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Learning Goals
• Learn how to write C code that works with any data type.
• Learn how to pass functions as parameters
• Learn how to write functions that accept functions as parameters
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Lecture Plan
• Generics So Far
• Motivating Example: Bubble Sort
• Function Pointers
• Example: Generic Printing

cp -r /afs/ir/class/cs107/lecture-code/lect9 .
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Generics So Far
• void * is a variable type that represents a generic pointer “to something”.
• We cannot perform pointer arithmetic with or dereference a void *.
• We can use memcpy or memmove to copy data from one memory location to 

another.
• To do pointer arithmetic with a void *, we must first cast it to a char *.
• void * and generics are powerful but dangerous because of the lack of type 

checking, so we must be extra careful when working with generic memory.
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void swap(void *data1ptr, void *data2ptr, size_t nbytes) {
char temp[nbytes];
memcpy(temp, data1ptr, nbytes);
memcpy(data1ptr, data2ptr, nbytes);
memcpy(data2ptr, temp, nbytes);

}

Generic Swap

We can use void * to represent a pointer to any 
data, and memcpy/memmove to copy arbitrary 
bytes.
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Generic Array Swap
void swap_ends(void *arr, size_t nelems, size_t elem_bytes) {

swap(arr, (char *)arr + (nelems – 1) * elem_bytes, elem_bytes);
}

We can cast to a char * in order to perform 
manual byte arithmetic with void * pointers.
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Void * Pitfalls
• void *s are powerful, but dangerous - C cannot do as much checking!
• E.g. with int, C would never let you swap half of an int.  With void *s, this can 

happen!

int x = 0xffffffff;
int y = 0xeeeeeeee;
swap(&x, &y, sizeof(short)); 

// now x = 0xffffeeee, y = 0xeeeeffff!
printf("x = 0x%x, y = 0x%x\n", x, y);
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memset
memset is a function that sets a specified amount of bytes at one address to a 
certain value.

void *memset(void *s, int c, size_t n);

It fills n bytes starting at memory location s with the byte c.  (It also returns s).

int counts[5];
memset(counts, 0, 3); // zero out first 3 bytes at counts
memset(counts + 3, 0xff, 4) // set 3rd entry’s bytes to 1s
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Why are void * pointers 
useful?

Because each parameter and 
return type must be a single

type with a single size.
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Why Are void * Pointers Useful?
• Each parameter and return type must be a single type with a single size.
• Problem #1: for a function parameter to accept multiple data types, it needs to 

be able to accept data of different sizes.
• Key Idea #1: pointers are all the same size regardless of what they point to. To pass 

different sizes of data via a single parameter type, make the parameter be a pointer to 
the data instead.

• Problem #2: we still might pass either a char *, int *, etc.  These are the same 
size, but still different declared types.  What should the parameter type be?

• Key Idea #2: A void * encompasses all these types – it represents a “pointer to 
something”.  A char *, int *, etc. all implicitly cast to void *.

• Solution: to pass one of multiple types via a single parameter/return, that 
parameter/return’s type can be void *, and we can pass a pointer to the data.
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Lecture Plan
• Generics So Far
• Motivating Example: Bubble Sort
• Function Pointers
• Example: Generic Printing

cp -r /afs/ir/class/cs107/lecture-code/lect9 .
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Bubble Sort
• Let’s write a function to sort a list of integers.  We’ll use the bubble sort 

algorithm.

• Bubble sort repeatedly goes through the array, swapping any pairs of elements 
that are out of order.  When there are no more swaps needed, the array is 
sorted!

4 2 12 -5 56 14



14

Bubble Sort
• Let’s write a function to sort a list of integers.  We’ll use the bubble sort 

algorithm.

• Bubble sort repeatedly goes through the array, swapping any pairs of elements 
that are out of order.  When there are no more swaps needed, the array is 
sorted!

4 2 12 -5 56 14



15

Bubble Sort
• Let’s write a function to sort a list of integers.  We’ll use the bubble sort 

algorithm.

• Bubble sort repeatedly goes through the array, swapping any pairs of elements 
that are out of order.  When there are no more swaps needed, the array is 
sorted!

2 4 12 -5 56 14



16

Bubble Sort
• Let’s write a function to sort a list of integers.  We’ll use the bubble sort 

algorithm.

• Bubble sort repeatedly goes through the array, swapping any pairs of elements 
that are out of order.  When there are no more swaps needed, the array is 
sorted!

