
1
This document is copyright (C) Stanford Computer Science and Nick Troccoli, licensed under Creative Commons Attribution 2.5 License. All rights reserved.

Based on slides created by Marty Stepp, Cynthia Lee, Chris Gregg, Jerry Cain, Lisa Yan and others.

CS107, Lecture 9
C Generics – Function Pointers

Reading: K&R 5.11

2

Learning Goals
• Learn how to write C code that works with any data type.
• Learn how to pass functions as parameters
• Learn how to write functions that accept functions as parameters

3

Lecture Plan
• Generics So Far
• Motivating Example: Bubble Sort
• Function Pointers
• Example: Generic Printing

cp -r /afs/ir/class/cs107/lecture-code/lect9 .

4

Lecture Plan
• Generics So Far
• Motivating Example: Bubble Sort
• Function Pointers
• Example: Generic Printing

cp -r /afs/ir/class/cs107/lecture-code/lect9 .

5

Generics So Far
• void * is a variable type that represents a generic pointer “to something”.
• We cannot perform pointer arithmetic with or dereference a void *.
• We can use memcpy or memmove to copy data from one memory location to

another.
• To do pointer arithmetic with a void *, we must first cast it to a char *.
• void * and generics are powerful but dangerous because of the lack of type

checking, so we must be extra careful when working with generic memory.

6

void swap(void *data1ptr, void *data2ptr, size_t nbytes) {
char temp[nbytes];
memcpy(temp, data1ptr, nbytes);
memcpy(data1ptr, data2ptr, nbytes);
memcpy(data2ptr, temp, nbytes);

}

Generic Swap

We can use void * to represent a pointer to any
data, and memcpy/memmove to copy arbitrary
bytes.

7

Generic Array Swap
void swap_ends(void *arr, size_t nelems, size_t elem_bytes) {

swap(arr, (char *)arr + (nelems – 1) * elem_bytes, elem_bytes);
}

We can cast to a char * in order to perform
manual byte arithmetic with void * pointers.

8

Void * Pitfalls
• void *s are powerful, but dangerous - C cannot do as much checking!
• E.g. with int, C would never let you swap half of an int. With void *s, this can

happen!

int x = 0xffffffff;
int y = 0xeeeeeeee;
swap(&x, &y, sizeof(short));

// now x = 0xffffeeee, y = 0xeeeeffff!
printf("x = 0x%x, y = 0x%x\n", x, y);

9

memset
memset is a function that sets a specified amount of bytes at one address to a
certain value.

void *memset(void *s, int c, size_t n);

It fills n bytes starting at memory location s with the byte c. (It also returns s).

int counts[5];
memset(counts, 0, 3); // zero out first 3 bytes at counts
memset(counts + 3, 0xff, 4) // set 3rd entry’s bytes to 1s

10

Why are void * pointers
useful?

Because each parameter and
return type must be a single

type with a single size.

11

Why Are void * Pointers Useful?
• Each parameter and return type must be a single type with a single size.
• Problem #1: for a function parameter to accept multiple data types, it needs to

be able to accept data of different sizes.
• Key Idea #1: pointers are all the same size regardless of what they point to. To pass

different sizes of data via a single parameter type, make the parameter be a pointer to
the data instead.

• Problem #2: we still might pass either a char *, int *, etc. These are the same
size, but still different declared types. What should the parameter type be?

• Key Idea #2: A void * encompasses all these types – it represents a “pointer to
something”. A char *, int *, etc. all implicitly cast to void *.

• Solution: to pass one of multiple types via a single parameter/return, that
parameter/return’s type can be void *, and we can pass a pointer to the data.

12

Lecture Plan
• Generics So Far
• Motivating Example: Bubble Sort
• Function Pointers
• Example: Generic Printing

cp -r /afs/ir/class/cs107/lecture-code/lect9 .

13

Bubble Sort
• Let’s write a function to sort a list of integers. We’ll use the bubble sort

algorithm.

• Bubble sort repeatedly goes through the array, swapping any pairs of elements
that are out of order. When there are no more swaps needed, the array is
sorted!

4 2 12 -5 56 14

14

Bubble Sort
• Let’s write a function to sort a list of integers. We’ll use the bubble sort

algorithm.

• Bubble sort repeatedly goes through the array, swapping any pairs of elements
that are out of order. When there are no more swaps needed, the array is
sorted!

