecture Plan

- Bits and Bytes
- Hexadecimal
- Integer Representations
- Unsigned Integers
- Signed Integers
- Overflow
- Casting and Combining Types

Lecture Plan

- Bits and Bytes

- Hexadecimal
- Integer Representations
- Unsigned Integers
- Signed Integers
- Overflow
- Casting and Combining Types

$$
0
$$

1

Bits

- Computers are built around the idea of two states: "on" and "off". Transistors represent this in hardware, and bits represent this in software!

One Bit At A Time

- We can combine bits, like with base-10 numbers, to represent more data. 8 bits = 1 byte.
- Computer memory is just a large array of bytes! It is byte-addressable; you can't address (store location of) a bit; only a byte.
- Computers still fundamentally operate on bits; we have just gotten more creative about how to represent different data as bits!
- Images
- Audio
- Video
- Text
- And more...

Base 10

5934

Digits 0-9 (0 to base-1)

Base 10

Base 10

$\underset{\substack{4 \\ 10^{3}}}{5} \underset{\substack{4 \\ 10^{2}}}{9} \underset{\substack{4 \\ 10^{1}}}{\mathbf{3}} \underset{\substack{1 \\ 10}}{4}$

Base 10

$$
5934
$$

Base 2

Digits 0-1 (0 to base-1)

Base 2

$\begin{array}{llll}1 & 0 & 1 & 1 \\ x^{2} & 2 & 1\end{array}$

Base 2

```
Most significant bit (MSB) Least significant bit (LSB)
```



```
\[
=1 * 8+0 * 4+1 * 2+1 * 1=11_{10}
\]
```


Base 10 to Base 2

Question: What is 6 in base 2?

- Strategy:
- What is the largest power of $2 \leq 6$?

Base 10 to Base 2

Question: What is 6 in base 2?

- Strategy:
- What is the largest power of $2 \leq 6$? $\mathbf{2}^{\mathbf{2}=4}$

Base 10 to Base 2

Question: What is 6 in base 2?

- Strategy:
- What is the largest power of $2 \leq 6$? $\mathbf{2}^{\mathbf{2}=4}$
- Now, what is the largest power of $2 \leq 6-2^{2}$?

Base 10 to Base 2

Question: What is 6 in base 2?

- Strategy:
- What is the largest power of $2 \leq 6$? $\mathbf{2}^{\mathbf{2}=4}$
- Now, what is the largest power of $2 \leq 6-2^{2}$? $\mathbf{2}^{1}=\mathbf{2}$

Base 10 to Base 2

Question: What is 6 in base 2?

- Strategy:
- What is the largest power of $2 \leq 6$? $\mathbf{2}^{\mathbf{2}}=\mathbf{4}$
- Now, what is the largest power of $2 \leq 6-2^{2}$? $\mathbf{2}^{1}=\mathbf{2}$
- $6-2^{2}-2^{1}=0$!

Base 10 to Base 2

Question: What is 6 in base 2?

- Strategy:
- What is the largest power of $2 \leq 6$? $\mathbf{2}^{\mathbf{2}=4}$
- Now, what is the largest power of $2 \leq 6-2^{2}$? $\mathbf{2}^{1}=\mathbf{2}$
- $6-2^{2}-2^{1}=0$!

$$
\frac{0}{2^{3}} \frac{\square}{2^{2}} \frac{\square}{2^{1}} \frac{\square}{2^{0}}
$$

Base 10 to Base 2

Question: What is 6 in base 2?

- Strategy:

- What is the largest power of $2 \leq 6$? $\mathbf{2}^{\mathbf{2}=4}$
- Now, what is the largest power of $2 \leq 6-2^{2}$? $\mathbf{2}^{\mathbf{1}=2}$
- $6-2^{2}-2^{1}=0$!

Practice: Base 2 to Base 10

What is the base-2 value 1010 in base-10?
a) 20
b) 101
c) 10
d) 5
e) Other

Practice: Base 10 to Base 2

What is the base-10 value 14 in base 2 ?
a) 1111
b) 1110
c) 1010
d) Other

Byte Values

- What is the minimum and maximum base-10 value a single byte (8 bits) can store?