2 4 12 -5 56 14



17

Bubble Sort
• Let’s write a function to sort a list of integers.  We’ll use the bubble sort 

algorithm.

• Bubble sort repeatedly goes through the array, swapping any pairs of elements 
that are out of order.  When there are no more swaps needed, the array is 
sorted!

2 4 12 -5 56 14



18

Bubble Sort
• Let’s write a function to sort a list of integers.  We’ll use the bubble sort 

algorithm.

• Bubble sort repeatedly goes through the array, swapping any pairs of elements 
that are out of order.  When there are no more swaps needed, the array is 
sorted!

2 4 -5 12 56 14



19

Bubble Sort
• Let’s write a function to sort a list of integers.  We’ll use the bubble sort 

algorithm.

• Bubble sort repeatedly goes through the array, swapping any pairs of elements 
that are out of order.  When there are no more swaps needed, the array is 
sorted!

2 4 -5 12 56 14



20

Bubble Sort
• Let’s write a function to sort a list of integers.  We’ll use the bubble sort 

algorithm.

• Bubble sort repeatedly goes through the array, swapping any pairs of elements 
that are out of order.  When there are no more swaps needed, the array is 
sorted!

2 4 -5 12 56 14



21

Bubble Sort
• Let’s write a function to sort a list of integers.  We’ll use the bubble sort 

algorithm.

• Bubble sort repeatedly goes through the array, swapping any pairs of elements 
that are out of order.  When there are no more swaps needed, the array is 
sorted!

2 4 -5 12 14 56



22

Bubble Sort
• Let’s write a function to sort a list of integers.  We’ll use the bubble sort 

algorithm.

• Bubble sort repeatedly goes through the array, swapping any pairs of elements 
that are out of order.  When there are no more swaps needed, the array is 
sorted!

2 4 -5 12 14 56



23

Bubble Sort
• Let’s write a function to sort a list of integers.  We’ll use the bubble sort 

algorithm.

• Bubble sort repeatedly goes through the array, swapping any pairs of elements 
that are out of order.  When there are no more swaps needed, the array is 
sorted!

2 4 -5 12 14 56



24

Bubble Sort
• Let’s write a function to sort a list of integers.  We’ll use the bubble sort 

algorithm.

• Bubble sort repeatedly goes through the array, swapping any pairs of elements 
that are out of order.  When there are no more swaps needed, the array is 
sorted!

2 -5 4 12 14 56



25

Bubble Sort
• Let’s write a function to sort a list of integers.  We’ll use the bubble sort 

algorithm.

• Bubble sort repeatedly goes through the array, swapping any pairs of elements 
that are out of order.  When there are no more swaps needed, the array is 
sorted!

2 -5 4 12 14 56



26

Bubble Sort
• Let’s write a function to sort a list of integers.  We’ll use the bubble sort 

algorithm.

• Bubble sort repeatedly goes through the array, swapping any pairs of elements 
that are out of order.  When there are no more swaps needed, the array is 
sorted!

2 -5 4 12 14 56



27

Bubble Sort
• Let’s write a function to sort a list of integers.  We’ll use the bubble sort 

algorithm.

• Bubble sort repeatedly goes through the array, swapping any pairs of elements 
that are out of order.  When there are no more swaps needed, the array is 
sorted!

2 -5 4 12 14 56

In general, bubble sort requires up to n - 1 passes to sort an array of 
length n, though it may end sooner if a pass doesn’t swap anything.
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Bubble Sort
• Let’s write a function to sort a list of integers.  We’ll use the bubble sort 

algorithm.

• Bubble sort repeatedly goes through the array, swapping any pairs of elements 
that are out of order.  When there are no more swaps needed, the array is 
sorted!