4 2 12 -5 56 14

15

Bubble Sort
• Let’s write a function to sort a list of integers. We’ll use the bubble sort

algorithm.

• Bubble sort repeatedly goes through the array, swapping any pairs of elements
that are out of order. When there are no more swaps needed, the array is
sorted!

2 4 12 -5 56 14

16

Bubble Sort
• Let’s write a function to sort a list of integers. We’ll use the bubble sort

algorithm.

• Bubble sort repeatedly goes through the array, swapping any pairs of elements
that are out of order. When there are no more swaps needed, the array is
sorted!

2 4 12 -5 56 14

17

Bubble Sort
• Let’s write a function to sort a list of integers. We’ll use the bubble sort

algorithm.

• Bubble sort repeatedly goes through the array, swapping any pairs of elements
that are out of order. When there are no more swaps needed, the array is
sorted!

2 4 12 -5 56 14

18

Bubble Sort
• Let’s write a function to sort a list of integers. We’ll use the bubble sort

algorithm.

• Bubble sort repeatedly goes through the array, swapping any pairs of elements
that are out of order. When there are no more swaps needed, the array is
sorted!

2 4 -5 12 56 14

19

Bubble Sort
• Let’s write a function to sort a list of integers. We’ll use the bubble sort

algorithm.

• Bubble sort repeatedly goes through the array, swapping any pairs of elements
that are out of order. When there are no more swaps needed, the array is
sorted!

2 4 -5 12 56 14

20

Bubble Sort
• Let’s write a function to sort a list of integers. We’ll use the bubble sort

algorithm.

• Bubble sort repeatedly goes through the array, swapping any pairs of elements
that are out of order. When there are no more swaps needed, the array is
sorted!

2 4 -5 12 56 14

21

Bubble Sort
• Let’s write a function to sort a list of integers. We’ll use the bubble sort

algorithm.

• Bubble sort repeatedly goes through the array, swapping any pairs of elements
that are out of order. When there are no more swaps needed, the array is
sorted!

2 4 -5 12 14 56

22

Bubble Sort
• Let’s write a function to sort a list of integers. We’ll use the bubble sort

algorithm.

• Bubble sort repeatedly goes through the array, swapping any pairs of elements
that are out of order. When there are no more swaps needed, the array is
sorted!

2 4 -5 12 14 56

23

Bubble Sort
• Let’s write a function to sort a list of integers. We’ll use the bubble sort

algorithm.

• Bubble sort repeatedly goes through the array, swapping any pairs of elements
that are out of order. When there are no more swaps needed, the array is
sorted!

2 4 -5 12 14 56

24

Bubble Sort
• Let’s write a function to sort a list of integers. We’ll use the bubble sort

algorithm.

• Bubble sort repeatedly goes through the array, swapping any pairs of elements
that are out of order. When there are no more swaps needed, the array is
sorted!

2 -5 4 12 14 56

25

Bubble Sort
• Let’s write a function to sort a list of integers. We’ll use the bubble sort

algorithm.

• Bubble sort repeatedly goes through the array, swapping any pairs of elements
that are out of order. When there are no more swaps needed, the array is
sorted!

2 -5 4 12 14 56

26

Bubble Sort
• Let’s write a function to sort a list of integers. We’ll use the bubble sort

algorithm.

• Bubble sort repeatedly goes through the array, swapping any pairs of elements
that are out of order. When there are no more swaps needed, the array is
sorted!

2 -5 4 12 14 56

27

Bubble Sort
• Let’s write a function to sort a list of integers. We’ll use the bubble sort

algorithm.

• Bubble sort repeatedly goes through the array, swapping any pairs of elements
that are out of order. When there are no more swaps needed, the array is
sorted!

2 -5 4 12 14 56

In general, bubble sort requires up to n - 1 passes to sort an array of
length n, though it may end sooner if a pass doesn’t swap anything.

28

Bubble Sort
• Let’s write a function to sort a list of integers. We’ll use the bubble sort

algorithm.

• Bubble sort repeatedly goes through the array, swapping any pairs of elements
that are out of order. When there are no more swaps needed, the array is
sorted!

-5 2 4 12 14 56

Only two more passes are needed to arrive at the above. The first
exchanges the 2 and the -5, and the second leaves everything as is.