Byte Values

- What is the minimum and maximum base-10 value a single byte (8 bits) can store? minimum $=\mathbf{0}$ maximum $=$?

Byte Values

- What is the minimum and maximum base-10 value a single byte (8 bits) can store? minimum $=0 \quad$ maximum $=$?

Byte Values

- What is the minimum and maximum base-10 value a single byte (8 bits) can store? minimum $=0 \quad$ maximum $=$?

- Strategy 1: $1^{*} 2^{7}+1^{*} 2^{6}+1^{*} 2^{5}+1^{*} 2^{4}+1^{*} 2^{3}+1^{*} 2^{2}+1^{*} 2^{1}+1^{*} 2^{0}=255$

Byte Values

- What is the minimum and maximum base-10 value a single byte (8 bits) can store? minimum =0 maximum = $\mathbf{2 5 5}$

- Strategy 1: $1^{*} 2^{7}+1^{*} 2^{6}+1^{*} 2^{5}+1^{*} 2^{4}+1^{*} 2^{3}+1^{*} 2^{2}+1^{*} 2^{1}+1^{*} 2^{0}=255$
- Strategy 2: $2^{8}-1=255$

Multiplying by Base

$1450 \times 10=1450 \underline{0}$
 $1100_{2} \times 2=1100 \underline{0}$

Key Idea: inserting 0 at the end multiplies by the base!

Dividing by Base

$1450 / 10=145$ $1100_{2} / 2=110$

Key Idea: removing 0 at the end divides by the base!

Lecture Plan

- Bits and Bytes
- Hexadecimal
- Integer Representations
- Unsigned Integers
- Signed Integers
- Overflow
- Casting and Combining Types

Hexadecimal

- When working with bits, oftentimes we have large numbers with 32 or 64 bits.
- Instead, we'll represent bits in base-16 instead; this is called hexadecimal.

Hexadecimal

- When working with bits, oftentimes we have large numbers with 32 or 64 bits.
- Instead, we'll represent bits in base-16 instead; this is called hexadecimal.

0-15

0-15

0-15

Each is a base-16 digit!

Hexadecimal

- Hexadecimal is base-16, so we need digits for 1-15. How do we do this?

Hexadecimal

Hex digit	0	1	2	3	4	5	6	7
Decimal value	0	1	2	3	4	5	6	7
Binary value	0000	0001	0010	0011	0100	0101	0110	0111
Hex digit	8	9	A	B	C	D	E	F
Decimal value	8	9	10	11	12	13	14	15
Binary value	1000	1001	1010	1011	1100	1101	1110	1111

Hexadecimal

- We distinguish hexadecimal numbers by prefixing them with $\mathbf{0 x}$, and binary numbers with 0b.
- E.g. 0xf5 is 0b11110101

Practice: Hexadecimal to Binary

What is 0x173A in binary?

Hexadecimal Binary
 0001011100111010

Practice: Hexadecimal to Binary

What is 0b1111001010 in hexadecimal? (Hint: start from the right)

Binary 1111001010 Hexadecimal
 3
 A

Lecture Plan

- Bits and Bytes
- Hexadecimal
- Integer Representations
- Unsigned Integers
- Signed Integers
- Overflow
- Casting and Combining Types

Number Representations

- Unsigned Integers: positive and 0 integers. (e.g. 0, 1, 2, ... 99999...
- Signed Integers: negative, positive and 0 integers. (e.g. ...-2, -1, 0, 1,... 9999...)
- Floating Point Numbers: real numbers. (e,g. 0.1, $-12.2,1.5 \times 10^{12}$)

Number Representations

- Unsigned Integers: positive and 0 integers. (e.g. 0, 1, 2, ... 99999...
- Signed Integers: negative, positive and 0 integers. (e.g. ...-2, -1, 0, 1,... 9999...)
- Floating Point Numbers: real numbers. (e,g. 0.1, $-12.2,1.5 \times 10^{12}$)
\longrightarrow Look up IEEE floating point if you're interested!