-5 2 4 12 14 56

Only two more passes are needed to arrive at the above.  The first 
exchanges the 2 and the -5, and the second leaves everything as is.
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Integer Bubble Sort
void bubble_sort_int(int *arr, int n) {

while (true) {
bool swapped = false;
for (int i = 1; i < n; i++) {

if (arr[i - 1] > arr[i]) {
swapped = true;
swap_int(&arr[i - 1], &arr[i]);

}
}

if (!swapped) {
return;

}
}

}
How can we make this function 
generic, to sort an array of any type?
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Integer Bubble Sort
void bubble_sort_int(int *arr, int n) {

while (true) {
bool swapped = false;
for (int i = 1; i < n; i++) {

if (arr[i - 1] > arr[i]) {
swapped = true;
swap_int(&arr[i - 1], &arr[i]);

}
}

if (!swapped) {
return;

}
}

}
Let’s start by making the parameters 
and swap generic.
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Generic Bubble Sort
void bubble_sort(void *arr, int n, int elem_size_bytes) {

while (true) {
bool swapped = false;
for (int i = 1; i < n; i++) {

if (arr[i - 1] > arr[i]) {
swapped = true;
swap(&arr[i - 1], &arr[i], elem_size_bytes);

}
}

if (!swapped) {
return;

}
}

}
Let’s start by making the parameters 
and swap generic.
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Key Idea: Locating i-th Elem
A common generics idiom is getting a pointer to the i-th element of a generic 
array.  From last lecture, we know how to locate the last element:

void swap_ends(void *arr, size_t nelems, size_t elem_bytes) {
swap(arr, (char *)arr + (nelems – 1) * elem_bytes, elem_bytes);

}

How can we generalize this to get the location of the i-th element?

void *ith_elem = (char *)arr + i * elem_bytes;
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Generic Bubble Sort
void bubble_sort(void *arr, int n, int elem_size_bytes) {

while (true) {
bool swapped = false;
for (int i = 1; i < n; i++) {

void *p_prev_elem = (char *)arr + (i - 1) * elem_size_bytes;
void *p_curr_elem = (char *)arr + i * elem_size_bytes;
if (*p_prev_elem > *p_curr_elem) {

swapped = true;
swap(p_prev_elem, p_curr_elem, elem_size_bytes);

}
}

if (!swapped) {
return;

}
}

}

Let’s start by making the parameters 
and swap generic.
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Generic Bubble Sort
void bubble_sort(void *arr, int n, int elem_size_bytes) {

while (true) {
bool swapped = false;
for (int i = 1; i < n; i++) {

void *p_prev_elem = (char *)arr + (i - 1) * elem_size_bytes;
void *p_curr_elem = (char *)arr + i * elem_size_bytes;
if (*p_prev_elem > *p_curr_elem) {

swapped = true;
swap(p_prev_elem, p_curr_elem, elem_size_bytes);

}
}

if (!swapped) {
return;

}
}

}
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Generic Bubble Sort
void bubble_sort(void *arr, int n, int elem_size_bytes) {

while (true) {
bool swapped = false;
for (int i = 1; i < n; i++) {

void *p_prev_elem = (char *)arr + (i - 1) * elem_size_bytes;
void *p_curr_elem = (char *)arr + i * elem_size_bytes;
if (*p_prev_elem > *p_curr_elem) {

swapped = true;
swap(p_prev_elem, p_curr_elem, elem_size_bytes);

}
}

if (!swapped) {
return;

}
}

}

Wait a minute…this doesn’t work!  We can’t 
dereference void *s OR compare any element 
with >, since they may not be numbers!

🤔
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A Generics Conundrum
• We’ve hit a snag – there is no way to generically compare elements.  They 

could be any type and have complex ways to compare them.
• How can we write code to compare any two elements of the same type?
• That’s not something that bubble sort can ever know how to do.  BUT – our 

caller should know how to do this, because they’re supplying the data….let’s 
ask them!
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Lecture Plan
• Generics So Far
• Motivating Example: Bubble Sort
• Function Pointers
• Example: Generic Printing

cp -r /afs/ir/class/cs107/lecture-code/lect9 .
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Generic Bubble Sort
void bubble_sort(void *arr, int n, int elem_size_bytes) {

while (true) {
bool swapped = false;
for (int i = 1; i < n; i++) {

void *p_prev_elem = (char *)arr + (i - 1) * elem_size_bytes;
void *p_curr_elem = (char *)arr + i * elem_size_bytes;
if (*p_prev_elem > *p_curr_elem) {

swapped = true;
swap(p_prev_elem, p_curr_elem, elem_size_bytes);

}
}

if (!swapped) {
return;

