
1
This document is copyright (C) Stanford Computer Science, Lisa Yan, Nick Troccoli and Katie Creel, licensed under Creative Commons Attribution 2.5 License. All rights reserved.

Based on slides created by Marty Stepp, Cynthia Lee, Chris Gregg, Lisa Yan, Jerry Cain and others.

CS107, Lecture 5
More C Strings

Reading: K&R (1.6, 5.5, Appendix B3) or Essential
C section 3

2

Lecture Plan
• Searching in Strings 6
• Practice: Password Verification 13
• Demo: Buffer Overflow and Valgrind 16
• Pointers 19
• Strings in Memory 50
• Security and Overflows 88
• Live Session 110

cp -r /afs/ir/class/cs107/lecture-code/lect5 .

3

Lecture Plan
• Searching in Strings 6
• Practice: Password Verification 13
• Demo: Buffer Overflow and Valgrind 16
• Pointers 19
• Strings in Memory 50
• Security and Overflows 88
• Live Session 110

cp -r /afs/ir/class/cs107/lecture-code/lect5 .

4

C Strings
C strings are arrays of characters ending with a null-terminating character '\0'.

String operations such as strlen use the null-terminating character to find the
end of the string.

Side note: use strlen to get the length of a string. Don’t use sizeof!

index 0 1 2 3 4 5 6 7 8 9 10 11 12 13

value 'H' 'e' 'l' 'l' 'o' ',' ' ' 'w' 'o' 'r' 'l' 'd' '!' '\0'

5

Common string.h Functions
Function Description

strlen(str) returns the # of chars in a C string (before null-terminating character).

strcmp(str1, str2),
strncmp(str1, str2, n)

compares two strings; returns 0 if identical, <0 if str1 comes before
str2 in alphabet, >0 if str1 comes after str2 in alphabet. strncmp
stops comparing after at most n characters.

strchr(str, ch)
strrchr(str, ch)

character search: returns a pointer to the first occurrence of ch in str,
or NULL if ch was not found in str. strrchr find the last occurrence.

strstr(haystack, needle) string search: returns a pointer to the start of the first occurrence of
needle in haystack, or NULL if needle was not found in haystack.

strcpy(dst, src),
strncpy(dst, src, n)

copies characters in src to dst, including null-terminating character.
Assumes enough space in dst. Strings must not overlap. strncpy
stops after at most n chars, and does not add null-terminating char.

strcat(dst, src),
strncat(dst, src, n)

concatenate src onto the end of dst. strncat stops concatenating
after at most n characters. Always adds a null-terminating character.

strspn(str, accept),
strcspn(str, reject)

strspn returns the length of the initial part of str which contains only
characters in accept. strcspn returns the length of the initial part of
str which does not contain any characters in reject.

6

Searching For Letters
strchr returns a pointer to the first occurrence of a character in a string, or
NULL if the character is not in the string.

char daisy[6];
strcpy(daisy, "Daisy");
char *letterA = strchr(daisy, 'a');
printf("%s\n", daisy); // Daisy
printf("%s\n", letterA); // aisy

If there are multiple occurrences of the letter, strchr returns a pointer to the
first one. Use strrchr to obtain a pointer to the last occurrence.

7

Searching For Strings
strstr returns a pointer to the first occurrence of the second string in the first,
or NULL if it cannot be found.

char daisy[10];
strcpy(daisy, "Daisy Dog");
char *substr = strstr(daisy, "Dog");
printf("%s\n", daisy); // Daisy Dog
printf("%s\n", substr); // Dog

If there are multiple occurrences of the string, strstr returns a pointer to the
first one.

8

String Spans
strspn returns the length of the initial part of the first string which contains
only characters in the second string.

char daisy[10];
strcpy(daisy, "Daisy Dog");
int spanLength = strspn(daisy, "aDeoi"); // 3

“How many places can we go in the first string before I
encounter a character not in the second string?”

9

String Spans
strcspn (c = “complement”) returns the length of the initial part of the first
string which contains only characters not in the second string.

char daisy[10];
strcpy(daisy, "Daisy Dog");
int spanLength = strcspn(daisy, "driso"); // 2

“How many places can we go in the first string before I
encounter a character in the second string?”

10

C Strings As Parameters
When we pass a string as a parameter, it is passed as a char *. We can still
operate on the string the same way as with a char[]. (We’ll see why today!).

int doSomething(char *str) {
char secondChar = str[1];
...

}

// can also write this, but it is really a pointer
int doSomething(char str[]) { ...

11

Arrays of Strings
We can make an array of strings to group multiple strings together:

char *stringArray[5]; // space to store 5 char *s

We can also use the following shorthand to initialize a string array:

char *stringArray[] = {
"Hello",
"Hi",
"Hey there"

};

12

Arrays of Strings
We can access each string using bracket syntax:

printf("%s\n", stringArray[0]); // print out first string

When an array is passed as a parameter in C, C passes a pointer to the first
element of the array. This is what argv is in main! This means we write the
parameter type as:

void myFunction(char **stringArray) {

// equivalent to this, but it is really a double pointer
void myFunction(char *stringArray[]) {

13

Practice: Password Verification
Write a function verifyPassword that accepts a candidate password and
certain password criteria and returns whether the password is valid.

bool verifyPassword(char *password, char *validChars, char
*badSubstrings[], int numBadSubstrings);

password is valid if it contains only letters in validChars, and does not contain
any substrings in badSubstrings.

