CS107 Lecture 3
 Bits and Bytes; Bitwise Operators

reading:
Bryant \& O'Hallaron, Ch. 2.1

Bits and Bytes So Far

- all data is ultimately stored in memory in binary
- When we declare an integer variable, under the hood it is stored in binary
int $x=5 ; \quad / /$ really 0b0...0101 in memory!
- Until now, we only manipulate our integer variables in base 10 (e.g. increment, decrement, set, etc.)
- Today, we will learn about how to manipulate the underlying binary representation!
- This is useful for: more efficient arithmetic, more efficient storing of data, etc.

Lecture Plan

- Bitwise Operators
- Bitmasks
- Demo 1: Courses
- Demo 2: Practice and Powers of 2
- Bit Shift Operators
- Demo 3: Color Wheel

Aside: ASCII

- ASCII is an encoding from common characters (letters, symbols, etc.) to bit representations (chars).
- E.g. ' A ' is 0×41
- Neat property: all uppercase letters, and all lowercase letters, are sequentially represented!
- E.g. ' B^{\prime} is 0×42

Lecture Plan

- Bitwise Operators

- Bitmasks
- Demo 1: Courses
- Demo 2: Practice and Powers of 2
- Bit Shift Operators
- Demo 3: Color Wheel

Now that we understand binary representations, how can we manipulate them at the bit level?

Bitwise Operators

- You're already familiar with many operators in C :
- Arithmetic operators: $+,-, *, /, \%$
- Comparison operators: $==,!=,<,>,<=,>=$
- Logical Operators: \&\&, ||, !
- Today, we're introducing a new category of operators: bitwise operators:
- \& , l, ~ ${ }^{n}, \ll, \gg$

And (\&)

AND is a binary operator. The AND of 2 bits is 1 if both bits are 1 , and 0 otherwise.
output = a \& b;

a	b	output
0	0	0
0	1	0
1	0	0
1	1	1

\& with 1 to let a bit through, \& with 0 to zero out a bit

Or (I)

OR is a binary operator. The OR of 2 bits is 1 if either (or both) bits is 1.

output $=\mathbf{a}$		$\mathbf{b} ;$
a	b	output
0	0	0
0	1	1
1	0	1
1	1	1

| with 1 to turn on a bit, | with 0 to let a bit go through

Not (~)

NOT is a unary operator. The NOT of a bit is 1 if the bit is 0 , or 1 otherwise.

output	
a	output
0	1
0	0
1	

Exclusive Or (^)

Exclusive Or (XOR) is a binary operator. The XOR of 2 bits is 1 if exactly one of the bits is 1 , or 0 otherwise.

output $=\mathbf{a}$		^ \mathbf{b}
\mathbf{a}	\mathbf{b}	output
0	0	0
0	1	1
1	0	1
1	1	0

${ }^{\wedge}$ with 1 to flip a bit, ${ }^{\wedge}$ with 0 to let a bit go through

Operators on Multiple Bits

- When these operators are applied to numbers (multiple bits), the operator is applied to the corresponding bits in each number. For example:

AND	OR	XOR
0110 $\&$ 1100 ---- 0100	0110 1100 ---- 1110	0110 1100 ---- 1010

Note: these are different from the logical operators AND (\&\&), OR (||) and NOT (!).

Operators on Multiple Bits

- When these operators are applied to numbers (multiple bits), the operator is applied to the corresponding bits in each number. For example:

AND	OR	XOR	NOT
0110	0110	0110	
\& 1100	1100	^ 1100	~ 1100
0100	1110	1010	0011

This is different from logical AND (\&\&). The logical AND returns true if both are nonzero, or false otherwise. With \&\&, this would be $6 \& \& 12$, which would evaluate to true (1).

Operators on Multiple Bits

- When these operators are applied to numbers (multiple bits), the operator is applied to the corresponding bits in each number. For example:

AND	OR	XOR
0110 $\&$ 1100 ---- 0100	0110 1100 ---- 1110	0110 1100 ---- 1010

This is different from logical OR (||). The logical OR returns true if either are nonzero, or false otherwise. With ||, this would be 6 || 12 , which would evaluate to true (1).

Operators on Multiple Bits

- When these operators are applied to numbers (multiple bits), the operator is applied to the corresponding bits in each number. For example:

Lecture Plan

- Bitwise Operators
- Bitmasks
- Demo 1: Courses
- Demo 2: Practice and Powers of 2
- Bit Shift Operators
- Demo 3: Color Wheel

Bit Vectors and Sets

- We can use bit vectors (ordered collections of bits) to represent finite sets, and perform functions such as union, intersection, and complement.
- Example: we can represent current courses taken using a char.

0	0	1	0	0	0	1	1
-							

Bit Vectors and Sets

- How do we find the union of two sets of courses taken? Use OR:

$$
\begin{aligned}
& 00100011 \\
& 01100001 \\
& ------- \\
& 01100011
\end{aligned}
$$

Bit Vectors and Sets

0	0	1	0	0	0	1	1
5^{50}							

- How do we find the intersection of two sets of courses taken? Use AND:
00100011
$\& \quad 01100001$

00100001

Bit Masking

- We will frequently want to manipulate or isolate out specific bits in a larger collection of bits. A bitmask is a constructed bit pattern that we can use, along with bit operators, to do this.
- Example: how do we update our bit vector to indicate we've taken CS107?

