
1
This document is copyright (C) Stanford Computer Science, Lisa Yan, and Nick Troccoli, licensed under Creative Commons Attribution 2.5 License. All rights reserved.

Based on slides created by Marty Stepp, Cynthia Lee, Chris Gregg, Lisa Yan, Jerry Cain and others.

CS107, Lecture 15
Optimization

Reading: B&O 5

2

CS107 Topic 6: How do the
core malloc/realloc/free

memory-allocation
operations work?

3

Learning Goals
• Understand how we can optimize our code to improve efficiency and speed
• Learn about the optimizations GCC can perform

4

Lecture Plan
• What is optimization? 5
• GCC Optimization 8
• Limitations of GCC Optimization 34
• Caching 38
• Live Session Slides 45

cp -r /afs/ir/class/cs107/lecture-code/lect15 .

5

Lecture Plan
• What is optimization? 5
• GCC Optimization 8
• Limitations of GCC Optimization 34
• Caching 38
• Live Session Slides 45

cp -r /afs/ir/class/cs107/lecture-code/lect15 .

6

Optimization
• Optimization is the task of making your program faster or more efficient with

space or time. You’ve seen explorations of efficiency with Big-O notation!
• Targeted, intentional optimizations to alleviate bottlenecks can result in big

gains. But it’s important to only work to optimize where necessary.

7

Optimization
Most of what you need to do with optimization can be summarized by:

1) If doing something seldom and only on small inputs, do whatever is simplest
to code, understand, and debug

2) If doing things thing a lot, or on big inputs, make the primary algorithm’s Big-
O cost reasonable

3) Let gcc do its magic from there
4) Optimize explicitly as a last resort

8

Lecture Plan
• What is optimization? 5
• GCC Optimization 8
• Limitations of GCC Optimization 34
• Caching 38
• Live Session Slides 45

cp -r /afs/ir/class/cs107/lecture-code/lect15 .

9

GCC Optimization
• Today, we’ll be comparing two levels of optimization in the gcc compiler:
• gcc –O0 // mostly just literal translation of C
• gcc –O2 // enable nearly all reasonable optimizations
• (we use –Og, like –O0 but with less needless use of the stack)

• There are other custom and more aggressive levels of optimization, e.g.:
• -O3 //more aggressive than O2, trade size for speed
• -Os //optimize for size
• -Ofast //disregard standards compliance (!!)

• Exhaustive list of gcc optimization-related flags:
• https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html

https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html

10

Example: Matrix Multiplication
Here’s a standard matrix multiply, a triply-nested for loop:

void mmm(double a[][DIM], double b[][DIM], double c[][DIM], int n) {
for (int i = 0; i < n; i++) {

for (int j = 0; j < n; j++) {
for (int k = 0; k < n; k++) {

c[i][j] += a[i][k] * b[k][j];
}

}
}

}

./mult // -O0 (no optimization)
matrix multiply 25^2: cycles 0.43M
matrix multiply 50^2: cycles 3.02M
matrix multiply 100^2: cycles 24.82M

./mult_opt // -O2 (with optimization)
matrix multiply 25^2: cycles 0.13M (opt)
matrix multiply 50^2: cycles 0.66M (opt)
matrix multiply 100^2: cycles 5.55M (opt)

11

GCC Optimizations
• Constant Folding
• Common Sub-expression Elimination
• Dead Code
• Strength Reduction
• Code Motion
• Tail Recursion
• Loop Unrolling
• Psychic Powers

12

GCC Optimizations
• Constant Folding
• Common Sub-expression Elimination
• Dead Code
• Strength Reduction
• Code Motion
• Tail Recursion
• Loop Unrolling
• Psychic Powers (kidding)

13

GCC Optimizations
Optimizations may target one or more of:
• Static instruction count
• Dynamic instruction count
• Cycle count / execution time

14

GCC Optimizations
• Constant Folding
• Common Sub-expression Elimination
• Dead Code
• Strength Reduction
• Code Motion
• Tail Recursion
• Loop Unrolling

15

Constant Folding
Constant Folding pre-calculates constants at compile-time where possible.

int seconds = 60 * 60 * 24 * n_days;

What is the consequence of this for you as a programmer? What should you do
differently or the same knowing that compilers can do this for you?

