
1
This document is copyright (C) Stanford Computer Science, Lisa Yan, and Nick Troccoli, licensed under Creative Commons Attribution 2.5 License. All rights reserved.

Based on slides created by Marty Stepp, Cynthia Lee, Chris Gregg, Jerry Cain and others.

CS107 Lecture 3
Bits and Bytes; Bitwise Operators

reading:
Bryant & O’Hallaron, Ch. 2.1

2

Bits and Bytes So Far
• all data is ultimately stored in memory in binary
• When we declare an integer variable, under the hood it is stored in binary

int x = 5; // really 0b0…0101 in memory!

• Until now, we only manipulate our integer variables in base 10 (e.g. increment,
decrement, set, etc.)
• Today, we will learn about how to manipulate the underlying binary

representation!
• This is useful for: more efficient arithmetic, more efficient storing of data, etc.

3

Lecture Plan
• Bitwise Operators 5
• Bitmasks 16
• Demo 1: Courses 29
• Demo 2: Practice and Powers of 2 30
• Bit Shift Operators 36
• Demo 3: Color Wheel 47
• Live session 49

4

Aside: ASCII
• ASCII is an encoding from common characters (letters, symbols, etc.) to bit

representations (chars).
• E.g. 'A’ is 0x41

• Neat property: all uppercase letters, and all lowercase letters, are sequentially
represented!
• E.g. 'B’ is 0x42

5

Lecture Plan
• Bitwise Operators 5
• Bitmasks 16
• Demo 1: Courses 29
• Demo 2: Practice and Powers of 2 30
• Bit Shift Operators 36
• Demo 3: Color Wheel 47
• Live session 49

6

Now that we understand
binary representations, how

can we manipulate them at the
bit level?

7

Bitwise Operators
• You’re already familiar with many operators in C:
• Arithmetic operators: +, -, *, /, %
• Comparison operators: ==, !=, <, >, <=, >=
• Logical Operators: &&, ||, !

• Today, we’re introducing a new category of operators: bitwise operators:
• &, |, ~, ^, <<, >>

8

And (&)
AND is a binary operator. The AND of 2 bits is 1 if both bits are 1, and 0
otherwise.

a b output
0 0 0
0 1 0
1 0 0
1 1 1

output = a & b;

& with 1 to let a bit through, & with 0 to zero out a bit

9

Or (|)
OR is a binary operator. The OR of 2 bits is 1 if either (or both) bits is 1.

a b output
0 0 0
0 1 1
1 0 1
1 1 1

output = a | b;

| with 1 to turn on a bit, | with 0 to let a bit go through

10

Not (~)
NOT is a unary operator. The NOT of a bit is 1 if the bit is 0, or 1 otherwise.

a output

0 1

1 0

output = ~a;

11

Exclusive Or (^)
Exclusive Or (XOR) is a binary operator. The XOR of 2 bits is 1 if exactly one of
the bits is 1, or 0 otherwise.

a b output
0 0 0
0 1 1
1 0 1
1 1 0

output = a ^ b;

^ with 1 to flip a bit, ^ with 0 to let a bit go through

12

Operators on Multiple Bits
• When these operators are applied to numbers (multiple bits), the operator is

applied to the corresponding bits in each number. For example:

0110
& 1100

0100

0110
1100
1110

0110
^ 1100

1010

~ 1100

0011

AND OR XOR NOT

Note: these are different from the logical
operators AND (&&), OR (||) and NOT (!).

13

Operators on Multiple Bits
• When these operators are applied to numbers (multiple bits), the operator is

applied to the corresponding bits in each number. For example:

0110
& 1100

0100

0110
1100
1110

0110
^ 1100

1010

~ 1100

0011

AND OR XOR NOT

This is different from logical AND (&&). The logical
AND returns true if both are nonzero, or false
otherwise. With &&, this would be 6 && 12,
which would evaluate to true (1).