29

Integer Bubble Sort
void bubble_sort_int(int *arr, int n) {

while (true) {
bool swapped = false;
for (int i = 1; i < n; i++) {

if (arr[i - 1] > arr[i]) {
swapped = true;
swap_int(&arr[i - 1], &arr[i]);

}
}

if (!swapped) {
return;

}
}

}
How can we make this function
generic, to sort an array of any type?

30

Integer Bubble Sort
void bubble_sort_int(int *arr, int n) {

while (true) {
bool swapped = false;
for (int i = 1; i < n; i++) {

if (arr[i - 1] > arr[i]) {
swapped = true;
swap_int(&arr[i - 1], &arr[i]);

}
}

if (!swapped) {
return;

}
}

}
Let’s start by making the parameters
and swap generic.

31

Generic Bubble Sort
void bubble_sort(void *arr, int n, int elem_size_bytes) {

while (true) {
bool swapped = false;
for (int i = 1; i < n; i++) {

if (arr[i - 1] > arr[i]) {
swapped = true;
swap(&arr[i - 1], &arr[i], elem_size_bytes);

}
}

if (!swapped) {
return;

}
}

}
Let’s start by making the parameters
and swap generic.

32

Key Idea: Locating i-th Elem
A common generics idiom is getting a pointer to the i-th element of a generic
array. From last lecture, we know how to locate the last element:

void swap_ends(void *arr, size_t nelems, size_t elem_bytes) {
swap(arr, (char *)arr + (nelems – 1) * elem_bytes, elem_bytes);

}

How can we generalize this to get the location of the i-th element?

void *ith_elem = (char *)arr + i * elem_bytes;

33

Generic Bubble Sort
void bubble_sort(void *arr, int n, int elem_size_bytes) {

while (true) {
bool swapped = false;
for (int i = 1; i < n; i++) {

void *p_prev_elem = (char *)arr + (i - 1) * elem_size_bytes;
void *p_curr_elem = (char *)arr + i * elem_size_bytes;
if (*p_prev_elem > *p_curr_elem) {

swapped = true;
swap(p_prev_elem, p_curr_elem, elem_size_bytes);

}
}

if (!swapped) {
return;

}
}

}

Let’s start by making the parameters
and swap generic.

34

Generic Bubble Sort
void bubble_sort(void *arr, int n, int elem_size_bytes) {

while (true) {
bool swapped = false;
for (int i = 1; i < n; i++) {

void *p_prev_elem = (char *)arr + (i - 1) * elem_size_bytes;
void *p_curr_elem = (char *)arr + i * elem_size_bytes;
if (*p_prev_elem > *p_curr_elem) {

swapped = true;
swap(p_prev_elem, p_curr_elem, elem_size_bytes);

}
}

if (!swapped) {
return;

}
}

}

35

Generic Bubble Sort
void bubble_sort(void *arr, int n, int elem_size_bytes) {

while (true) {
bool swapped = false;
for (int i = 1; i < n; i++) {

void *p_prev_elem = (char *)arr + (i - 1) * elem_size_bytes;
void *p_curr_elem = (char *)arr + i * elem_size_bytes;
if (*p_prev_elem > *p_curr_elem) {

swapped = true;
swap(p_prev_elem, p_curr_elem, elem_size_bytes);

}
}

if (!swapped) {
return;

}
}

}

Wait a minute…this doesn’t work! We can’t
dereference void *s OR compare any element
with >, since they may not be numbers!

🤔

36

A Generics Conundrum
• We’ve hit a snag – there is no way to generically compare elements. They

could be any type and have complex ways to compare them.
• How can we write code to compare any two elements of the same type?
• That’s not something that bubble sort can ever know how to do. BUT – our

caller should know how to do this, because they’re supplying the data….let’s
ask them!

37

Lecture Plan
• Generics So Far
• Motivating Example: Bubble Sort
• Function Pointers
• Example: Generic Printing

cp -r /afs/ir/class/cs107/lecture-code/lect9 .

38

Generic Bubble Sort
void bubble_sort(void *arr, int n, int elem_size_bytes) {

while (true) {
bool swapped = false;
for (int i = 1; i < n; i++) {

void *p_prev_elem = (char *)arr + (i - 1) * elem_size_bytes;
void *p_curr_elem = (char *)arr + i * elem_size_bytes;
if (*p_prev_elem > *p_curr_elem) {

swapped = true;
swap(p_prev_elem, p_curr_elem, elem_size_bytes);

}
}

if (!swapped) {
return;

}
}

}

bubble_sort (inner voice): hey,
you, person who called us. Do
you know how to compare the
items at these two addresses?