0	0	1	0	0	0	1	1
00100011							
00001000							
00101011							

Bit Masking

```
#define CS106A 0x1 /* 0000 0001 */
#define CS106B 0x2 /* 0000 0010 */
#define CS106X 0x4 /* 0000 0100 */
#define CS107 0x8 /* 0000 1000 */
#define CS110 0x10 /* 0001 0000 */
#define CS103 0x20 /* 0010 0000 */
#define CS109 0x40 /* 0100 0000 */
#define CS161 0x80 /* 1000 0000 */
char myClasses = ...;
myClasses = myClasses | CS107; // Add CS107
```


Bit Masking

Bit Masking

- Example: how do we update our bit vector to indicate we've not taken CS103?

char myClasses = ...;
myClasses = myClasses \& ~CS103; // Remove CS103

Bit Masking

- Example: how do we update our bit vector to indicate we've not taken CS103?

char myClasses = ...; myClasses $\&=\sim C S 103 ; ~ / / ~ R e m o v e ~ C S 103 ~$

Bit Masking

-Example: how do we check if we've taken CS106B?

0	0	1	0	0	0	1	1
$c^{55^{50}}$	$c^{55^{109}}$	$c^{-5^{10^{3}}}$	0^{5010}				
			0010	011			
			0000	10			
			---000	---			

char myClasses = ...;
if (myClasses \& CS106B) \{...
// taken CS106B!

Bit Masking

-Example: how do we check if we've not taken CS107?

0	0	1	0	0	0	1	1
00100011							
\& 00001000							

char myClasses = ...;
if (!(myClasses \& CS107)) \{...
// not taken CS107!

Bit Masking

- Example: how do we check if we've not taken CS107?

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 0 \& 0 \& 1 \& 0 \& 0 \& 0 \& 1 \& 1

\hline \multirow[t]{4}{*}{c^{506}} \& \multirow[t]{4}{*}{c^{509}

$\&$} \& \multicolumn{2}{|l|}{} \& \multicolumn{4}{|l|}{}

\hline \& \& \multicolumn{2}{|l|}{00100011} \& \multicolumn{4}{|l|}{00000000}

\hline \& \& \multicolumn{2}{|l|}{00001000} \& \multicolumn{4}{|l|}{- 00001000}

\hline \& \& \multicolumn{2}{|l|}{00000000} \& \multicolumn{4}{|l|}{00001000}

\hline
\end{tabular}

char myClasses = ...;
if ((myClasses \& CS107) ^ CS107) \{...

Bitwise Operator Tricks

- | with 1 is useful for turning select bits on
- \& with 0 is useful for turning select bits off
- | is useful for taking the union of bits
- \& is useful for taking the intersection of bits
- ^ is useful for flipping select bits
- ~ is useful for flipping all bits

Demo: Bitmasks and GDB

Lecture Plan

- Bitwise Operators
- Bitmasks
- Demo 1: Courses
- Demo 2: Practice and Powers of 2
- Bit Shift Operators
- Demo 3: Color Wheel

Bit Masking

- Bit masking is also useful for integer representations as well. For instance, we might want to check the value of the most-significant bit, or just one of the middle bytes.
- Example: If I have a 32-bit integer \mathbf{j}, what operation should I perform if I want to get just the lowest byte in \mathbf{j} ?

$$
\begin{aligned}
& \text { int } j=\ldots ; \\
& \text { int } k=j \& 0 x f f ; \quad / / \text { mask to get just lowest byte }
\end{aligned}
$$

Practice: Bit Masking

- Practice 1: write an expression that, given a 32-bit integer j, sets its leastsignificant byte to all 1 s , but preserves all other bytes.
- Practice 2: write an expression that, given a 32-bit integer j, flips ("complements") all but the least-significant byte, and preserves all other bytes.

Practice: Bit Masking

- Practice 1: write an expression that, given a 32-bit integer j, sets its leastsignificant byte to all 1s, but preserves all other bytes.
j | 0xff
- Practice 2: write an expression that, given a 32-bit integer j, flips ("complements") all but the least-significant byte, and preserves all other bytes.
j ^ ~0xff

Powers of 2

Without using loops, how can we detect if a binary number is a power of 2? What is special about its binary representation and how can we leverage that?