14

Operators on Multiple Bits
• When these operators are applied to numbers (multiple bits), the operator is

applied to the corresponding bits in each number. For example:

0110
& 1100

0100

0110
1100
1110

0110
^ 1100

1010

~ 1100

0011

AND OR XOR NOT

This is different from logical OR (||). The logical
OR returns true if either are nonzero, or false
otherwise. With ||, this would be 6 || 12, which
would evaluate to true (1).

15

Operators on Multiple Bits
• When these operators are applied to numbers (multiple bits), the operator is

applied to the corresponding bits in each number. For example:

0110
& 1100

0100

0110
1100
1110

0110
^ 1100

1010

~ 1100

0011

AND OR XOR NOT

This is different from logical NOT (!). The logical NOT
returns true if this is zero, and false otherwise. With !,
this would be !12, which would evaluate to false (0).

16

Lecture Plan
• Bitwise Operators 5
• Bitmasks 16
• Demo 1: Courses 29
• Demo 2: Practice and Powers of 2 30
• Bit Shift Operators 36
• Demo 3: Color Wheel 47
• Live session 49

17

Bit Vectors and Sets
• We can use bit vectors (ordered collections of bits) to represent finite sets, and

perform functions such as union, intersection, and complement.
• Example: we can represent current courses taken using a char.

0 0 1 0 0 0 1 1

CS
10
6A

CS
10
6B

CS
10
6X

CS
10
7

CS
11
0

CS
10
3

CS
10
9

CS
16
1

18

Bit Vectors and Sets

• How do we find the union of two sets of courses taken? Use OR:

00100011
01100001
01100011

0 0 1 0 0 0 1 1

CS
10
6A

CS
10
6B

CS
10
6X

CS
10
7

CS
11
0

CS
10
3

CS
10
9

CS
16
1

19

Bit Vectors and Sets

• How do we find the intersection of two sets of courses taken? Use AND:

00100011
& 01100001

00100001

0 0 1 0 0 0 1 1

CS
10
6A

CS
10
6B

CS
10
6X

CS
10
7

CS
11
0

CS
10
3

CS
10
9

CS
16
1

20

Bit Masking
• We will frequently want to manipulate or isolate out specific bits in a larger

collection of bits. A bitmask is a constructed bit pattern that we can use, along
with bit operators, to do this.
• Example: how do we update our bit vector to indicate we’ve taken CS107?

00100011
00001000
00101011

0 0 1 0 0 0 1 1

CS
10
6A

CS
10
6B

CS
10
6X

CS
10
7

CS
11
0

CS
10
3

CS
10
9

CS
16
1

21

Bit Masking
#define CS106A 0x1 /* 0000 0001 */
#define CS106B 0x2 /* 0000 0010 */
#define CS106X 0x4 /* 0000 0100 */
#define CS107 0x8 /* 0000 1000 */
#define CS110 0x10 /* 0001 0000 */
#define CS103 0x20 /* 0010 0000 */
#define CS109 0x40 /* 0100 0000 */
#define CS161 0x80 /* 1000 0000 */

char myClasses = ...;
myClasses = myClasses | CS107; // Add CS107

22

Bit Masking
#define CS106A 0x1 /* 0000 0001 */
#define CS106B 0x2 /* 0000 0010 */
#define CS106X 0x4 /* 0000 0100 */
#define CS107 0x8 /* 0000 1000 */
#define CS110 0x10 /* 0001 0000 */
#define CS103 0x20 /* 0010 0000 */
#define CS109 0x40 /* 0100 0000 */
#define CS161 0x80 /* 1000 0000 */

char myClasses = ...;
myClasses |= CS107; // Add CS107

23

Bit Masking
• Example: how do we update our bit vector to indicate we’ve not taken CS103?

00100011
& 11011111

00000011

0 0 1 0 0 0 1 1

CS
10
6A

CS
10
6B

CS
10
6X

CS
10
7

CS
11
0

CS
10
3

CS
10
9

CS
16
1

char myClasses = ...;
myClasses = myClasses & ~CS103; // Remove CS103

24

Bit Masking
• Example: how do we update our bit vector to indicate we’ve not taken CS103?