Number Representations

C Declaration	Size (Bytes)
int	4
double	8
float	4
char	1
char	8
short	2
long	8

In The Days Of Yore...

C Declaration	Size (Bytes)
int	4
double	8
float	4
char	1
char *	4
short	2
long	4

Transitioning To Larger Datatypes

- Early 2000s: most computers were 32-bit. This means that pointers were 4 bytes (32 bits).
- 32-bit pointers store a memory address from 0 to $2^{32}-1$, equaling 2^{32} bytes of addressable memory. This equals 4 Gigabytes, meaning that 32-bit computers could have at most 4GB of memory (RAM)!
- Because of this, computers transitioned to 64-bit. This means that datatypes were enlarged; pointers in programs were now 64 bits.
- 64-bit pointers store a memory address from 0 to $2^{64}-1$, equaling 2^{64} bytes of addressable memory. This equals 16 Exabytes, meaning that 64-bit computers could have at most $1024 * 1024 * 1024$ GB of memory (RAM)!

Lecture Plan

- Bits and Bytes
- Hexadecimal
- Integer Representations
- Unsigned Integers
- Signed Integers
- Overflow
- Casting and Combining Types

Unsigned Integers

- An unsigned integer is 0 or a positive integer (no negatives).
- We have already discussed converting between decimal and binary, which is a nice 1:1 relationship. Examples:

$$
\begin{aligned}
& 0 \mathrm{~b} 0001=1 \\
& 0 \mathrm{~b} 0101=5 \\
& 0 \mathrm{~b} 1011=11 \\
& 0 \mathrm{~b} 1111=15
\end{aligned}
$$

- The range of an unsigned number is $0 \rightarrow 2^{w}-1$, where w is the number of bits. E.g. a 32 -bit integer can represent 0 to $2^{32}-1(4,294,967,295)$.

Unsigned Integers

Let's Take A Break

To ponder during the break:

A signed integer is a negative, 0 , or positive integer. How can we represent both negative and positive numbers in binary?

Lecture Plan

- Bits and Bytes
- Hexadecimal
- Integer Representations
- Unsigned Integers
- Signed Integers
- Overflow
- Casting and Combining Types

Signed Integers

- A signed integer is a negative integer, 0 , or a positive integer.
- Problem: How can we represent negative and positive numbers in binary?

Signed Integers

- A signed integer is a negative integer, 0 , or a positive integer.
- Problem: How can we represent negative and positive numbers in binary?

Idea: let's reserve the most significant bit to store the sign.

Sign Magnitude Representation

Sign Magnitude Representation

Sign Magnitude Representation

$$
\begin{array}{ll}
1000=-0 & 0000=0 \\
1001=-1 & 0001=1 \\
1010=-2 & 0010=2 \\
1011=-3 & 0011=3 \\
1100=-4 & 0100=4 \\
1101=-5 & 0101=5 \\
1110=-6 & 0110=6 \\
1111=-7 & 0111=7
\end{array}
$$

- We've only represented 15 of our 16 available numbers!

Sign Magnitude Representation

- Pro: easy to represent, and easy to convert to/from decimal.
- Con: +-0 is not intuitive
- Con: we lose a bit that could be used to store more numbers
- Con: arithmetic is tricky: we need to find the sign, then maybe subtract (borrow and carry, etc.), then maybe change the sign. This complicates the hardware support for something as fundamental as addition.

Can we do better?

A Better Idea

- Ideally, binary addition would just work regardless of whether the number is positive or negative.

A Better Idea

- Ideally, binary addition would just work regardless of whether the number is positive or negative.

0101 +1011 0000

A Better Idea

- Ideally, binary addition would just work regardless of whether the number is positive or negative.

A Better Idea

- Ideally, binary addition would just work regardless of whether the number is positive or negative.

0011 +1101 0000

A Better Idea

- Ideally, binary addition would just work regardless of whether the number is positive or negative.

0000 +???? 0000

A Better Idea

- Ideally, binary addition would just work regardless of whether the number is positive or negative.