14

Practice: Password Verification
bool verifyPassword(char *password, char *validChars, char
*badSubstrings[], int numBadSubstrings);

Example:

char *invalidSubstrings[] = { "1234" };

bool valid1 = verifyPassword("1572", "0123456789",
invalidSubstrings, 1); // true

bool valid2 = verifyPassword("141234", "0123456789",
invalidSubstrings, 1); // false

15

Practice: Password
Verification

verify_password.c

16

Lecture Plan
• Searching in Strings 6
• Practice: Password Verification 13
• Demo: Buffer Overflow and Valgrind 16
• Pointers 19
• Strings in Memory 50
• Security and Overflows 88
• Live Session 110

cp -r /afs/ir/class/cs107/lecture-code/lect5 .

17

Buffer Overflows
• We must always ensure that memory operations we perform don’t improperly

read or write memory.
• E.g. don’t copy a string into a space that is too small!
• E.g. don’t ask for the string length of an uninitialized string!

• The Valgrind tool may be able to help track down memory-related issues.
• See cs107.stanford.edu/resources/valgrind
• We’ll talk about Valgrind more when we talk about dynamically-allocated memory.

18

Demo: Memory Errors

memory_errors.c

19

Lecture Plan
• Searching in Strings 6
• Practice: Password Verification 13
• Demo: Buffer Overflow and Valgrind 16
• Pointers 19
• Strings in Memory 50
• Security and Overflows 88
• Live Session 110

cp -r /afs/ir/class/cs107/lecture-code/lect5 .

20

Pointers
• A pointer is a variable that stores a memory address.
• Because there is no pass-by-reference in C like in C++, pointers let us pass

around the address of one instance of memory, instead of making many
copies.
• One (8 byte) pointer can refer to any size memory location!
• Pointers are also essential for allocating memory on the heap, which we will

cover later.
• Pointers also let us refer to memory generically, which we will cover later.

21

Memory
• Memory is a big array of bytes.
• Each byte has a unique numeric index that is

commonly written in hexadecimal.
• A pointer stores one of these memory addresses.

Address Value

…

0x105 '\0'

0x104 'e'

0x103 'l'

0x102 'p'

0x101 'p'

0x100 'a'

…

22

Memory
• Memory is a big array of bytes.
• Each byte has a unique numeric index that is

commonly written in hexadecimal.
• A pointer stores one of these memory addresses.

Address Value

…

261 '\0'

260 'e'

259 'l'

258 'p'

257 'p'

256 'a'

…

23

Looking Back at C++
How would we write a program with a function that takes in an int and
modifies it? We might use pass by reference.

void myFunc(int& num) {
num = 3;

}

int main(int argc, char *argv[]) {
int x = 2;
myFunc(x);
printf("%d", x); // 3!
...

}

24

Looking Ahead to C
• All parameters in C are “pass by value.” For efficiency purposes, arrays (and

strings, by extension) passed in as parameters are converted to pointers.
• This means whenever we pass something as a parameter, we pass a copy.
• If we want to modify a parameter value in the function we call and have the

changes persist afterwards, we can pass the location of the value instead of
the value itself. This way we make a copy of the address instead of a copy of
the value.

25

Pointers
int x = 2;

// Make a pointer that stores the address of x.
// (& means "address of")
int *xPtr = &x;

// Dereference the pointer to go to that address.
// (* means "dereference")
printf("%d", *xPtr); // prints 2

26

Pointers
A pointer is a variable that stores a memory
address.

void myFunc(int *intPtr) {
*intPtr = 3;

}

int main(int argc, char *argv[]) {
int x = 2;
myFunc(&x);
printf("%d", x); // 3!
...

}

27

Pointers
A pointer is a variable that stores a memory
address.

void myFunc(int *intPtr) {
*intPtr = 3;

}

int main(int argc, char *argv[]) {
int x = 2;
myFunc(&x);
printf("%d", x); // 3!
...

}

main
STACK

28

Pointers
A pointer is a variable that stores a memory
address.

void myFunc(int *intPtr) {
*intPtr = 3;

}

int main(int argc, char *argv[]) {
int x = 2;
myFunc(&x);
printf("%d", x); // 3!
...

}

main

x 2

STACK

29

Pointers
A pointer is a variable that stores a memory
address.

void myFunc(int *intPtr) {
*intPtr = 3;

}

int main(int argc, char *argv[]) {
int x = 2;
myFunc(&x);
printf("%d", x); // 3!
...

}

main

x 2

STACK

30

Pointers
A pointer is a variable that stores a memory
address.

void myFunc(int *intPtr) {
*intPtr = 3;

}

int main(int argc, char *argv[]) {
int x = 2;
myFunc(&x);
printf("%d", x); // 3!
...

}

main

x

myFunc

intPtr

2

STACK

31

Pointers
A pointer is a variable that stores a memory
address.

void myFunc(int *intPtr) {
*intPtr = 3;

}

int main(int argc, char *argv[]) {
int x = 2;
myFunc(&x);
printf("%d", x); // 3!
...

}

main

x

myFunc

intPtr

2

STACK

32

Pointers
A pointer is a variable that stores a memory
address.

void myFunc(int *intPtr) {
*intPtr = 3;

}

int main(int argc, char *argv[]) {
int x = 2;
myFunc(&x);
printf("%d", x); // 3!
...