16

Constant Folding
int fold(int param) {

char arr[5];
int a = 0x107;
int b = a * sizeof(arr);
int c = sqrt(2.0);
return a * param + (a + 0x15 / c + strlen("Hello") * b - 0x37) / 4;

}

17

Constant Folding: Before (-O0)
0000000000400626 <fold>:
400626: 55 push %rbp
400627: 53 push %rbx
400628: 48 83 ec 08 sub $0x8,%rsp
40062c: 89 fd mov %edi,%ebp
40062e: f2 0f 10 05 da 00 00 movsd 0xda(%rip),%xmm0
400635: 00
400636: e8 d5 fe ff ff callq 400510 <sqrt@plt>
40063b: f2 0f 2c c8 cvttsd2si %xmm0,%ecx
40063f: 69 ed 07 01 00 00 imul $0x107,%ebp,%ebp
400645: b8 15 00 00 00 mov $0x15,%eax
40064a: 99 cltd
40064b: f7 f9 idiv %ecx
40064d: 8d 98 07 01 00 00 lea 0x107(%rax),%ebx
400653: bf 04 07 40 00 mov $0x400704,%edi
400658: e8 93 fe ff ff callq 4004f0 <strlen@plt>
40065d: 48 69 c0 23 05 00 00 imul $0x523,%rax,%rax
400664: 48 63 db movslq %ebx,%rbx
400667: 48 8d 44 18 c9 lea -0x37(%rax,%rbx,1),%rax
40066c: 48 c1 e8 02 shr $0x2,%rax
400670: 01 e8 add %ebp,%eax
400672: 48 83 c4 08 add $0x8,%rsp
400676: 5b pop %rbx
400677: 5d pop %rbp
400678: c3 retq

18

Constant Folding: After (-O2)
00000000004004f0 <fold>:
4004f0: 69 c7 07 01 00 00 imul $0x107,%edi,%eax
4004f6: 05 a5 06 00 00 add $0x6a5,%eax
4004fb: c3 retq
4004fc: 0f 1f 40 00 nopl 0x0(%rax)

19

GCC Optimizations
• Constant Folding
• Common Sub-expression Elimination
• Dead Code
• Strength Reduction
• Code Motion
• Tail Recursion
• Loop Unrolling

20

Common Sub-Expression Elimination
Common Sub-Expression Elimination prevents the recalculation of the same
thing many times by doing it once and saving the result.

int a = (param2 + 0x107);
int b = param1 * (param2 + 0x107) + a;
return a * (param2 + 0x107) + b * (param2 + 0x107);

21

Common Sub-Expression Elimination
Common Sub-Expression Elimination prevents the recalculation of the same
thing many times by doing it once and saving the result.

int a = (param2 + 0x107);
int b = param1 * (param2 + 0x107) + a;
return a * (param2 + 0x107) + b * (param2 + 0x107);

00000000004004f0 <subexp>:
4004f0: 81 c6 07 01 00 00 add $0x107,%esi
4004f6: 0f af fe imul %esi,%edi
4004f9: 8d 04 77 lea (%rdi,%rsi,2),%eax
4004fc: 0f af c6 imul %esi,%eax
4004ff: c3 retq

This optimization is
done even at –O0!

22

GCC Optimizations
• Constant Folding
• Common Sub-expression Elimination
• Dead Code
• Strength Reduction
• Code Motion
• Tail Recursion
• Loop Unrolling

23

Dead Code
Dead code elimination removes code that doesn’t serve a purpose:
if (param1 < param2 && param1 > param2) {

printf("This test can never be true!\n");
}

// Empty for loop
for (int i = 0; i < 1000; i++);

// If/else that does the same operation in both cases
if (param1 == param2) {

param1++;
} else {

param1++;
}

// If/else that more trickily does the same operation in both cases
if (param1 == 0) {

return 0;
} else {

return param1;
}

24

Dead Code: Before (-O0)
00000000004004d6 <dead_code>:
4004d6: b8 00 00 00 00 mov $0x0,%eax
4004db: eb 03 jmp 4004e0 <dead_code+0xa>
4004dd: 83 c0 01 add $0x1,%eax
4004e0: 3d e7 03 00 00 cmp $0x3e7,%eax
4004e5: 7e f6 jle 4004dd <dead_code+0x7>
4004e7: 39 f7 cmp %esi,%edi
4004e9: 75 05 jne 4004f0 <dead_code+0x1a>
4004eb: 8d 47 01 lea 0x1(%rdi),%eax
4004ee: eb 03 jmp 4004f3 <dead_code+0x1d>
4004f0: 8d 47 01 lea 0x1(%rdi),%eax
4004f3: f3 c3 repz retq

25

Dead Code: After (-O2)
00000000004004f0 <dead_code>:
4004f0: 8d 47 01 lea 0x1(%rdi),%eax
4004f3: c3 retq
4004f4: 66 2e 0f 1f 84 00 00 nopw %cs:0x0(%rax,%rax,1)
4004fb: 00 00 00
4004fe: 66 90 xchg %ax,%ax