0000 +0000 0000

A Better Idea

Decimal	Positive	Negative
0	0000	0000
1	0001	1111
2	0010	1110
3	0011	1101
4	0100	1100
5	0101	1011
6	0110	1010
7	0111	1001

Decimal	Positive	Negative
8	1000	1000
9	1001 (same as -7!)	NA
10	1010 (same as -6!)	NA
11	1011 (same as -5!)	NA
12	1100 (same as $-4!$)	NA
13	1101 (same as $-3!$)	NA
14	1110 (same as $-2!$)	NA
15	1111 (same as $-1!$)	NA

There Seems Like a Pattern Here...

0101 0011 0000 $+\quad+1011$
 $\frac{.0000}{0000}$

- The negative number is the positive number inverted, plus one!

There Seems Like a Pattern Here...

A binary number plus its inverse is all 1 s .

Add 1 to this to carry over all 1s and get 0!

1111
 +0001 0000

Another Trick

- To find the negative equivalent of a number, work right-to-left and write down all digits through when you reach a 1 . Then, invert the rest of the digits.

> 100100 +| ??????? |
| :--- |
| 000000 |

Another Trick

- To find the negative equivalent of a number, work right-to-left and write down all digits through when you reach a 1 . Then, invert the rest of the digits.

> 100100 $+\frac{? ? ? 2100}{0} 000$

Another Trick

- To find the negative equivalent of a number, work right-to-left and write down all digits through when you reach a 1 . Then, invert the rest of the digits.

$$
\begin{array}{r}
100100 \\
+\quad+011100 \\
\hline 000000
\end{array}
$$

Two's Complement

Two's Complement

- In two's complement, we represent a positive number as itself, and its negative equivalent as the two's complement of itself.
- The two's complement of a number is the binary digits inverted, plus 1.
- This works to convert from positive to negative, and back from negative to positive!

Two's Complement

- Con: more difficult to represent, and difficult to convert to/from decimal and between positive and negative.
- Pro: only 1 representation for 0 !
- Pro: all bits are used to represent as many numbers as possible
- Pro: the most significant bit still indicates the sign of a number.
- Pro: addition works for any combination of positive and negative!

Two's Complement

- Adding two numbers is just...adding! There is no special case needed for negatives. E.g. what is $2+-5$?

Two's Complement

- Subtracting two numbers is just performing the two's complement on one of them and then adding. E.g. $4-5=-1$.

Practice: Two's Complement

What are the negative or positive equivalents of the numbers below?
a) -4 (1100)
b) 7 (0111)
c) 3 (0011)
d) -8 (1000)

Practice: Two's Complement

What are the negative or positive equivalents of the numbers below?
a) -4 (1100)
b) 7 (0111)
c) 3 (0011)

Lecture Plan

- Bits and Bytes
- Hexadecimal
- Integer Representations
- Unsigned Integers
- Signed Integers
- Overflow
- Casting and Combining Types

Overflow

- If you exceed the maximum value of your bit representation, you wrap around or overflow back to the smallest bit representation.
$0 b 1111+0 b 1=0 b 0000$
- If you go below the minimum value of your bit representation, you wrap around or overflow back to the largest bit representation.
$0 b 0000-0 b 1=0 b 1111$

Min and Max Integer Values

int	4	-2147483648	2147483647
unsigned int	4	0	4294967295

long	8	-9223372036854775808	9223372036854775807
unsigned long	8	0	18446744073709551615

Min and Max Integer Values

INT_MIN, INT_MAX, UINT_MAX, LONG_MIN, LONG_MAX, ULONG_MAX, ...

Overflow

Overflow

At which points can overflow occur for

 signed and unsigned int? (assume binary values shown are all 32 bits)A. Signed and unsigned can both overflow at points X and Y
B. Signed can overflow only at X, unsigned only at Y
C. Signed can overflow only at Y, unsigned only at X
D. Signed can overflow at X and Y, unsigned only at X
E. Other

Unsigned Integers

Signed Numbers

Overflow In Practice: PSY

PSY - GANGNAM STYLE (강남스타일) M/V

H2
officialpsy

YouTube: "We never thought a video would be watched in numbers greater than a 32 -bit integer ($=2,147,483,647$ views), but that was before we met PSY. "Gangnam Style" has been viewed so many times we had to upgrade to a 64 -bit integer ($9,223,372,036,854,775,808$)!"

