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CS107, Lecture 16
assign6 / Floa,ng Point

Reading: B&O 2.4
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Plan For Today
• assign6
• Representing real numbers and (thought experiment) fixed point
• Floating Point: Normalized values
• Floating Point: Special/denormalized values
• Floating Point Arithmetic

cp -r /afs/ir/class/cs107/samples/lectures/lect16 .
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• Floating Point: Special/denormalized values
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cp -r /afs/ir/class/cs107/samples/lectures/lect16 .
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Assign6: Heap Allocator
• Implement your own implicit and explicit free list allocators
• Many things specified explicitly in the spec, but some design decisions (search 

policy for free blocks, etc.) up to you!
• Bump allocator provided as implementation example
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Assign6: Tips
• Understand heap allocator design before you start coding (e.g. how does it find 

a free block?  What does a header look like? Etc.)
• Start early and develop incrementally – you do not need to implement the 

whole allocator before testing!
• Test thoroughly
• Become familiar with the test harness code
• Watch the getting started videos!
• Take advantage of Ed and helper hours 

What questions do you have about working on assign6?
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Plan For Today
• assign6
• Represen0ng real numbers and (thought experiment) fixed point
• FloaRng Point: Normalized values
• FloaRng Point: Special/denormalized values
• FloaRng Point ArithmeRc

cp -r /afs/ir/class/cs107/samples/lectures/lect16 .
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How can a computer 
represent real numbers in 

addition to integer 
numbers?
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Learning Goals
Understand the design and compromises of the floating point representation, 
including:
• Fixed point vs. floating point
• How a floating point number is represented in binary
• Issues with floating point imprecision
• Other potential pitfalls using floating point numbers in programs
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Real Numbers
• We previously discussed representing integer numbers using two’s 

complement.
• However, this system does not represent real numbers such as 3/5 or 0.25.
• How can we design a representation for real numbers?
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Real Numbers
Problem: There are an infinite number of real number values between two 
numbers!

Integers between 0 and 2: 1
Real Numbers Between 0 and 2: 0.1, 0.01, 0.001, 0.0001, 0.00001,…

We need a fixed-width representation for real numbers.  Therefore, by 
definition, we will not be able to represent all numbers.
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Real Numbers
Problem: every number base has un-representable real numbers.

Base 10: 1/610 = 0.16666666…..10

Base 2: 1/1010 = 0.000110011001100110011…2

Therefore, by representing in base 2, we will not be able to represent all 
numbers, even those we can exactly represent in base 10.
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Thought Experiment: Fixed Point
Idea: Like in base 10, let’s add binary decimal places to our exisRng number 
representaRon.

1 0 1 1 . 0 1 1
23 22 21 20 2-1 2-2 2-3

5 9 3 4 . 2 1 6
103 102 101 100 10-1 10-2 10-3
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Thought Experiment: Fixed Point
Idea: Like in base 10, let’s add binary decimal places to our existing number 
representation.

Pros: arithmetic is easy!  And we know exactly how much precision we have.

1 0 1 1 . 0 1 1
8s 4s 2s 1s 1/2s 1/4s 1/8s
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Thought Experiment: Fixed Point
Problem: we must fix where the decimal point is in our representation.  What 
should we pick?  This also fixes us to 1 place per bit.

. 0 1 1 0 0 1 1
1/2s 1/4s 1/8s …

1 0 1 1 0 . 1 1
16s 8s 4s 2s 1s 1/2s 1/4s
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The Problem with Fixed Point
Problem: We must fix where the decimal point is in our representation.  This 
fixes our precision.

11.....0.0
79 bits

6.022e23 =
(base 10) (base 2)

0.0.....01
111 bits

6.626e-34 =
To store both these numbers in the same fixed-point representation, the bit 
width of the type would need to be at least 190 bits wide!
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Let’s Get Real
What would be nice to have in a real number representation?
• Represent widest range of numbers possible
• Flexible “floating” decimal point
• Represent scientific notation numbers, e.g. 1.2 x 106

• Still be able to compare quickly
• Have more predictable overflow behavior
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Plan For Today
• assign6
• Representing real numbers and (thought experiment) fixed point
• Floating Point: Normalized values
• Floating Point: Special/denormalized values
• Floating Point Arithmetic

cp -r /afs/ir/class/cs107/samples/lectures/lect16 .
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Let’s Get Real
What would be nice to have in a real number representation?
q Represent widest range of numbers possible
q Flexible “floating” decimal point
q Still be able to compare quickly
q Represent scientific notation numbers, e.g. 1.2 x 106

q Have more predictable overflow behavior
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IEEE floating point
IEEE Standard 754 
• Established in 1985 as a uniform standard for

floating point arithmetic 
• Supported by all major systems today

Hardware: specialized co-processor vs. integrated into main chip

Driven by numerical concerns 
• Behavior defined in mathematical terms
• Clear standards for rounding, overflow, underflow
• Support for transcendental functions (roots, trig, exponentials, logs) 
• Hard to make fast in hardware