}

main

x

myFunc

intPtr

3

STACK

33

Pointers
A pointer is a variable that stores a memory
address.

void myFunc(int *intPtr) {
*intPtr = 3;

}

int main(int argc, char *argv[]) {
int x = 2;
myFunc(&x);
printf("%d", x); // 3!
...

}

main

x 3

STACK

34

Pointers
A pointer is a variable that stores a memory
address.

void myFunc(int *intPtr) {
*intPtr = 3;

}

int main(int argc, char *argv[]) {
int x = 2;
myFunc(&x);
printf("%d", x); // 3!
...

}

main

x 3

STACK

35

Pointers
A pointer is a variable that stores a memory
address.

void myFunc(int *intPtr) {
*intPtr = 3;

}

int main(int argc, char *argv[]) {
int x = 2;
myFunc(&x);
printf("%d", x); // 3!
...

}

STACK
Address Value

…

0x1f0 2
…

xmain()

36

Pointers
A pointer is a variable that stores a memory
address.

void myFunc(int *intPtr) {
*intPtr = 3;

}

int main(int argc, char *argv[]) {
int x = 2;
myFunc(&x);
printf("%d", x); // 3!
...

}

Address Value
…

0x1f0 2
…

xmain()

STACK

37

Pointers
A pointer is a variable that stores a memory
address.

void myFunc(int *intPtr) {
*intPtr = 3;

}

int main(int argc, char *argv[]) {
int x = 2;
myFunc(&x);
printf("%d", x); // 3!
...

}

Address Value
…

0x1f0 2
…

0x10 0x1f0
…

x

intPtr

main()

myFunc()

STACK

38

Pointers
A pointer is a variable that stores a memory
address.

void myFunc(int *intPtr) {
*intPtr = 3;

}

int main(int argc, char *argv[]) {
int x = 2;
myFunc(&x);
printf("%d", x); // 3!
...

}

Address Value
…

0x1f0 2
…

0x10 0x1f0
…

x

intPtr

main()

myFunc()

STACK

39

Pointers
A pointer is a variable that stores a memory
address.

void myFunc(int *intPtr) {
*intPtr = 3;

}

int main(int argc, char *argv[]) {
int x = 2;
myFunc(&x);
printf("%d", x); // 3!
...

}

Address Value
…

0x1f0 3
…

0x10 0x1f0
…

x

intPtr

main()

myFunc()

STACK

40

Pointers
A pointer is a variable that stores a memory
address.

void myFunc(int *intPtr) {
*intPtr = 3;

}

int main(int argc, char *argv[]) {
int x = 2;
myFunc(&x);
printf("%d", x); // 3!
...

}

Address Value
…

0x1f0 3
…

xmain()

STACK

41

Pointers
A pointer is a variable that stores a memory
address.

void myFunc(int *intPtr) {
*intPtr = 3;

}

int main(int argc, char *argv[]) {
int x = 2;
myFunc(&x);
printf("%d", x); // 3!
...

}

Address Value
…

0x1f0 3
…

xmain()

STACK

42

Pointers Summary
• If you are performing an operation with some input and do not care about any

changes to the input, pass the data type itself. This makes a copy of the data.
• If you are modifying a specific instance of some value, pass the location of

what you would like to modify. This makes a copy of the data’s location.
• If a function takes an address (pointer) as a parameter, it can go to that

address if it needs the actual value.

43

Pointers
Without pointers, we would make copies.

void myFunc(int val) {
val = 3;

}

int main(int argc, char *argv[]) {
int x = 2;
myFunc(x);
printf("%d", x); // 2!
...

}

STACK
Address Value

…

0x1f0 2
…

xmain()

44

Pointers
Without pointers, we would make copies.

void myFunc(int val) {
val = 3;

}

int main(int argc, char *argv[]) {
int x = 2;
myFunc(x);
printf("%d", x); // 2!
...

}

STACK
Address Value

…

0x1f0 2
…

xmain()

45

Pointers
Without pointers, we would make copies.

void myFunc(int val) {
val = 3;

}

int main(int argc, char *argv[]) {
int x = 2;
myFunc(x);
printf("%d", x); // 2!
...

}

STACK
Address Value

…

0x1f0 2
…

0x10 2
…

x

val

main()

myFunc()

46

Pointers
Without pointers, we would make copies.

void myFunc(int val) {
val = 3;

}

int main(int argc, char *argv[]) {
int x = 2;
myFunc(x);
printf("%d", x); // 2!
...

}

STACK
Address Value

…

0x1f0 2
…

0x10 2
…

x

val

main()

myFunc()

47

Pointers
Without pointers, we would make copies.

void myFunc(int val) {
val = 3;

}

int main(int argc, char *argv[]) {
int x = 2;
myFunc(x);
printf("%d", x); // 2!
...

}

STACK
Address Value

…

0x1f0 2
…

0x10 3
…

x

val

main()

myFunc()

48

Pointers
Without pointers, we would make copies.

void myFunc(int val) {
val = 3;

}

int main(int argc, char *argv[]) {
int x = 2;
myFunc(x);
printf("%d", x); // 2!
...

}

STACK
Address Value

…

0x1f0 2
…

xmain()

49

Pointers
Without pointers, we would make copies.

void myFunc(int val) {
val = 3;

}

int main(int argc, char *argv[]) {
int x = 2;
myFunc(x);
printf("%d", x); // 2!
...