Overflow In Practice: Timestamps

- Many systems store timestamps as the number of seconds since Jan. 1, 1970 in a signed 32-bit integer.
- Problem: the latest timestamp that can be represented this way is 3:14:07 UTC on Jan. 13 2038!

Overflow In Practice: Gandhi

- In the game "Civilization", each civilization leader had an "aggression" rating. Gandhi was meant to be peaceful, and had a score of 1 .
- If you adopted "democracy", all players' aggression reduced by 2. Gandhi's went from 1 to 255!
- Gandhi then became a big fan of nuclear weapons.

https://kotaku.com/why-gandhi-is-such-an-asshole-in-civilization-1653818245

Overflow in Practice:

- Pacman Level 256
- Make sure to reboot Boeing Dreamliners every 248 days
- Comair/Delta airline had to cancel thousands of flights days before Christmas
- Reported vulnerability CVE-2019-3857 in libssh2 may allow a hacker to remotely execute code
- Donkey Kong Kill Screen

Demo Revisited: Unexpected Behavior

Lecture Plan

- Bits and Bytes
- Hexadecimal
- Integer Representations
- Unsigned Integers
- Signed Integers
- Overflow
- Casting and Combining Types

printf and Integers

- There are 3 placeholders for 32-bit integers that we can use:
- \%d: signed 32-bit int
- \%u: unsigned 32-bit int
- \%x: hex 32-bit int
- The placeholder-not the expression filling in the placeholder-dictates what gets printed!

Casting

- What happens at the byte level when we cast between variable types? The bytes remain the same! This means they may be interpreted differently depending on the type.

```
int v = -12345;
unsigned int uv = v;
printf("v = %d, uv = %u\n", v, uv);
```

This prints out: "v = -12345, uv = 4294954951". Why?

Casting

- What happens at the byte level when we cast between variable types? The bytes remain the same! This means they may be interpreted differently depending on the type.

```
int v = -12345;
unsigned int uv = v;
printf("v = %d, uv = %u\n", v, uv);
```

The bit representation for -12345 is Ob111111111111111111100111111000111. If we treat this binary representation as a positive number, it's huge!

Casting

Comparisons Between Different Types

- Be careful when comparing signed and unsigned integers. C will implicitly cast the signed argument to unsigned, and then performs the operation assuming both numbers are non-negative.

Expression	Type	Evaluation	Correct?
$0==$ OU			
$-1<0$			
$-1<0 \mathrm{U}$			
$2147483647>-$			
$2147483647-1$			
$2147483647 \mathrm{U}>-$			
$2147483647-1$			
$2147483647>$ (int)2147483648U			
-1 >-2			
(unsigned)-1 >-2			

Comparisons Between Different Types

- Be careful when comparing signed and unsigned integers. C will implicitly cast the signed argument to unsigned, and then performs the operation assuming both numbers are non-negative.

Expression	Type	Evaluation	Correct?
$0==$ OU	Unsigned	1	yes
$-1<0$			
$-1<0 \mathrm{U}$			
$2147483647>-$			
$2147483647-1$			
$2147483647 \mathrm{U}>-$			
$2147483647-1$			
$2147483647>$ (int)2147483648U			
$-1>-2$			
(unsigned)-1 >-2			

Comparisons Between Different Types

- Be careful when comparing signed and unsigned integers. C will implicitly cast the signed argument to unsigned, and then performs the operation assuming both numbers are non-negative.

Expression	Type	Evaluation	Correct?
$0==$ OU	Unsigned	1	yes
$-1<0$	Signed	1	yes
$-1<0 \mathrm{U}$			
$2147483647>-$			
$2147483647-1$			
$2147483647 \mathrm{U}>-$			
$2147483647-1$			
$2147483647>$ (int)2147483648U			
$-1>-2$			
(unsigned)-1 >-2			

Comparisons Between Different Types

- Be careful when comparing signed and unsigned integers. C will implicitly cast the signed argument to unsigned, and then performs the operation assuming both numbers are non-negative.