}
}

}

bubble_sort (inner voice): hey, 
you, person who called us.  Do 
you know how to compare the 
items at these two addresses?
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Generic Bubble Sort
void bubble_sort(void *arr, int n, int elem_size_bytes) {

while (true) {
bool swapped = false;
for (int i = 1; i < n; i++) {

void *p_prev_elem = (char *)arr + (i - 1) * elem_size_bytes;
void *p_curr_elem = (char *)arr + i * elem_size_bytes;
if (*p_prev_elem > *p_curr_elem) {

swapped = true;
swap(p_prev_elem, p_curr_elem, elem_size_bytes);

}
}

if (!swapped) {
return;

}
}

}

Caller: yeah, I know how to compare them.  
You don’t know what data type they are, but I 
do.  I have a function that can do the 
comparison for you and tell you the result.
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Generic Bubble Sort
void bubble_sort(void *arr, int n, int elem_size_bytes, 

function compare_fn) {
while (true) {

bool swapped = false;
for (int i = 1; i < n; i++) {

void *p_prev_elem = (char *)arr + (i - 1) * elem_size_bytes;
void *p_curr_elem = (char *)arr + i * elem_size_bytes;
if (compare_fn(p_prev_elem, p_curr_elem)) {

swapped = true;
swap(p_prev_elem, p_curr_elem, elem_size_bytes);

}
}

if (!swapped) {
return;

}
}

}

How can we compare these elements?  They 
can pass us this function as a parameter.  The 
function’s job is to tell us how two elements 
compare.
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Generic Bubble Sort
void bubble_sort(void *arr, int n, int elem_size_bytes, 

bool (*compare_fn)(void *a, void *b)) {
while (true) {

bool swapped = false;
for (int i = 1; i < n; i++) {

void *p_prev_elem = (char *)arr + (i - 1) * elem_size_bytes;
void *p_curr_elem = (char *)arr + i * elem_size_bytes;
if (compare_fn(p_prev_elem, p_curr_elem)) {

swapped = true;
swap(p_prev_elem, p_curr_elem, elem_size_bytes);

}
}

if (!swapped) {
return;

}
}

}

How can we compare these elements?  They 
can pass us this function as a parameter.  The 
function’s job is to tell us how two elements 
compare.
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Function Pointers
A function pointer is the variable type for passing a function as a parameter.  
Here is how the parameter’s type is declared.

bool (*compare_fn)(void *a, void *b)
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Function Pointers
A function pointer is the variable type for passing a function as a parameter.  
Here is how the parameter’s type is declared.

bool (*compare_fn)(void *a, void *b)

Return type
(bool)
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Function Pointers
A function pointer is the variable type for passing a function as a parameter.  
Here is how the parameter’s type is declared.

bool (*compare_fn)(void *a, void *b)

Function pointer name
(compare_fn)
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Function Pointers
A function pointer is the variable type for passing a function as a parameter.  
Here is how the parameter’s type is declared.

bool (*compare_fn)(void *a, void *b)

Function parameters
(two void *s)
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Function Pointers
Here’s the general variable type syntax:

[return type] (*[name])([parameters])
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Generic Bubble Sort
void bubble_sort(void *arr, int n, int elem_size_bytes, 

bool (*compare_fn)(void *a, void *b)) {
while (true) {

bool swapped = false;
for (int i = 1; i < n; i++) {

void *p_prev_elem = (char *)arr + (i - 1) * elem_size_bytes;
void *p_curr_elem = (char *)arr + i * elem_size_bytes;
if (compare_fn(p_prev_elem, p_curr_elem)) {

swapped = true;
swap(p_prev_elem, p_curr_elem, elem_size_bytes);

}
}

if (!swapped) {
return;

}
}

}
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Function Pointers

bool integer_compare(void *ptr1, void *ptr2) {
...   

}

int main(int argc, char *argv[]) {
int nums[] = {4, 2, -5, 1, 12, 56};
int nums_count = sizeof(nums) / sizeof(nums[0]);
bubble_sort(nums, nums_count, sizeof(nums[0]), integer_compare);
...

}
bubble_sort is generic and works for any type.  
But the caller knows the specific type of data 
being sorted and provides a comparison 
function specifically for that data type.
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Function Pointers

bool string_compare(void *ptr1, void *ptr2) {
...   

}

int main(int argc, char *argv[]) {
char *classes[] = {"CS106A", "CS106B", "CS107", "CS110"};
int arr_count = sizeof(classes) / sizeof(classes[0]);
bubble_sort(classes, arr_count, sizeof(classes[0]), string_compare);
...