}

STACK
Address Value

…

0x1f0 2
…

xmain()

50

Lecture Plan
• Searching in Strings 6
• Practice: Password Verification 13
• Demo: Buffer Overflow and Valgrind 16
• Pointers 19
• Strings in Memory 50
• Security and Overflows 88
• Live Session 110

cp -r /afs/ir/class/cs107/lecture-code/lect5 .

51

Strings In Memory
1. If we create a string as a char[], we can modify its characters because its memory

lives in our stack space.
2. We cannot set a char[] equal to another value, because it is not a pointer; it refers

to the block of memory reserved for the original array.
3. If we pass a char[] as a parameter, set something equal to it, or perform arithmetic

with it, it’s automatically converted to a char *.
4. If we create a new string with new characters as a char *, we cannot modify its

characters because its memory lives in the data segment.
5. We can set a char * equal to another value, because it is a reassign-able pointer.
6. Adding an offset to a C string gives us a substring that many places past the first

character.
7. If we change characters in a string parameter, these changes will persist outside of the

function.

52

String Behavior #1: If we create a string as
a char[], we can modify its characters
because its memory lives in our stack space.

53

Character Arrays
Address Value

…

0x105 '\0'

0x104 'e'

0x103 'l'

0x102 'p'

0x101 'p'

0x100 'a'

…

When we declare an array of characters, contiguous
memory is allocated on the stack to store the contents of
the entire array. We can modify what is on the stack.

char str[6];
strcpy(str, "apple");

str

STACK

54

String Behavior #2: We cannot set a
char[] equal to another value, because it
is not a pointer; it refers to the block of
memory reserved for the original array.

55

Character Arrays
An array variable refers to an entire block of memory. We cannot reassign an
existing array to be equal to a new array.
char str[6];
strcpy(str, "apple");
char str2[8];
strcpy(str2, "apple 2");

str = str2; // not allowed!

An array’s size cannot be changed once we create it; we must create another
new array instead.

56

String Behavior #3: If we pass a char[]
as a parameter, set something equal to it, or
perform arithmetic with it, it’s automatically
converted to a char *.

57

String Parameters
How do you think the parameter str is being represented?

void fun_times(char *str) {
...

}

int main(int argc, char *argv[]) {
char local_str[5];
strcpy(local_str, "rice");
fun_times(local_str);
return 0;

}

🤔

str ?

A. A copy of the array local_str
B. A pointer containing an address to

the first element in local_str

local_str

0xa0 0xa1 0xa2 0xa3 0xa4

'r' 'i' 'c' 'e' '\0'

58

A. A copy of the array local_str
B. A pointer containing an address to

the first element in local_str

String Parameters
How do you think the parameter str is being represented?

void fun_times(char *str) {
...

}

int main(int argc, char *argv[]) {
char local_str[5];
strcpy(local_str, "rice");
fun_times(local_str);
return 0;

}

local_str

0xa0 0xa1 0xa2 0xa3 0xa4

'r' 'i' 'c' 'e' '\0'

str 0xa0

59

char * Variables
How do you think the local variable str is being represented?

int main(int argc, char *argv[]) {
char local_str[5];
strcpy(local_str, "rice");
char *str = local_str;
...
return 0;

}

🤔

str ?

local_str

0xa0 0xa1 0xa2 0xa3 0xa4

'r' 'i' 'c' 'e' '\0'

A. A copy of the array local_str
B. A pointer containing an address to

the first element in local_str

60

char * Variables
How do you think the local variable str is being represented?

int main(int argc, char *argv[]) {
char local_str[5];
strcpy(local_str, "rice");
char *str = local_str;
...
return 0;

}

str

local_str

0xa0 0xa1 0xa2 0xa3 0xa4

'r' 'i' 'c' 'e' '\0'

A. A copy of the array local_str
B. A pointer containing an address to

the first element in local_str

0xa0

61

char * Variables
How do you think the local variable str is being represented?

int main(int argc, char *argv[]) {
char local_str[5];
strcpy(local_str, "rice");
char *str = local_str + 2;
...
return 0;

}

🤔

str ?

local_str

0xa0 0xa1 0xa2 0xa3 0xa4

'r' 'i' 'c' 'e' '\0'

A. A copy of part of the array local_str
B. A pointer containing an address to

the third element in local_str

62

char * Variables
How do you think the local variable str is being represented?

int main(int argc, char *argv[]) {
char local_str[5];
strcpy(local_str, "rice");
char *str = local_str + 2;
...
return 0;

}

str

local_str

0xa0 0xa1 0xa2 0xa3 0xa4

'r' 'i' 'c' 'e' '\0'

A. A copy of part of the array local_str
B. A pointer containing an address to

the third element in local_str

0xa2

63

String Parameters
All string functions take char * parameters – they accept char[], but they are
implicitly converted to char * before being passed.

• strlen(char *str)
• strcmp(char *str1, char *str2)
• …

• char * is still a string in all the core ways a char[] is
• Access/modify characters using bracket notation
• Print it out
• Use string functions
• But under the hood they are represented differently!

• Takeaway: We create strings as char[], pass them around as char *

64

String Behavior #4: If we create a new
string with new characters as a char *, we
cannot modify its characters because its
memory lives in the data segment.