Expression	Type	Evaluation	Correct?
$0==0 \mathrm{U}$	Unsigned	1	yes
$-1<0$	Signed	1	yes
$-1<0 \mathrm{U}$	Unsigned	0	No!
$2147483647>-$			
$2147483647-1$			
$2147483647 \mathrm{U}>-$			
$2147483647-1$			

Comparisons Between Different Types

- Be careful when comparing signed and unsigned integers. C will implicitly cast the signed argument to unsigned, and then performs the operation assuming both numbers are non-negative.

Expression	Type	Evaluation	Correct?
$0==0 \mathrm{U}$	Unsigned	1	yes
$-1<0$	Signed	1	yes
$-1<0 \mathrm{U}$	Unsigned	0	No!
$2147483647>-$			
$2147483647-1$	Signed	1	yes
$2147483647 \mathrm{U}>-$ $2147483647-1$			
$2147483647>$ (int)2147483648U			
$-1>-2$			
(unsigned)-1 >-2			

Comparisons Between Different Types

- Be careful when comparing signed and unsigned integers. C will implicitly cast the signed argument to unsigned, and then performs the operation assuming both numbers are non-negative.

Expression	Type	Evaluation	Correct?
$0==$ OU	Unsigned	1	yes
$-1<0$	Signed	1	yes
$-1<0 \mathrm{U}$	Unsigned	0	No!
$2147483647>-$ $2147483647-1$	Signed	1	yes
$2147483647 \mathrm{U}>-$ $2147483647-1$	Unsigned	0	No!
$2147483647>$ (int)2147483648U			
$-1>-2$			
(unsigned)-1 >-2			

Comparisons Between Different Types

- Be careful when comparing signed and unsigned integers. C will implicitly cast the signed argument to unsigned, and then performs the operation assuming both numbers are non-negative.

Expression	Type	Evaluation	Correct?
$0==$ OU	Unsigned	1	yes
$-1<0$	Signed	1	yes
$-1<0 \mathrm{U}$	Unsigned	0	No!
$2147483647>-$			
$2147483647-1$	Signed	1	yes
$2147483647 \mathrm{U}>-$ $2147483647-1$	Unsigned	0	No!
$2147483647>$ (int)2147483648U	Signed	1	
$-1>-2$			
(unsigned)-1>-2			

Comparisons Between Different Types

- Be careful when comparing signed and unsigned integers. C will implicitly cast the signed argument to unsigned, and then performs the operation assuming both numbers are non-negative.

Expression	Type	Evaluation	Correct?
$0==0 \mathrm{U}$	Unsigned	1	yes
$-1<0$	Signed	1	yes
$-1<0 \mathrm{U}$	Unsigned	0	No!
$2147483647>-$ $2147483647-1$	Signed	1	yes
$2147483647 \mathrm{U}>-$ $2147483647-1$	Unsigned	0	No!
$2147483647>$ (int) 2147483648 U	Signed	1	yes
$-1>-2$	Signed	1	
(unsigned)-1 >-2			

Comparisons Between Different Types

- Be careful when comparing signed and unsigned integers. C will implicitly cast the signed argument to unsigned, and then performs the operation assuming both numbers are non-negative.

Expression	Type	Evaluation	Correct?
$0==$ OU	Unsigned	1	yes
$-1<0$	Signed	1	yes
$-1<0 \mathrm{U}$	Unsigned	0	No!
$2147483647>-$			
$2147483647-1$	Signed	1	yes
$2147483647 \mathrm{U}>-$ $2147483647-1$	Unsigned	0	No!
$2147483647>$ (int)2147483648U	Signed	1	No!
$-1>-2$	Signed	1	yes
(unsigned)-1 >-2	Unsigned	1	yes

Comparisons Between Different Types

Which many of the following statements are true? (assume that variables are set to values that place them in the spots shown)