26

GCC Optimizations
• Constant Folding
• Common Sub-expression Elimination
• Dead Code
• Strength Reduction
• Code Motion
• Tail Recursion
• Loop Unrolling

27

Strength Reduction
Strength reduction changes divide to multiply, multiply to add/shift, and mod to
AND to avoid using instructions that cost many cycles (multiply and divide).

int a = param2 * 32;
int b = a * 7;
int c = b / 3;
int d = param2 % 2;

for (int i = 0; i <= param2; i++) {
c += param1[i] + 0x107 * i;

}
return c + d;

28

GCC Optimizations
• Constant Folding
• Common Sub-expression Elimination
• Dead Code
• Strength Reduction
• Code Motion
• Tail Recursion
• Loop Unrolling

29

Code Motion
Code motion moves code outside of a loop if possible.

for (int i = 0; i < n; i++) {
sum += arr[i] + foo * (bar + 3);

}

Common subexpression elimination deals with expressions that appear multiple
times in the code. Here, the expression appears once, but is calculated each
loop iteration.

30

GCC Optimizations
• Constant Folding
• Common Sub-expression Elimination
• Dead Code
• Strength Reduction
• Code Motion
• Tail Recursion
• Loop Unrolling

31

Tail Recursion
Tail recursion is an example of where GCC can identify recursive patterns that
can be more efficiently implemented iteratively.

long factorial(int n) {
if (n <= 1) {

return 1;
}
else return n * factorial(n - 1);

}

You saw this in the last lab!

32

GCC Optimizations
• Constant Folding
• Common Sub-expression Elimination
• Dead Code
• Strength Reduction
• Code Motion
• Tail Recursion
• Loop Unrolling

33

Loop Unrolling
Loop Unrolling: Do n loop iterations’ worth of work per actual loop iteration, so
we save ourselves from doing the loop overhead (test and jump) every time, and
instead incur overhead only every n-th time.

for (int i = 0; i <= n - 4; i += 4) {
sum += arr[i];
sum += arr[i + 1];
sum += arr[i + 2];
sum += arr[i + 3];

} // after the loop handle any leftovers

34

Lecture Plan
• What is optimization? 5
• GCC Optimization 8
• Limitations of GCC Optimization 34
• Caching 38
• Live Session Slides 45

cp -r /afs/ir/class/cs107/lecture-code/lect15 .

35

Limitations of GCC Optimization
GCC can’t optimize everything! You ultimately may know more than GCC does.

int char_sum(char *s) {
int sum = 0;
for (size_t i = 0; i < strlen(s); i++) {

sum += s[i];
}
return sum;

}

What is the bottleneck?
What can GCC do?

strlen called for every character
code motion – pull strlen out of loop

36

Limitations of GCC Optimization
GCC can’t optimize everything! You ultimately may know more than GCC does.

void lower1(char *s) {
for (size_t i = 0; i < strlen(s); i++) {

if (s[i] >= 'A' && s[i] <= 'Z') {
s[i] -= ('A' - 'a');

}
}

}

What is the bottleneck?
What can GCC do?

strlen called for every character
nothing! s is changing, so GCC doesn’t know if length is
constant across iterations. But we know its length doesn’t
change.

37

Demo: limitations.c

38

Lecture Plan
• What is optimization? 5
• GCC Optimization 8
• Limitations of GCC Optimization 34
• Caching 38
• Live Session Slides 45

cp -r /afs/ir/class/cs107/lecture-code/lect15 .

39

Caching
• Processor speed is not the only bottleneck in program performance – memory

access is perhaps even more of a bottleneck!
• Memory exists in levels and goes from really fast (registers) to really slow

(disk).
• As data is more frequently used, it ends up in faster and faster memory.

40

Caching
All caching depends on locality.

Temporal locality
• Repeat access to the same data tends to be co-located in TIME
• Intuitively: things I have used recently, I am likely to use again soon

Spatial locality
• Related data tends to be co-located in SPACE
• Intuitively: data that is near a used item is more likely to also be accessed

41

Caching
All caching depends on locality.

Realistic scenario:
• 97% cache hit rate
• Cache hit costs 1 cycle
• Cache miss costs 100 cycles
• How much of your memory access time is spent on 3% of accesses that are

cache misses?