65

char *

There is another convenient way to create a string if we do not need to modify it
later. We can create a char * and set it directly equal to a string literal.

char *myString = "Hello, world!";
char *empty = "";

myString[0] = 'h'; // crashes!
printf("%s", myString); // Hello, world!

66

char *

Address Value
…

0xff0 0x10
…
…

0x12 '\0'
0x11 'i'
0x10 'h'

…

When we declare a char pointer equal to a string
literal, the characters are not stored on the stack.
Instead, they are stored in a special area of
memory called the “data segment”. We cannot
modify memory in this segment.
char *str = "hi";
The pointer variable (e.g. str) refers to the address
of the first character of the string in the data
segment.

strSTACK

DATA SEGMENT

This applies only to creating new
strings with char *. This does not
apply for making a char * that
points to an existing stack string.

67

Memory Locations
For each code snippet below, can we modify the characters in myStr?

char myStr[6];

Key Question: where do its
characters live? Do they live in
memory we own? Or the read-
only data segment?

68

Memory Locations
For each code snippet below, can we modify the characters in myStr?

char *myStr = "Hi";

Key Question: where do its
characters live? Do they live in
memory we own? Or the read-
only data segment?

69

Memory Locations
For each code snippet below, can we modify the characters in myStr?

char buf[6];
strcpy(buf, "Hi");
char *myStr = buf;

Key Question: where do its
characters live? Do they live in
memory we own? Or the read-
only data segment?

70

Memory Locations
For each code snippet below, can we modify the characters in myStr?

char *otherStr = "Hi";
char *myStr = otherStr;

Key Question: where do its
characters live? Do they live in
memory we own? Or the read-
only data segment?

71

Memory Locations
For each code snippet below, can we modify the characters in myStr?

void myFunc(char *myStr) {
...

}

int main(int argc, char *argv[]) {
char buf[6];
strcpy(buf, "Hi");
myFunc(buf);
return 0;

}

Key Question: where do its
characters live? Do they live in
memory we own? Or the read-
only data segment?

72

Memory Locations
Q: Is there a way to check in code whether a string’s characters are modifiable?
A: No. This is something you can only tell by looking at the code itself and how
the string was created.

Q: So then if I am writing a string function that modifies a string, how can I tell if
the string passed in is modifiable?
A: You can’t! This is something you instead state as an assumption in your
function documentation. If someone calls your function with a read-only string,
it will crash, but that’s not your function’s fault :-)

73

String Behavior #5: We can set a char
* equal to another value, because it is a
reassign-able pointer.

74

char *

A char * variable refers to a single character. We can reassign an existing char *
pointer to be equal to another char * pointer.

char *str = "apple"; // e.g. 0xfff0
char *str2 = "apple 2"; // e.g. 0xfe0
str = str2; // ok! Both store address 0xfe0

75

Arrays and Pointers
We can also make a pointer equal to an array;
it will point to the first element in that array.

int main(int argc, char *argv[]) {
char str[6];
strcpy(str, "apple");
char *ptr = str;
...

}

Address Value
…

0x105 '\0'
0x104 'e'
0x103 'l'
0x102 'p'
0x101 'p'
0x100 'a'
0xf8 0x100

…

str
ptr

main()

STACK

76

Arrays and Pointers
We can also make a pointer equal to an array;
it will point to the first element in that array.

int main(int argc, char *argv[]) {
char str[6];
strcpy(str, "apple");
char *ptr = str;

// equivalent
char *ptr = &str[0];

// confusingly equivalent, avoid
char *ptr = &str;
...

}

STACK
Address Value

…

0x105 '\0'
0x104 'e'
0x103 'l'
0x102 'p'
0x101 'p'
0x100 'a'
0xf8 0x100

…

str
ptr

main()

77

String Behavior #6: Adding an offset to a
C string gives us a substring that many
places past the first character.

78

Pointer Arithmetic
When we do pointer arithmetic, we are adjusting
the pointer by a certain number of places (e.g.
characters).

char *str = "apple"; // e.g. 0xff0
char *str2 = str + 1; // e.g. 0xff1
char *str3 = str + 3; // e.g. 0xff3

printf("%s", str); // apple
printf("%s", str2); // pple
printf("%s", str3); // le

Address Value

…

0xff5 '\0'

0xff4 'e'

0xff3 'l'

0xff2 'p'

0xff1 'p'

0xff0 'a'

…

TEXT SEGMENT

79

char *

When we use bracket notation with a pointer, we are
performing pointer arithmetic and dereferencing:

char *str = "apple"; // e.g. 0xff0

// both of these add three places to str,
// and then dereference to get the char there.
// E.g. get memory at 0xff3.
char thirdLetter = str[3]; // 'l'
char thirdLetter = *(str + 3); // 'l'

Address Value

…

0xff5 '\0'

0xff4 'e'

0xff3 'l'

0xff2 'p'

0xff1 'p'

0xff0 'a'

…

TEXT SEGMENT

80

String Behavior #7: If we change
characters in a string parameter, these
changes will persist outside of the function.

81

Strings as Parameters
When we pass a char * string as a parameter,
C makes a copy of the address stored in the
char * and passes it to the function. This
means they both refer to the same memory
location.

void myFunc(char *myStr) {
...

}

int main(int argc, char *argv[]) {
char *str = "apple";
myFunc(str);
...