$s 3$	$>u 3$	
$u 2$	$>$	$u 4$
$s 2$	$>$	$s 4$
$s 1$	$>$	$s 2$
$u 1$	$>$	$u 2$
$s 1$	$>u 3$	

Comparisons Between Different Types

Which many of the following statements are true? (assume that variables are set to values that place them in the spots shown)

```
s3 > u3 - true
u2 > u4
s2 > s4
s1 > s2
u1 > u2
s1 > u3
```


Comparisons Between Different Types

Which many of the following statements are true? (assume that variables are set to values that place them in the spots shown)

```
s3 > u3 - true
u2 > u4 - true
s2 > s4
s1 > s2
u1 > u2
s1 > u3
```


Comparisons Between Different Types

Which many of the following statements are true? (assume that variables are set to values that place them in the spots shown)

```
s3 > u3 - true
u2 > u4 - true
s2 > s4 - false
s1 > s2
u1 > u2
s1 > u3
```


Comparisons Between Different Types

Which many of the following statements are true? (assume that variables are set to values that place them in the spots shown)

```
s3 > u3 - true
u2 > u4 - true
s2 > s4 - false
s1 > s2 - true
u1 > u2
s1 > u3
```


Comparisons Between Different Types

Which many of the following statements are true? (assume that variables are set to values that place them in the spots shown)

$$
\begin{aligned}
& \mathrm{s} 3>\mathrm{u} 3-\text { true } \\
& \mathrm{u} 2>\mathrm{u} 4-\text { true } \\
& \mathrm{s} 2>\mathrm{s} 4-\text { false } \\
& \mathrm{s} 1>\mathrm{s} 2 \text { - true } \\
& \mathrm{u} 1>\mathrm{u} 2-\text { true } \\
& \mathrm{s} 1>\mathrm{u} 3
\end{aligned}
$$

Comparisons Between Different Types

Which many of the following statements are true? (assume that variables are set to values that place them in the spots shown)

```
s3 > u3 - true
u2 > u4 - true
s2 > s4 - false
s1 > s2 - true
u1 > u2 - true
s1 > u3 - true
```


Expanding Bit Representations

- Sometimes, we want to convert between two integers of different sizes (e.g. short to int, or int to long).
- We might not be able to convert from a bigger data type to a smaller data type, but we do want to always be able to convert from a smaller data type to a bigger data type.
- For unsigned values, we can add leading zeros to the representation ("zero extension")
- For signed values, we can repeat the sign of the value for new digits ("sign extension"
- Note: when doing <, >, <=, >= comparison between different size types, it will promote to the larger type.

Expanding Bit Representation

```
unsigned short s = 4;
// short is a 16-bit format, so s=0000 0000 0000 0100b
unsigned int i = s;
// conversion to 32-bit int, so i = 0000 0000 0000 0000 0000 0000 0000 0100b
```


Expanding Bit Representation

```
short s = 4;
// short is a 16-bit format, so s=0000 0000 0000 0100b
int i = s;
// conversion to 32-bit int, so i = 0000 0000 0000 0000 0000 0000 0000 0100b
- or -
short s = -4;
// short is a 16-bit format, so
s = 1111 1111 1111 1100b
int i = s;
// conversion to 32-bit int, so i = 1111 1111 1111 1111 1111 1111 1111 1100b
```


Truncating Bit Representation

If we want to reduce the bit size of a number, C truncates the representation and discards the more significant bits.

```
int x = 53191;
short sx = x;
int y = sx;
```

What happens here? Let's look at the bits in x (a 32-bit int), 53191:
00000000000000001100111111000111
When we cast x to a short, it only has 16 -bits, and C truncates the number:

1100111111000111

This is -12345 ! And when we cast sx back an int, we sign-extend the number. 11111111111111111100111111000111 // still -12345

Truncating Bit Representation

If we want to reduce the bit size of a number, C truncates the representation and discards the more significant bits.

```
int x = -3;
short sx = x;
int y = sx;
```