Demo: Powers of 2

Lecture Plan

- Bitwise Operators
- Bitmasks
- Demo 1: Courses
- Demo 2: Practice and Powers of 2
- Bit Shift Operators
- Demo 3: Color Wheel

Left Shift (<<)

The LEFT SHIFT operator shifts a bit pattern a certain number of positions to the left. New lower order bits are filled in with 0 s , and bits shifted off the end are lost.

```
x << k; // evaluates to x shifted to the left by k bits
x <<= k; // shifts x to the left by k bits
```

8-bit examples:

```
0 0 1 1 0 1 1 1 ~ \ll ~ 2 ~ r e s u l t s ~ i n ~ 1 1 0 1 1 1 0 0 ~
01100011 << 4 results in 00110000
10010101 << 4 results in 01010000
```


Right Shift (>>)

The RIGHT SHIFT operator shifts a bit pattern a certain number of positions to the right. Bits shifted off the end are lost.

$$
\begin{array}{ll}
\mathbf{x} \gg \mathbf{k} ; & / / \text { evaluates to } x \text { shifted to the right by k bits } \\
\mathbf{x} \gg=\mathbf{k} ; & / / \\
\text { shifts } x \text { to the right by } k \text { bits }
\end{array}
$$

Question: how should we fill in new higher-order bits? Idea: let's follow left-shift and fill with Os.

```
short x = 2; // 0000 0000 0000 0010
x >>= 1; // 0000 0000 0000 0001
printf("%d\n", x); // 1
```


Right Shift (>>)

The RIGHT SHIFT operator shifts a bit pattern a certain number of positions to the right. Bits shifted off the end are lost.

$$
\begin{array}{ll}
\mathbf{x} \gg \mathbf{k} ; & \text { // evaluates to } x \text { shifted to the right by k bit } \\
\mathbf{x} \text { >>= k; } & \text { // shifts } x \text { to the right by } k \text { bits }
\end{array}
$$

Question: how should we fill in new higher-order bits? Idea: let's follow left-shift and fill with Os.

```
short x = -2; // 1111 1111 1111 1110
x >>= 1; // 0111 1111 1111 1111
printf("%d\n", x); // 32767!
```


Right Shift (>>)

The RIGHT SHIFT operator shifts a bit pattern a certain number of positions to the right. Bits shifted off the end are lost.

```
x >> k; // evaluates to x shifted to the right by k bit
x >>= k; // shifts x to the right by k bits
```

Question: how should we fill in new higher-order bits?
Problem: always filling with zeros means we may change the sign bit.
Solution: let's fill with the sign bit!

Right Shift (>>)

The RIGHT SHIFT operator shifts a bit pattern a certain number of positions to the right. Bits shifted off the end are lost.

$$
\begin{aligned}
& \mathbf{x} \gg \mathbf{k} ; \quad \text { // evaluates to } x \text { shifted to the right by k bit } \\
& \mathbf{x} \gg=\mathbf{k} ; \quad / / \text { shifts } x \text { to the right by } k \text { bits }
\end{aligned}
$$

Question: how should we fill in new higher-order bits?
Solution: let's fill with the sign bit!

```
short x = 2; // 0000 0000 0000 0010
x >>= 1; // 0000 0000 0000 0001
printf("%d\n", x); // 1
```


Right Shift (>>)

The RIGHT SHIFT operator shifts a bit pattern a certain number of positions to the right. Bits shifted off the end are lost.

$$
\begin{aligned}
& \text { x >> k; // evaluates to } x \text { shifted to the right by k bit } \\
& \mathbf{x} \gg=\mathbf{k} ; \quad / / \text { shifts } x \text { to the right by } k \text { bits }
\end{aligned}
$$

Question: how should we fill in new higher-order bits?
Solution: let's fill with the sign bit!

| short $x=-2 ; ~ / / ~$ | 1111 | 1111 | 1111 | 1110 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| x >>= 1; | // 1111 | 1111 | 1111 | 1111 |
| printf("\%d\n", x); // | $-1!$ | | | |

Right Shift (>>)

There are two kinds of right shifts, depending on the value and type you are shifting:

- Logical Right Shift: fill new high-order bits with 0s.
- Arithmetic Right Shift: fill new high-order bits with the most-significant bit.

Unsigned numbers are right-shifted using Logical Right Shift. Signed numbers are right-shifted using Arithmetic Right Shift.

This way, the sign of the number (if applicable) is preserved!

Shift Operation Pitfalls

1. Technically, the C standard does not precisely define whether a right shift for signed integers is logical or arithmetic. However, almost all compilers/machines use arithmetic, and you can most likely assume this.
2. Operator precedence can be tricky! For example:
$1 \ll 2+3 \ll 4$ means $1 \ll(2+3) \ll 4$ because addition and subtraction have higher precedence than shifts! Always use parentheses to be sure:
```
(1<<2) + (3<<4)
```


Bit Operator Pitfalls

- The default type of a number literal in your code is an int.
- Let's say you want a long with the index-32 bit as 1 :
long num = 1 << 32;
- This doesn't work! 1 is by default an int, and you can't shift an int by 32 because it only has 32 bits. You must specify that you want 1 to be a long.
long num $=1 \underline{L}$ << 32;

Lecture Plan

- Bitwise Operators
- Bitmasks
- Demo 1: Courses
- Demo 2: Practice and Powers of 2
- Bit Shift Operators
- Demo 3: Color Wheel

Demo: Color Wheel

Recap

- Bitwise Operators
- Bitmasks
- Demo 1: Courses
- Demo 2: Practice and Powers of 2
- Bit Shift Operators
- Demo 3: Color Wheel

Next time: How can a computer represent and manipulate more complex data like text?