}

Address Value

…

0xfff0 0x10

…

…

0xff0 0x10

…

str

myStr

main()

myFunc()

STACK

82

Strings as Parameters
When we pass a char array as a parameter, C
makes a copy of the address of the first array
element and passes it (as a char *) to the function.

void myFunc(char *myStr) {
...

}

int main(int argc, char *argv[]) {
char str[6];
strcpy(str, "apple");
myFunc(str);
...

}

Address Value
…

0x105 '\0'
0x104 'e'
0x103 'l'
0x102 'p'
0x101 'p'
0x100 'a'

…
…

0xf 0x100
…

str

myStr

main()

myFunc()

STACK

83

Strings as Parameters
When we pass a char array as a parameter, C
makes a copy of the address of the first array
element and passes it (as a char *) to the function.

void myFunc(char *myStr) {
...

}

int main(int argc, char *argv[]) {
char str[6];
strcpy(str, "apple");
// equivalent
char *strAlt = str;
myFunc(strAlt);
...

Address Value
…

0x105 '\0'
0x104 'e'
0x103 'l'
0x102 'p'
0x101 'p'
0x100 'a'

…
…

0xf 0x100
…

str

myStr

main()

myFunc()

STACK

84

Strings as Parameters
This means if we modify characters in myFunc,
the changes will persist back in main!

void myFunc(char *myStr) {
myStr[4] = 'y';

}

int main(int argc, char *argv[]) {
char str[6];
strcpy(str, "apple");
myFunc(str);
printf("%s", str); // apply
...

}

Address Value
…

0x105 '\0'
0x104 'e'
0x103 'l'
0x102 'p'
0x101 'p'
0x100 'a'

…
…

0xf 0x100
…

str

myStr

main()

myFunc()

STACK

85

Strings as Parameters
This means if we modify characters in myFunc,
the changes will persist back in main!

void myFunc(char *myStr) {
myStr[4] = 'y';

}

int main(int argc, char *argv[]) {
char str[6];
strcpy(str, "apple");
myFunc(str);
printf("%s", str); // apply
...

}

Address Value
…

0x105 '\0'
0x104 'y'
0x103 'l'
0x102 'p'
0x101 'p'
0x100 'a'

…
…

0xf 0x100
…

str

myStr

main()

myFunc()

STACK

86

Strings In Memory
1. If we create a string as a char[], we can modify its characters because its memory

lives in our stack space.
2. We cannot set a char[] equal to another value, because it is not a pointer; it refers

to the block of memory reserved for the original array.
3. If we pass a char[] as a parameter, set something equal to it, or perform arithmetic

with it, it’s automatically converted to a char *.
4. If we create a new string with new characters as a char *, we cannot modify its

characters because its memory lives in the data segment.
5. We can set a char * equal to another value, because it is a reassign-able pointer.
6. Adding an offset to a C string gives us a substring that many places past the first

character.
7. If we change characters in a string parameter, these changes will persist outside of the

function.

87

Lecture Plan
• Searching in Strings 6
• Practice: Password Verification 13
• Demo: Buffer Overflow and Valgrind 16
• Pointers 19
• Strings in Memory 50
• Security and Overflows 88
• Live Session 110

cp -r /afs/ir/class/cs107/lecture-code/lect5 .

88

Recall: Integer Overflow in Practice
• PSY – Gangnam Style
• The End of 32-bit Time aka January 13, 2038
• Gandhi in “Civilization”
• Pacman Level 256
• Make sure to reboot Boeing Dreamliners every 248 days
• Comair/Delta airline had to cancel thousands of flights days before Christmas
• Reported vulnerability CVE-2019-3857 in libssh2 may allow a hacker to

remotely execute code
• Donkey Kong Kill Screen

https://pacman.fandom.com/wiki/Map_256_Glitch
https://www.engadget.com/2015/05/01/boeing-787-dreamliner-software-bug/
https://arstechnica.com/uncategorized/2004/12/4490-2/
https://nvd.nist.gov/vuln/detail/CVE-2019-3857
http://www.donhodges.com/how_high_can_you_get.htm

89

Assignment 1: Ariane-5 Case Study

90

Integer Overflow in the National
Vulnerability Database

91

- other program memory -' ' 'w' 'o' 'r' 'l' 'd' '!' '\0'

Recall: Buffer Overflows
char str1[14];
strcpy(str1, "hello, world!");
char str2[6];
strcpy(str2, str1); // not enough space - overwrites other memory!

str1

0 1 2 3 4 5

'h' 'e' 'l' 'l' 'o' ','str2

0 1 2 3 4 5 6 7 8 9 10 11 12 13

'h' 'e' 'l' 'l' 'o' ',' ' ' 'w' 'o' 'r' 'l' 'd' '!' '\0'

92

Buffer Overflow Vulnerabilities
are Very Common

93

~70% of serious bugs for Chrome and
Microsoft are related to memory safety

Memory safety issues include buffer overflows ...

94

How can we fix buffer overflows?
Idea 1: Constant Vigilance (While Programming)
• Check all buffers and trace their possible modifications

void printCapitalized(char *str1) {
// make a copy first
char buf[BUF_SIZE];
strcpy(buf, str1);
...