}
bubble_sort is generic and works for any type.  
But the caller knows the specific type of data 
being sorted and provides a comparison 
function specifically for that data type.
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Bubble Sort
void bubble_sort(void *arr, int n, int elem_size_bytes, 

bool (*compare_fn)(void *a, void *b))

• Bubble Sort is written as a generic library function to be imported into 
potentially many programs to be used with many types.  It must have a single 
function signature but work with any type of data.
• Its comparison function type is part of its function signature – the comparison 

function signature must use one set of types but accept any data of any size.  
How do we do this?

• The function will instead accept pointers to the data via void * parameters
• This means that the functions must be written to handle parameters which are pointers 

to the data to be compared
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Generic Bubble Sort
void bubble_sort(void *arr, int n, int elem_size_bytes, 

bool (*compare_fn)(void *a, void *b)) {
while (true) {

bool swapped = false;
for (int i = 1; i < n; i++) {

void *p_prev_elem = (char *)arr + (i - 1) * elem_size_bytes;
void *p_curr_elem = (char *)arr + i * elem_size_bytes;
if (compare_fn(p_prev_elem, p_curr_elem)) {

swapped = true;
swap(p_prev_elem, p_curr_elem, elem_size_bytes);

}
}

if (!swapped) {
return;

}
}

}

. . . 

Caller’s stack frame

? ? ? ?

. . . 

bubble_sort i arr p_prev_elem p_curr_elem

2
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Function Pointers
This means that functions with generic parameters must always take pointers to 
the data they care about.

We can use the following pattern:
1) Cast the void *argument(s) and set typed pointers equal to them.
2) Dereference the typed pointer(s) to access the values.
3) Perform the necessary operation.

(steps 1 and 2 can often be combined into a single step)
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Function Pointers

bool integer_compare(void *ptr1, void *ptr2) {
// 1) cast arguments to int *s
int *num1ptr = (int *)ptr1;
int *num2ptr = (int *)ptr2;

// 2) dereference typed points to access values
int num1 = *num1ptr;
int num2 = *num2ptr;

// 3) perform operation
return num1 > num2;

}

This function is created by the caller 
specifically to compare integers, 
knowing their addresses are necessarily 
disguised as void *so that bubble_sort
can work for any array type.
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Function Pointers

bool integer_compare(void *ptr1, void *ptr2) {
// 1) cast arguments to int *s
int *num1ptr = (int *)ptr1;
int *num2ptr = (int *)ptr2;

// 2) dereference typed points to access values
int num1 = *num1ptr;
int num2 = *num2ptr;

// 3) perform operation
return num1 > num2;

}

However, the type of the 
comparison function that e.g. 
bubble_sort accepts must be 
generic, since we are writing one 
bubble_sort function to work 
with any data type.
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Function Pointers

bool integer_compare(void *ptr1, void *ptr2) {
return *(int *)ptr1 > *(int *)ptr2;

}
. . . 

Caller’s stack frame

? ? ? ?

. . . 

bubble_sort i arr p_prev_elem p_curr_elem

2

. . . 

Cmp fn stack frame                      ptr1                 ptr2
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Comparison Functions
• Function pointers are used often in cases like this to compare two values of the 

same type.  These are called comparison functions.
• The standard comparison function in many C functions provides even more 

information.  It should return:
• < 0 if first value should come before second value
• > 0 if first value should come after second value
• 0 if first value and second value are equivalent

• This is the same return value format as strcmp!

int (*compare_fn)(void *a, void *b)
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Comparison Functions

int integer_compare(void *ptr1, void *ptr2) {
return *(int *)ptr1 – *(int *)ptr2;

}
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Generic Bubble Sort
void bubble_sort(void *arr, int n, int elem_size_bytes, 

int (*compare_fn)(void *a, void *b)) {
while (true) {

bool swapped = false;
for (int i = 1; i < n; i++) {

void *p_prev_elem = (char *)arr + (i - 1) * elem_size_bytes;
void *p_curr_elem = (char *)arr + i * elem_size_bytes;
if (compare_fn(p_prev_elem, p_curr_elem) > 0) {

swapped = true;
swap(p_prev_elem, p_curr_elem, elem_size_bytes);

}
}

if (!swapped) {
return;

}
}

}
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Comparison Functions
• Exercise: how can we write a comparison function for bubble sort to sort 

strings in alphabetical order?
• The common prototype provides even more information.  It should return:

• < 0 if first value should come before second value
• > 0 if first value should come after second value
• 0 if first value and second value are equivalent

int (*compare_fn)(void *a, void *b)
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String Comparison Function

int string_compare(void *ptr1, void *ptr2) {
// cast arguments and dereference
char *str1 = *(char **)ptr1;
char *str2 = *(char **)ptr2;

// perform operation
return strcmp(str1, str2);

}

. . . 