39

Generic Bubble Sort
void bubble_sort(void *arr, int n, int elem_size_bytes) {

while (true) {
bool swapped = false;
for (int i = 1; i < n; i++) {

void *p_prev_elem = (char *)arr + (i - 1) * elem_size_bytes;
void *p_curr_elem = (char *)arr + i * elem_size_bytes;
if (*p_prev_elem > *p_curr_elem) {

swapped = true;
swap(p_prev_elem, p_curr_elem, elem_size_bytes);

}
}

if (!swapped) {
return;

}
}

}

Caller: yeah, I know how to compare them.
You don’t know what data type they are, but I
do. I have a function that can do the
comparison for you and tell you the result.

40

Generic Bubble Sort
void bubble_sort(void *arr, int n, int elem_size_bytes,

function compare_fn) {
while (true) {

bool swapped = false;
for (int i = 1; i < n; i++) {

void *p_prev_elem = (char *)arr + (i - 1) * elem_size_bytes;
void *p_curr_elem = (char *)arr + i * elem_size_bytes;
if (compare_fn(p_prev_elem, p_curr_elem)) {

swapped = true;
swap(p_prev_elem, p_curr_elem, elem_size_bytes);

}
}

if (!swapped) {
return;

}
}

}

How can we compare these elements? They
can pass us this function as a parameter. The
function’s job is to tell us how two elements
compare.

41

Generic Bubble Sort
void bubble_sort(void *arr, int n, int elem_size_bytes,

bool (*compare_fn)(void *a, void *b)) {
while (true) {

bool swapped = false;
for (int i = 1; i < n; i++) {

void *p_prev_elem = (char *)arr + (i - 1) * elem_size_bytes;
void *p_curr_elem = (char *)arr + i * elem_size_bytes;
if (compare_fn(p_prev_elem, p_curr_elem)) {

swapped = true;
swap(p_prev_elem, p_curr_elem, elem_size_bytes);

}
}

if (!swapped) {
return;

}
}

}

How can we compare these elements? They
can pass us this function as a parameter. The
function’s job is to tell us how two elements
compare.

42

Function Pointers
A function pointer is the variable type for passing a function as a parameter.
Here is how the parameter’s type is declared.

bool (*compare_fn)(void *a, void *b)

43

Function Pointers
A function pointer is the variable type for passing a function as a parameter.
Here is how the parameter’s type is declared.

bool (*compare_fn)(void *a, void *b)

Return type
(bool)

44

Function Pointers
A function pointer is the variable type for passing a function as a parameter.
Here is how the parameter’s type is declared.

bool (*compare_fn)(void *a, void *b)

Function pointer name
(compare_fn)

45

Function Pointers
A function pointer is the variable type for passing a function as a parameter.
Here is how the parameter’s type is declared.

bool (*compare_fn)(void *a, void *b)

Function parameters
(two void *s)

46

Function Pointers
Here’s the general variable type syntax:

[return type] (*[name])([parameters])

47

Generic Bubble Sort
void bubble_sort(void *arr, int n, int elem_size_bytes,

bool (*compare_fn)(void *a, void *b)) {
while (true) {

bool swapped = false;
for (int i = 1; i < n; i++) {

void *p_prev_elem = (char *)arr + (i - 1) * elem_size_bytes;
void *p_curr_elem = (char *)arr + i * elem_size_bytes;
if (compare_fn(p_prev_elem, p_curr_elem)) {

swapped = true;
swap(p_prev_elem, p_curr_elem, elem_size_bytes);

}
}

if (!swapped) {
return;

}
}

}

48

Function Pointers

bool integer_compare(void *ptr1, void *ptr2) {
...

}

int main(int argc, char *argv[]) {
int nums[] = {4, 2, -5, 1, 12, 56};
int nums_count = sizeof(nums) / sizeof(nums[0]);
bubble_sort(nums, nums_count, sizeof(nums[0]), integer_compare);
...

}
bubble_sort is generic and works for any type.
But the caller knows the specific type of data
being sorted and provides a comparison
function specifically for that data type.

49

Function Pointers

bool string_compare(void *ptr1, void *ptr2) {
...

}

int main(int argc, char *argv[]) {
char *classes[] = {"CS106A", "CS106B", "CS107", "CS110"};
int arr_count = sizeof(classes) / sizeof(classes[0]);
bubble_sort(classes, arr_count, sizeof(classes[0]), string_compare);
...