}

95

How can we fix buffer overflows?
Idea 1: Constant Vigilance (While Programming)
• Check all buffers and trace their possible modifications
• Scrutinize functions that do not include bounds checking
• common offenders include strcpy, printf, sprintf

int sprintf(char *str, const char *format, ...)

96

How can we fix buffer overflows?
Idea 1: Constant Vigilance (While Programming)
• Check all buffers and trace their possible modifications
• Scrutinize functions that do not include bounds checking
• Some library functions later deprecated for this reason

MAN page for gets():
“Never use gets(). Because it is impossible to tell
without knowing the data in advance how many characters
gets() will read, and because gets() will continue to
store characters past the end of the buffer, it is
extremely dangerous to use. It has been used to break
computer security. Use fgets() instead.”

97

How can we fix buffer overflows?
Idea 1: Constant Vigilance (While Programming)
• Check all buffers and trace their possible modifications
• Scrutinize functions that do not include bounds checking
• Consider use of strn- functions like strncpy
• These functions will not write more than the size you
specify
• However, they do not ensure that strings are null-
terminated
• Use them, but use with care

98

How can we fix buffer overflows?
Idea 1: Constant Vigilance (While Programming)
• Check all buffers and trace their possible modifications
• Scrutinize functions that do not include bounds checking
• Consider use of strn- functions like strncopy

Conclusion: Constant vigilance is
necessary but not sufficient in the
struggle to identify & fix buffer
overflows

99

How Can We Fix Overflows?
Idea 2: Testing
• Valgrind: Your Greatest Ally
• Write your own tests
• Consider writing tests before writing the main program

✨ cs107.stanford.edu/testing.html ✨

100

How Can We Fix Overflows?
Idea 3: Documentation (Written by You)
• Document your assumptions about what will be stored in the
buffer
• This will allow others (including your future self) to
write better tests

101

How Can We Fix Overflows?
Idea 4: Documentation & MAN Pages (Written by Others)

“The strcpy() function copies the string pointed to by src,
including the terminating null byte (‘\0’), to the buffer pointed
to by dest. The strings may not overlap, and the destination
string dest must be large enough to receive the copy. Beware of
buffer overruns! (See BUGS.) …
BUGS
If the destination string of a strcpy() is not large enough, then
anything might happen. Overflowing fixed-length string buffers is
a favorite cracker technique for taking complete control of the
machine. Any time a program reads or copies data into a buffer,
the program first needs to check that there’s enough space. This
may be unnecessary if you can show that overflow is impossible,
but be careful: programs can get changed over time, in ways that
may make the impossible possible.”

102

Memory Safe Systems Programming
Idea 5: Choose your Tools & Languages Carefully

Existing code bases or requirements for a project may dictate what tools you
use. Knowing C is crucial – it is and will remain widely used.
When you you are choosing tools for systems programming, consider languages
that can help guard against programmer error.

• Rust (Mozilla)
• Go (Google)
• Project Verona (Microsoft)

103

Why Should We Fix Overflows?
• Why should I fix overflows?
• So that my program doesn’t crash

104

Why Should We Fix Overflows?
• Why should I fix overflows?
• So that my program doesn’t crash
• So that my program works and accomplishes its goal

105

Why Should We Fix Overflows?
• Why should I fix overflows?
• So that my program doesn’t crash
• So that my program works and accomplishes its goal

• So that I can protect others who use and interact with
my code

• So that I can be a good computer scientist

106

Association for Computing Machinery
(ACM) Code of Ethics

107

ACM Code of Ethics on Security

108

Thanks!
Visit my virtual office:

https://calendly.com/kathleencreel

109

Recap
• Searching in Strings
• Practice: Password Verification
• Demo: Buffer Overflow and Valgrind
• Pointers
• Strings in Memory
• Security and Overflows

Next time: Arrays and Pointers

110

Additional Live Session
Slides

111

Plan For Today
First 5 minutes: post questions or comments on Ed for what we should discuss

Lecture 5 takeaway: C strings are pointers and arrays;
understanding how pointers and arrays work help us
better understand C string behavior. C strings are error-
prone, and issues like buffer overflows can arise!

112

Review
• Parameters in C are passed by value; if we pass something as a parameter, we

pass a copy of it
• Therefore, if a function tries to change the value of a parameter itself, this will

always change its local copy, not the original:
void myFunc(SOME_TYPE param) {

param = ... // changes local copy
...

}

int main(int argc, char *argv[]) {
SOME_TYPE x = ...
myFunc(x);
// x will always be the same here
...

}

113

Review
• If we wish to have another function modify some local variable, we must pass

its location (address). Thus, we pass a copy of its address, not the value.
• The function can then dereference that address and modify what’s there, and

the changes will persist.
void myFunc(SOME_TYPE *param) {

*param = ... // changes original copy
...

}

int main(int argc, char *argv[]) {
SOME_TYPE x = ...
myFunc(&x);
// x will be changed here
...

}

114

Arrays vs. Pointers
• When you create an array, you are making space for each element in the array.
• When you create a pointer, you are making space for an 8 byte address.
• Arrays ”decay to pointers” when you perform arithmetic or pass as

parameters.
• You cannot set an array equal to something after initialization, but you can set

a pointer equal to something at any time.
• &arr does nothing on arrays, but &ptr on pointers gets its address
• sizeof(arr) gets the size of an array in bytes, but sizeof(ptr) is always 8

115

Plan For Today
First 5 minutes: post questions or comments on Ed for what we should discuss

Lecture 5 takeaway: C strings are pointers and arrays;
understanding how pointers and arrays work help us
better understand C string behavior. C strings are error-
prone, and issues like buffer overflows can arise!