00100011
& 11011111

00000011

0 0 1 0 0 0 1 1

CS
10
6A

CS
10
6B

CS
10
6X

CS
10
7

CS
11
0

CS
10
3

CS
10
9

CS
16
1

char myClasses = ...;
myClasses &= ~CS103; // Remove CS103

25

Bit Masking
• Example: how do we check if we’ve taken CS106B?

00100011
& 00000010

00000010

0 0 1 0 0 0 1 1

CS
10
6A

CS
10
6B

CS
10
6X

CS
10
7

CS
11
0

CS
10
3

CS
10
9

CS
16
1

char myClasses = ...;
if (myClasses & CS106B) {...

// taken CS106B!

26

Bit Masking
• Example: how do we check if we’ve not taken CS107?

0 0 1 0 0 0 1 1

CS
10
6A

CS
10
6B

CS
10
6X

CS
10
7

CS
11
0

CS
10
3

CS
10
9

CS
16
1

char myClasses = ...;
if (!(myClasses & CS107)) {...

// not taken CS107!

00100011
& 00001000

00000000

27

Bit Masking
• Example: how do we check if we’ve not taken CS107?

0 0 1 0 0 0 1 1

CS
10
6A

CS
10
6B

CS
10
6X

CS
10
7

CS
11
0

CS
10
3

CS
10
9

CS
16
1

char myClasses = ...;
if ((myClasses & CS107) ^ CS107) {...

// not taken CS107!

00100011
& 00001000

00000000

00000000
^ 00001000

00001000

28

Bitwise Operator Tricks
• | with 1 is useful for turning select bits on
• & with 0 is useful for turning select bits off
• | is useful for taking the union of bits
• & is useful for taking the intersection of bits
• ^ is useful for flipping select bits
• ~ is useful for flipping all bits

29

Demo: Bitmasks and GDB

30

Lecture Plan
• Bitwise Operators 5
• Bitmasks 16
• Demo 1: Courses 29
• Demo 2: Practice and Powers of 2 30
• Bit Shift Operators 36
• Demo 3: Color Wheel 47
• Live session 49

31

Bit Masking
• Bit masking is also useful for integer representations as well. For instance, we

might want to check the value of the most-significant bit, or just one of the
middle bytes.

• Example: If I have a 32-bit integer j, what operation should I perform if I want
to get just the lowest byte in j?

int j = ...;
int k = j & 0xff; // mask to get just lowest byte

32

Practice: Bit Masking
• Practice 1: write an expression that, given a 32-bit integer j, sets its least-

significant byte to all 1s, but preserves all other bytes.

• Practice 2: write an expression that, given a 32-bit integer j, flips
(“complements”) all but the least-significant byte, and preserves all other
bytes.

33

Practice: Bit Masking
• Practice 1: write an expression that, given a 32-bit integer j, sets its least-

significant byte to all 1s, but preserves all other bytes.
j | 0xff

• Practice 2: write an expression that, given a 32-bit integer j, flips
(“complements”) all but the least-significant byte, and preserves all other
bytes.

j ^ ~0xff

34

Powers of 2

Without using loops, how can we detect if a
binary number is a power of 2? What is
special about its binary representation and
how can we leverage that?