}
bubble_sort is generic and works for any type.
But the caller knows the specific type of data
being sorted and provides a comparison
function specifically for that data type.

50

Bubble Sort
void bubble_sort(void *arr, int n, int elem_size_bytes,

bool (*compare_fn)(void *a, void *b))

• Bubble Sort is written as a generic library function to be imported into
potentially many programs to be used with many types. It must have a single
function signature but work with any type of data.
• Its comparison function type is part of its function signature – the comparison

function signature must use one set of types but accept any data of any size.
How do we do this?

• The function will instead accept pointers to the data via void * parameters
• This means that the functions must be written to handle parameters which are pointers

to the data to be compared

51

Generic Bubble Sort
void bubble_sort(void *arr, int n, int elem_size_bytes,

bool (*compare_fn)(void *a, void *b)) {
while (true) {

bool swapped = false;
for (int i = 1; i < n; i++) {

void *p_prev_elem = (char *)arr + (i - 1) * elem_size_bytes;
void *p_curr_elem = (char *)arr + i * elem_size_bytes;
if (compare_fn(p_prev_elem, p_curr_elem)) {

swapped = true;
swap(p_prev_elem, p_curr_elem, elem_size_bytes);

}
}

if (!swapped) {
return;

}
}

}

. . .

Caller’s stack frame

? ? ? ?

. . .

bubble_sort i arr p_prev_elem p_curr_elem

2

52

Function Pointers
This means that functions with generic parameters must always take pointers to
the data they care about.

We can use the following pattern:
1) Cast the void *argument(s) and set typed pointers equal to them.
2) Dereference the typed pointer(s) to access the values.
3) Perform the necessary operation.

(steps 1 and 2 can often be combined into a single step)

53

Function Pointers

bool integer_compare(void *ptr1, void *ptr2) {
// 1) cast arguments to int *s
int *num1ptr = (int *)ptr1;
int *num2ptr = (int *)ptr2;

// 2) dereference typed points to access values
int num1 = *num1ptr;
int num2 = *num2ptr;

// 3) perform operation
return num1 > num2;

}

This function is created by the caller
specifically to compare integers,
knowing their addresses are necessarily
disguised as void *so that bubble_sort
can work for any array type.

54

Function Pointers

bool integer_compare(void *ptr1, void *ptr2) {
// 1) cast arguments to int *s
int *num1ptr = (int *)ptr1;
int *num2ptr = (int *)ptr2;

// 2) dereference typed points to access values
int num1 = *num1ptr;
int num2 = *num2ptr;

// 3) perform operation
return num1 > num2;

}

However, the type of the
comparison function that e.g.
bubble_sort accepts must be
generic, since we are writing one
bubble_sort function to work
with any data type.

55

Function Pointers

bool integer_compare(void *ptr1, void *ptr2) {
return *(int *)ptr1 > *(int *)ptr2;

}
. . .

Caller’s stack frame

? ? ? ?

. . .

bubble_sort i arr p_prev_elem p_curr_elem

2

. . .

Cmp fn stack frame ptr1 ptr2

56

Comparison Functions
• Function pointers are used often in cases like this to compare two values of the

same type. These are called comparison functions.
• The standard comparison function in many C functions provides even more

information. It should return:
• < 0 if first value should come before second value
• > 0 if first value should come after second value
• 0 if first value and second value are equivalent

• This is the same return value format as strcmp!

int (*compare_fn)(void *a, void *b)

57

Comparison Functions

int integer_compare(void *ptr1, void *ptr2) {
return *(int *)ptr1 – *(int *)ptr2;

}

58

Generic Bubble Sort
void bubble_sort(void *arr, int n, int elem_size_bytes,

int (*compare_fn)(void *a, void *b)) {
while (true) {

bool swapped = false;
for (int i = 1; i < n; i++) {

void *p_prev_elem = (char *)arr + (i - 1) * elem_size_bytes;
void *p_curr_elem = (char *)arr + i * elem_size_bytes;
if (compare_fn(p_prev_elem, p_curr_elem) > 0) {

swapped = true;
swap(p_prev_elem, p_curr_elem, elem_size_bytes);

}
}

if (!swapped) {
return;

}
}

}

59

Comparison Functions
• Exercise: how can we write a comparison function for bubble sort to sort

strings in alphabetical order?
• The common prototype provides even more information. It should return:

• < 0 if first value should come before second value
• > 0 if first value should come after second value
• 0 if first value and second value are equivalent

int (*compare_fn)(void *a, void *b)

60

String Comparison Function

int string_compare(void *ptr1, void *ptr2) {
// cast arguments and dereference
char *str1 = *(char **)ptr1;
char *str2 = *(char **)ptr2;

// perform operation
return strcmp(str1, str2);

}

. . .