116

void func(char *str) {
str[0] = 'S';
str++;
*str = 'u';
str = str + 3;
str[-2] = 'm';

}

int main(int argc, const char *argv[]) {
char buf[] = "Monday";
printf("before func: %s\n", buf);
func(buf);
printf("after func: %s\n", buf);
return 0;

}

1. Pointer arithmetic
1
2
3
4
5
6
7

8
9

10
11
12
13
14

🤔• Draw memory diagrams!
• Pointers store addresses! Make up addresses if it helps your mental model.

• Will there be a compile error/segfault?
• If no errors, what is printed?

117

void func(char *str) {
str[0] = 'S';
str++;
*str = 'u';
str = str + 3;
str[-2] = 'm';

}

int main(int argc, const char *argv[]) {
char buf[] = "Monday";
printf("before func: %s\n", buf);
func(buf);
printf("after func: %s\n", buf);
return 0;

}

1. Pointer arithmetic

• Draw memory diagrams!
• Pointers store addresses! Make up addresses if it helps your mental model.

1
2
3
4
5
6
7

8
9

10
11
12
13
14

buf

func

str

main

0x60 0x61 0x62 0x63 0x64 0x65 0x66

118

2. Code study: strncpy

char *strncpy(char *dest, const char *src, size_t n) {
size_t i;
for (i = 0; i < n && src[i] != '\0'; i++)

dest[i] = src[i];
for (; i < n; i++)

dest[i] = '\0';
return dest;

}

1
2
3
4
5
6
7
8

0x60 0x61 0x62 0x63 0x64 0x65 0x66

'M' 'o' 'n' 'd' 'a' 'y' '\0'

0x58 0x59 0x5a 0x5b

'F' 'r' 'i' '\0'

buf

str

What happens if we call strncpy(buf, str, 5);?
🤔

119

2. Code study: strncpy

char *strncpy(char *dest, const char *src, size_t n) {
size_t i;
for (i = 0; i < n && src[i] != '\0'; i++)

dest[i] = src[i];
for (; i < n; i++)

dest[i] = '\0';
return dest;

}

1
2
3
4
5
6
7
8

dest

0x60 0x61 0x62 0x63 0x64 0x65 0x66

'M' 'o' 'n' 'd' 'a' 'y' '\0'

0x58 0x59 0x5a 0x5b

'F' 'r' 'i' '\0'

src

i

buf

str

What happens if we call strncpy(buf, str, 5);?

5n

120

3. char* vs char[] exercises
Suppose we use a
variable str
as follows:

For each of the following initializations:
• Will there be a compile

error/segfault?
• If no errors, what is printed?

// initialize as below
A str = str + 1;
B str[1] = 'u’;
C printf("%s", str)

🤔

1. char str[7];
strcpy(str, "Hello1");

2. char *str = "Hello2";

3. char arr[7];
strcpy(arr, "Hello3");
char *str = arr;

4. char *ptr = "Hello4";
char *str = ptr;

121

3. char* vs char[] exercises
Suppose we use a
variable str
as follows:

For each of the following initializations:
• Will there be a compile

error/segfault?
• If no errors, what is printed?

// initialize as below
A str = str + 1;
B str[1] = 'u’;
C printf("%s", str)

1. char str[7];
strcpy(str, "Hello1");

2. char *str = "Hello2";

3. char arr[7];
strcpy(arr, "Hello3");
char *str = arr;

4. char *ptr = "Hello4";
char *str = ptr;

Line A: Compile error
(cannot reassign array)

Line B: Segmentation fault
(string literal)

Prints eulo3
Line B: Segmentation fault
(string literal)

122

4. Bonus: Tricky addresses
void tricky_addresses() {
char buf[] = "Local";
char *ptr1 = buf;
char **double_ptr = &ptr1;
printf("ptr1's value: %p\n", ptr1);
printf("ptr1’s deref : %c\n", *ptr1);
printf(" address: %p\n", &ptr1);
printf("double_ptr value: %p\n", double_ptr);
printf("buf's address: %p\n", &buf);

char *ptr2 = &buf;
printf("ptr2's value: %s\n", ptr2);

}

1
2
3
4
5
6
7
8
9

10
11
12

What is stored in each
variable? (We cover double
pointers more in Lecture 6)

🤔

123

4. Bonus: Tricky addresses
void tricky_addresses() {
char buf[] = "Local";
char *ptr1 = buf;
char **double_ptr = &ptr1;
printf("ptr1's value: %p\n", ptr1);
printf("ptr1’s deref : %c\n", *ptr1);
printf(" address: %p\n", &ptr1);
printf("double_ptr value: %p\n", double_ptr);
printf("buf's address: %p\n", &buf);

char *ptr2 = &buf;
printf("ptr2's value: %s\n", ptr2);

}

1
2
3
4
5
6
7
8
9

10
11
12

ptr1

0x10

0x18
double
_ptr

ptr2

0x20

0x28 0x29 0x2a 0x2b 0x2c 0x2d

'L' 'o' 'c' 'a' 'l' '\0'buf

While Line 10 raises a compiler
warning, functionally it will still work—
because pointers are addresses.