Caller’s stack frame

? ? ? ?

. . . 

bubble_sort i arr p_prev_elem p_curr_elem

2

. . . 

Cmp fn stack frame                     ptr1                   ptr2
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Function Pointer Pitfalls
• If a function takes a function pointer as a parameter, it will accept it if it fits the 

specified signature.
• This is dangerous!  E.g. what happens if you pass in a string comparison 

function when sorting an integer array?
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Lecture Plan
• Generics So Far
• Motivating Example: Bubble Sort
• Function Pointers
• Example: Generic Printing

cp -r /afs/ir/class/cs107/lecture-code/lect9 .
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Function Pointers
• Function pointers can be used in a variety of ways.  For instance, you could 

have:
• A function to compare two elements of a given type
• A function to print out an element of a given type
• A function to free memory associated with a given type
• And more…
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Function Pointers
• Function pointers can be used in a variety of ways.  For instance, you could 

have:
• A function to compare two elements of a given type
• A function to print out an element of a given type
• A function to free memory associated with a given type
• And more…
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Demo: Generic Printing

print_array.c
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Common Utility Callback Functions
• Comparison function – compares two elements of a given type.

int (*cmp_fn)(void *addr1, void *addr2)

• Printing function – prints out an element of a given type

void (*print_fn)(void *addr)

• There are many more!  You can specify any functions you would like passed in 
when writing your own generic functions.
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Function Pointers As Variables
In addition to parameters, you can make normal variables that are functions.

int do_something(char *str) {
…

}

int main(int argc, char *argv[]) {
…
int (*func_var)(char *) = do_something;
…
func_var("testing");
return 0;   

}
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Generic C Standard Library Functions
• qsort – I can sort an array of any type!  To do that, I need you to provide me a 

function that can compare two elements of the kind you are asking me to sort.
• bsearch – I can use binary search to search for a key in an array of any type!  To 

do that, I need you to provide me a function that can compare two elements 
of the kind you are asking me to search.
• lfind – I can use linear search to search for a key in an array of any type!  To do 

that, I need you to provide me a function that can compare two elements of 
the kind you are asking me to search.
• lsearch - I can use linear search to search for a key in an array of any type!  I 

will also add the key for you if I can’t find it.   In order to do that, I need you to 
provide me a function that can compare two elements of the kind you are 
asking me to search.
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Generic C Standard Library Functions
• scandir – I can create a directory listing with any order and contents!  To do 

that, I need you to provide me a function that tells me whether you want me 
to include a given directory entry in the listing.  I also need you to provide me a 
function that tells me the correct ordering of two given directory entries.
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Recap
• We can pass functions as parameters to pass logic around in our programs.
• Comparison functions are one common class of functions passed as 

parameters to generically compare the elements at two addresses.
• Functions handling generic data must use pointers to the data they care about, 

since any parameters must have one type and one size.
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Generics Overview
• We use void * pointers and memory operations like memcpy and memmove

to make data operations generic.
• We use function pointers to make logic/functionality operations generic.
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Recap
• Generics So Far
• Motivating Example: Bubble Sort
• Function Pointers
• Example: Generic Printing

Next time: assembly language
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Question Break

Post any questions you have to the lecture thread on the discussion forum for today’s
lecture!
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Extra Practice
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Practice: Count Matches
• Let’s write a generic function count_matches that can count the number of a 

certain type of element in a generic array.
• It should take in as parameters information about the generic array, and a 

function parameter that can take in a pointer to a single array element and tell 
us if it’s a match.

int count_matches(void *base, int nelems, int elem_size_bytes, bool 
(*match_fn)(void *));
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Practice: Count Matches
int count_matches(void *base, int nelems, int elem_size_bytes, 

bool (*match_fn)(void *)) {

int match_count = 0;

for (int i = 0; i < nelems; i++) {
void *curr_p = (char *)base + i * elem_size_bytes;
if (match_fn(curr_p)) {

match_count++;
}

}

return match_count;
}