35

Demo: Powers of 2

36

Lecture Plan
• Bitwise Operators 5
• Bitmasks 16
• Demo 1: Courses 29
• Demo 2: Practice and Powers of 2 30
• Bit Shift Operators 36
• Demo 3: Color Wheel 47
• Live session 49

37

Left Shift (<<)
The LEFT SHIFT operator shifts a bit pattern a certain number of positions to the
left. New lower order bits are filled in with 0s, and bits shifted off the end are
lost.

x << k; // evaluates to x shifted to the left by k bits
x <<= k; // shifts x to the left by k bits

8-bit examples:
00110111 << 2 results in 11011100
01100011 << 4 results in 00110000
10010101 << 4 results in 01010000

38

Right Shift (>>)
The RIGHT SHIFT operator shifts a bit pattern a certain number of positions to
the right. Bits shifted off the end are lost.

x >> k; // evaluates to x shifted to the right by k bits
x >>= k; // shifts x to the right by k bits

Question: how should we fill in new higher-order bits?
Idea: let’s follow left-shift and fill with 0s.

short x = 2; // 0000 0000 0000 0010
x >>= 1; // 0000 0000 0000 0001
printf("%d\n", x); // 1

39

Right Shift (>>)
The RIGHT SHIFT operator shifts a bit pattern a certain number of positions to
the right. Bits shifted off the end are lost.

x >> k; // evaluates to x shifted to the right by k bit
x >>= k; // shifts x to the right by k bits

Question: how should we fill in new higher-order bits?
Idea: let’s follow left-shift and fill with 0s.

short x = -2; // 1111 1111 1111 1110
x >>= 1; // 0111 1111 1111 1111
printf("%d\n", x); // 32767!

40

Right Shift (>>)
The RIGHT SHIFT operator shifts a bit pattern a certain number of positions to
the right. Bits shifted off the end are lost.

x >> k; // evaluates to x shifted to the right by k bit
x >>= k; // shifts x to the right by k bits

Question: how should we fill in new higher-order bits?
Problem: always filling with zeros means we may change the sign bit.
Solution: let’s fill with the sign bit!

41

Right Shift (>>)
The RIGHT SHIFT operator shifts a bit pattern a certain number of positions to
the right. Bits shifted off the end are lost.

x >> k; // evaluates to x shifted to the right by k bit
x >>= k; // shifts x to the right by k bits

Question: how should we fill in new higher-order bits?
Solution: let’s fill with the sign bit!

short x = 2; // 0000 0000 0000 0010
x >>= 1; // 0000 0000 0000 0001
printf("%d\n", x); // 1

42

Right Shift (>>)
The RIGHT SHIFT operator shifts a bit pattern a certain number of positions to
the right. Bits shifted off the end are lost.

x >> k; // evaluates to x shifted to the right by k bit
x >>= k; // shifts x to the right by k bits

Question: how should we fill in new higher-order bits?
Solution: let’s fill with the sign bit!

short x = -2; // 1111 1111 1111 1110
x >>= 1; // 1111 1111 1111 1111
printf("%d\n", x); // -1!

43

Right Shift (>>)
There are two kinds of right shifts, depending on the value and type you are
shifting:
• Logical Right Shift: fill new high-order bits with 0s.
• Arithmetic Right Shift: fill new high-order bits with the most-significant bit.

Unsigned numbers are right-shifted using Logical Right Shift.
Signed numbers are right-shifted using Arithmetic Right Shift.

This way, the sign of the number (if applicable) is preserved!

44

Shift Operation Pitfalls
1. Technically, the C standard does not precisely define whether a right shift for

signed integers is logical or arithmetic. However, almost all
compilers/machines use arithmetic, and you can most likely assume this.

2. Operator precedence can be tricky! For example:

1<<2 + 3<<4 means 1 << (2+3) << 4 because addition and
subtraction have higher precedence than shifts! Always use parentheses
to be sure:

(1<<2) + (3<<4)

45

Bit Operator Pitfalls
• The default type of a number literal in your code is an int.
• Let’s say you want a long with the index-32 bit as 1:

long num = 1 << 32;

• This doesn’t work! 1 is by default an int, and you can’t shift an int by 32
because it only has 32 bits. You must specify that you want 1 to be a long.

long num = 1L << 32;

46

Lecture Plan
• Bitwise Operators 5
• Bitmasks 16
• Demo 1: Courses 29
• Demo 2: Practice and Powers of 2 30
• Bit Shift Operators 36
• Demo 3: Color Wheel 47
• Live session 49

47

Demo: Color Wheel

48

Recap
• Bitwise Operators
• Bitmasks
• Demo 1: Courses
• Demo 2: Practice and Powers of 2
• Bit Shift Operators
• Demo 3: Color Wheel

Next time: How can a computer represent and manipulate more complex data
like text?