What happens here? Let's look at the bits in x (a 32-bit int), -3 :
11111111111111111111111111111101
When we cast x to a short, it only has 16 -bits, and C truncates the number:

$$
1111111111111101
$$

This is -3 ! If the number does fit, it will convert fine. y looks like this:

$$
11111111111111111111111111111101 \text { // still -3 }
$$

Truncating Bit Representation

If we want to reduce the bit size of a number, C truncates the representation and discards the more significant bits.

```
unsigned int x = 128000;
unsigned short sx = x;
unsigned int y = sx;
```

What happens here? Let's look at the bits in x (a 32-bit unsigned int), 128000: 00000000000000011111010000000000

When we cast x to a short, it only has 16 -bits, and C truncates the number:

1111010000000000

This is 62464 ! Unsigned numbers can lose info too. Here is what y looks like: 00000000000000001111010000000000 // still 62464

The sizeof Operator

long sizeof(type);

```
// Example
long int_size_bytes = sizeof(int); // 4
long short_size_bytes = sizeof(short); // 2
long char_size_bytes = sizeof(char); // 1
```

sizeof takes a variable type as a parameter and returns the size of that type, in bytes.

Recap

- Bits and Bytes
- Hexadecimal
- Integer Representations
- Unsigned Integers
- Signed Integers
- Overflow
- Casting and Combining Types

Next time: How can we manipulate individual bits and bytes?

Recap

- Bits and Bytes
- Hexadecimal
- Integer Representations
- Unsigned Integers
- Signed Integers
- Overflow
- Casting and Combining Types

Next time: How can we manipulate individual bits and bytes?

Additional Live Session Slides

Notes

- A literal in your C program is treated by default as a signed int (32 bits)
- We write hex / binary only up to the most significant 1
- E.g. we could write a short as 0b1101 - there are 12 leading zeros, but we omit them
- If we have a negative number \mathbf{x} in binary, how do we find what it is in base-10?

1. Find the two's complement of the number, $y(y=-x)$
2. Figure out what \mathbf{y} is in base-10
3. Then we solve for $\mathbf{x}: x=-y$

Practice: Two's Complement

What are the negative or positive equivalents of the 8 -bit numbers below?
a) -4 (0b11111100)
b) 24 (0b11000)
c) 36 (0b100100)
d) -17 (Ob11101111)

Practice: Two's Complement

What are the negative or positive equivalents of the 8 -bit numbers below?
a) -4 (0b11111100) -> 0 b100
b) 24 (0b11000) -> $\mathbf{0 b 1 1 1 0 1 0 0 0}$
c) 36 (0b100100) -> Ob11011100
d) -17 (0b11101111) -> $0 b 10001$

Practice: Truncation

What are the values of cx for the passages of code below?

```
short x = 130; // 0b1000 0010
char cx = x;
```

```
short x = -132 // 0b1111 1111 0111 1100
char cx = x;
```

```
short x = 25; // 0b1 1001
char cx = x;
```


Practice: Truncation

What are the values of cx for the passages of code below?

```
short x = 130; // 0b1000 0010
char cx = x; // -126
```

```
short x = -132 // 0b1111 1111 0111 1100
char cx = x; // 124
```

```
short x = 25; // 0b1 1001
char cx = x; // 25
```


Practice: Truncation

What are the values of cx for the passages of code below?

```
short x = 390; // 0b1 1000 0110
char cx = x;
```

short $x=-15 ; ~ / / 0 b 1111111111110001$
char $\mathrm{Cx}=\mathrm{x}$;

Practice: Truncation

What are the values of cx for the passages of code below?

```
short x = 390; // 0b1 1000 0110
char cx = x; // -122
```

short $x=-15 ; / / 0 b 1111111111110001$
char cx = x; // -15

Practice: Comparisons

What are the results of the char comparisons performed below?

1. $-7<4$
2. $-7<4 \mathrm{U}$
3. (char) $130>4$
4. (char)-132 > 2

Practice: Comparisons

What are the results of the char comparisons performed below?

1. $-7<4$ - true
2. $-7<4 \mathrm{U}$ - false
3. (char) $130>4$ - false
4. (char)-132 > 2 - true