42

Demo: cache.c

43

Optimizing Your Code
• Explore various optimizations you can make to your code to reduce instruction

count and runtime.
• More efficient Big-O for your algorithms
• Explore other ways to reduce instruction count

• Look for hotspots using callgrind
• Optimize using –O2
• And more…

44

Recap
• What is optimization?
• GCC Optimization
• Limitations of GCC Optimization
• Caching

Next time: wrap up

45

Live Session Slides

Post any questions you have to today’s lecture thread on the discussion forum!

46

Plan For Today
• 10 minutes: general review
• 5 minutes: post questions or comments on Ed for what we should discuss
• 15 minutes: open Q&A
• 25 minutes: extra practice

Lecture 15 takeaway: Compilers can apply various
optimizations to make our code more efficient, without
us having to rewrite code. However, there are
limitations to these optimizations, and sometimes we
must optimize ourselves, using tools like Callgrind.

47

Optimization
Most of what you need to do with optimization can be summarized by:

1) If doing something seldom and only on small inputs, do whatever
is simplest to code, understand, and debug

2) If doing things thing a lot, or on big inputs, make the primary
algorithm’s Big-O cost reasonable

3) Let gcc do its magic from there
4) Optimize explicitly as a last resort

Use -Og

Slide 7

48

Compiler optimizations

https://stackoverflow.co
m/questions/1778538/ho
w-many-gcc-optimization-
levels-are-there

Gcc supports numbers up to
3. Anything above is
interpreted as 3

https://stackoverflow.com/questions/1778538/how-many-gcc-optimization-levels-are-there

49

Questions you may have
Why not always just compile with –O2?
• Difficult to debug optimized executables – only optimize when complete
• Optimizations may not always improve your program. The compiler does its

best, but may not work, or slow things down, etc. Experiment to see what
works best!

Why should we bother saving repeated calculations in variables if the compiler
has common subexpression elimination?
• The compiler may not always be able to optimize every instance. Plus, it can

help reduce redundancy!
• Humans read your code too—not just computers J

50

Plan For Today
• 10 minutes: general review
• 5 minutes: post questions or comments on Ed for what we should discuss
• 15 minutes: open Q&A
• 25 minutes: extra practice

Lecture 15 takeaway: Compilers can apply various
optimizations to make our code more efficient, without
us having to rewrite code. However, there are
limitations to these optimizations, and sometimes we
must optimize ourselves, using tools like Callgrind.

51

Common Sub-Expression Elimination
Common Sub-Expression Elimination prevents the recalculation of the same
thing many times by doing it once and saving the result.

int a = (param2 + 0x107);
int b = param1 * (param2 + 0x107) + a;
return a * (param2 + 0x107) + b * (param2 + 0x107);
// = 2 * a * a + param1 * a * a

00000000000011b0 <subexp>: // param1 in %edi, param2 in %esi
11b0: lea 0x107(%rsi),%eax // %eax stores a
11b6: imul %eax,%edi // param1 * a
11b9: lea (%rdi,%rax,2),%esi // 2 * a + param1 * a
11bc: imul %esi,%eax // a * (2 * a + param1 * a)
11bf: retq

This optimization is
not done at –O0.

Slide 21

52

Tail recursion example: Lab6 bonus
Recall the factorial problem from Lecture 13:

unsigned int factorial(unsigned int n) {
if (n <= 1) {

return 1;
}
return n * factorial(n - 1);

}

What happens with factorial(-1)? • Infinite recursion à Literal
stack overflow!

• Compiled with -0g!
https://web.stanford.edu/class/cs107/lab6/extra.html

https://web.stanford.edu/class/cs107/lab6/extra.html

53

Factorial: -Og
401146 <+0>: cmp $0x1,%edi
401149 <+3>: jbe 0x40115b <factorial+21>
40114b <+5>: push %rbx
40114c <+6>: mov %edi,%ebx
40114e <+8>: lea -0x1(%rdi),%edi
401151 <+11>:callq 0x401146 <factorial>
401156 <+16>:imul %ebx,%eax
401159 <+19>:pop %rbx
40115a <+20>:retq
40115b <+21>:mov $0x1,%eax
401160 <+26>:retq 4011e0 <+0>: mov $0x1,%eax

4011e5 <+5>: cmp $0x1,%edi
4011e8 <+8>: jbe 0x4011fd <factorial+29>
4011ea <+10>:nopw 0x0(%rax,%rax,1)
4011f0 <+16>:mov %edi,%edx
4011f2 <+18>:sub $0x1,%edi
4011f5 <+21>:imul %edx,%eax
4011f8 <+24>:cmp $0x1,%edi
4011fb <+27>:jne 0x4011f0 <factorial+16>
4011fd <+29>:retq

-02:
• What happened?
• Did the compiler “fix” the

infinite recursion?

🤔

vs –O2