Caller’s stack frame

? ? ? ?

. . .

bubble_sort i arr p_prev_elem p_curr_elem

2

. . .

Cmp fn stack frame ptr1 ptr2

61

Function Pointer Pitfalls
• If a function takes a function pointer as a parameter, it will accept it if it fits the

specified signature.
• This is dangerous! E.g. what happens if you pass in a string comparison

function when sorting an integer array?

62

Lecture Plan
• Generics So Far
• Motivating Example: Bubble Sort
• Function Pointers
• Example: Generic Printing

cp -r /afs/ir/class/cs107/lecture-code/lect9 .

63

Function Pointers
• Function pointers can be used in a variety of ways. For instance, you could

have:
• A function to compare two elements of a given type
• A function to print out an element of a given type
• A function to free memory associated with a given type
• And more…

64

Function Pointers
• Function pointers can be used in a variety of ways. For instance, you could

have:
• A function to compare two elements of a given type
• A function to print out an element of a given type
• A function to free memory associated with a given type
• And more…

65

Demo: Generic Printing

print_array.c

66

Common Utility Callback Functions
• Comparison function – compares two elements of a given type.

int (*cmp_fn)(void *addr1, void *addr2)

• Printing function – prints out an element of a given type

void (*print_fn)(void *addr)

• There are many more! You can specify any functions you would like passed in
when writing your own generic functions.

67

Function Pointers As Variables
In addition to parameters, you can make normal variables that are functions.

int do_something(char *str) {
…

}

int main(int argc, char *argv[]) {
…
int (*func_var)(char *) = do_something;
…
func_var("testing");
return 0;

}

68

Generic C Standard Library Functions
• qsort – I can sort an array of any type! To do that, I need you to provide me a

function that can compare two elements of the kind you are asking me to sort.
• bsearch – I can use binary search to search for a key in an array of any type! To

do that, I need you to provide me a function that can compare two elements
of the kind you are asking me to search.
• lfind – I can use linear search to search for a key in an array of any type! To do

that, I need you to provide me a function that can compare two elements of
the kind you are asking me to search.
• lsearch - I can use linear search to search for a key in an array of any type! I

will also add the key for you if I can’t find it. In order to do that, I need you to
provide me a function that can compare two elements of the kind you are
asking me to search.

69

Generic C Standard Library Functions
• scandir – I can create a directory listing with any order and contents! To do

that, I need you to provide me a function that tells me whether you want me
to include a given directory entry in the listing. I also need you to provide me a
function that tells me the correct ordering of two given directory entries.

70

Recap
• We can pass functions as parameters to pass logic around in our programs.
• Comparison functions are one common class of functions passed as

parameters to generically compare the elements at two addresses.
• Functions handling generic data must use pointers to the data they care about,

since any parameters must have one type and one size.

71

Generics Overview
• We use void * pointers and memory operations like memcpy and memmove

to make data operations generic.
• We use function pointers to make logic/functionality operations generic.

72

Recap
• Generics So Far
• Motivating Example: Bubble Sort
• Function Pointers
• Example: Generic Printing

Next time: assembly language

73

Question Break

Post any questions you have to the lecture thread on the discussion forum for today’s
lecture!

74

Extra Practice

75

Practice: Count Matches
• Let’s write a generic function count_matches that can count the number of a

certain type of element in a generic array.
• It should take in as parameters information about the generic array, and a

function parameter that can take in a pointer to a single array element and tell
us if it’s a match.

int count_matches(void *base, int nelems, int elem_size_bytes, bool
(*match_fn)(void *));

76

Practice: Count Matches
int count_matches(void *base, int nelems, int elem_size_bytes,

bool (*match_fn)(void *)) {

int match_count = 0;

for (int i = 0; i < nelems; i++) {
void *curr_p = (char *)base + i * elem_size_bytes;
if (match_fn(curr_p)) {

match_count++;
}

}

return match_count;
}