49

Additional Live Session
Slides

50

Plan For Today
First 5 minutes: post questions or comments on Ed for what we should discuss

Lecture 3 takeaway: We can use bit operators like &, |,
~, <<, etc. to manipulate the binary representation of
values. A number is a bit pattern that can be
manipulated arithmetically or bitwise at your
convenience!

51

Bitwise Warmup
How can we use bitmasks + bitwise operators to…

1. …turn on a particular
set of bits?

🤔

0b00001101

0b00001111 0b00001001

2. …turn off a particular
set of bits?

3. …flip a particular
set of bits?

0b00001011

0b00001101 0b00001101 0b00001101

52

Bitwise Warmup
How can we use bitmasks + bitwise operators to…

1. …turn on a particular
set of bits?

0b00001101

0b00001111 0b00001001

2. …turn off a particular
set of bits?

3. …flip a particular
set of bits?

0b00001011

0b00001101 0b00001101 0b00001101

OR AND XOR

0b00000010 | 0b11111011 & 0b00000110 ^

53

GDB as an Interpreter
• gdb live_session run gdb on live_session executable
• p print variable (p varname) or evaluated expression (p 3L << 10)
• p/t, p/x binary and hex formats.
• p/d, p/u, p/c

• <enter> Execute last command again
• q Quit gdb

Important When first launching gdb:
• Gdb is not running any program and therefore can’t print variables
• It can still process operators on constants

54

More Exercises
Suppose we have a 64-bit number.
How can we use bit operators, and the constant 1L or -1L to…
• …design a mask that turns on the i-th bit of a number for any i (0, 1, 2, …, 63)?

• …design a mask that zeros out (i.e., turns off) the bottom i bits (and keeps the
rest of the bits the same)?

long x = 0b1010010;

🤔

55

More Exercises
Suppose we have a 64-bit number.
How can we use bit operators, and the constant 1L or -1L to…
• …design a mask that turns on the i-th bit of a number for any i (0, 1, 2, …, 63)?

x | (1L << i)

• …design a mask that zeros out (i.e., turns off) the bottom i bits (and keeps the
rest of the bits the same)?

x & (-1L << i)

long x = 0b1010010;

🤔

56

gdb on a program
• gdb live_session run gdb on executable
• b Set breakpoint on a function (e.g., b main)

or line (b 42)
• r 82 Run with provided args
• n, s, continue control forward execution (next, step into, continue)
• p print variable (p varname) or evaluated expression (p 3L << 10)
• p/t, p/x binary and hex formats.
• p/d, p/u, p/c

• info args, locals

Important: gdb does not run the current line until you hit “next”

57

On your own

• Print a variable
• Print (in binary, then in hex) result of left-shifting 14 and 32 by 4 bits.
• Print (in binary, then in hex) result of subtracting 1 from 128

1 << 32
• Why is this zero? Compare with 1 << 31.
• Print in hex to make it easier to count zeros.

58

gdb: highly recommended
At this point, setting breakpoints/stepping in gdb may seem like overkill for what
could otherwise be achieved by copious printf statements.
However, gdb is incredibly useful for assign1 (and all assignments):
• A fast “C interpreter”: p + <expression>
• Sandbox/try out ideas around bitshift operators, signed/unsigned types, etc.
• Can print values out in binary!
• Once you’re happy, then make changes to your C file

• Tip: Open two terminal windows and SSH into myth in both
• Keep one for emacs, the other for gdb/command-line
• Easily reference C file line numbers and variables while accessing gdb

• Tip: Every time you update your C file, make and then rerun gdb.
Gdb takes practice! But the payoff is tremendous! J