Numerical analysts predominated over hardware designers in defining standard 
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IEEE Floating Point
Let’s aim to represent numbers of the following scientific-notation-like format:

𝑉 = −1 ! ×𝑀 × 2"
Sign bit, 𝑠:
negative (s == 1)
positive (s == 0)

Mantissa, 𝑀 :
Significant digits, 
also called 
significand

Exponent, 𝐸:
Scales value by 
(possibly negative) 
power of 2
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IEEE Floating Point
Let’s aim to represent numbers of the following scientific-notation-like format:

𝑉 = −1 ! ×𝑀 × 2"

s exponent (8 bits) fraction (23 bits)

31 30 23 22 0

⚠Quirky! Exponent and fracRon are not 
encoded as 𝑀 and 𝐸 in 2’s complement!
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Exponent

exponent (Binary)
11111111
11111110
11111101
11111100

…
00000011
00000010
00000001
00000000

s exponent (8 bits) fraction (23 bits)

normalized

special

denormalized

exponent (Binary) 𝐸 (Base 10)
11111111 RESERVED
11111110 127
11111101 126
11111100 125

… …
00000011 -124
00000010 -125
00000001 -126
00000000 RESERVED
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Exponent: Normalized values

exponent (Binary) 𝐸 (Base 10)
11111111 RESERVED
11111110 127
11111101 126
11111100 125

… …
00000011 -124
00000010 -125
00000001 -126
00000000 RESERVED

s exponent (8 bits) fraction (23 bits)

🤔

• Based on this table, how do we 
compute an exponent from a 
binary value?
• Why would this be a good idea? 

(hint: what if we wanted to 
compare two floats with >, <, =?)
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Exponent: Normalized values

• Not 2’s complement
• 𝐸 = exponent – bias,

where float bias = 28-1 – 1 = 127
• Exponents are sequentially 

represented starting from 
000…1 (most negative) to 
111…10 (most positive).
• Bit-level comparison is fast!

exponent (Binary) 𝐸 (Base 10)
11111111 RESERVED
11111110 127
11111101 126
11111100 125

… …
00000011 -124
00000010 -125
00000001 -126
00000000 RESERVED

s exponent (8 bits) fraction (23 bits)
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Fraction

𝑥 ∗ 2!
• We could just encode whatever x is in the fraction field.  But there’s a trick we 

can use to make the most out of the bits we have.

s exponent (8 bits) fraction (23 bits)
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An Interesting Observation
In Base 10:
42.4 x 105 = 4.24 x 106

324.5 x 105 = 3.245 x 107

0.624 x 105 = 6.24 x 104

In Base 2:
10.1 x 25 = 1.01 x 26

1011.1 x 25 = 1.0111 x 28

0.110 x 25 = 1.10 x 24

We tend to adjust the exponent 
unRl we get down to one place 
to the lek of the decimal point.

Observation: in base 2, this 
means there is always a 1 to the 
left of the decimal point!
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Fraction

𝑥 ∗ 2!
• We can adjust this value to fit the format described previously.  Then, x will 

always be in the format 1.XXXXXXXXX…
• Therefore, in the fraction portion, we can encode just what is to the right of 

the decimal point!  This means we get one more digit for precision.

Value encoded = 1._[FRACTION BINARY DIGITS]_

s exponent (8 bits) fraction (23 bits)
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Practice #1

1. Is this number:

2. Is this number:

3. Bonus: What is the number?

s exponent (8 bits) fraction (23 bits)

0 0111 1110 0000 0000 0000 0000 0000 000

A. Greater than 0?
B. Less than 0?

A. Less than -1?
B. Between -1 and 1?
C. Greater than 1?

🤔

𝑉 = −1 ! ×𝑀 × 2"
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Practice #1

1. Is this number:

2. Is this number:

3. Bonus: What is the number?

s exponent (8 bits) fraction (23 bits)

0 0111 1110 0000 0000 0000 0000 0000 000

A. Greater than 0?
B. Less than 0?

A. Less than -1?
B. Between -1 and 1?
C. Greater than 1?

−1 !×1.0 × 2"# = 0.5

𝑉 = −1 ! ×𝑀 × 2"
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Let’s Get Real
What would be nice to have in a real number representation?
ü Represent widest range of numbers possible
ü Flexible “floating” decimal point
ü Still be able to compare quickly
q Represent scientific notation numbers, e.g. 1.2 x 106

q Have more predictable overflow behavior
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Plan For Today
• assign6
• Representing real numbers and (thought experiment) fixed point
• Floating Point: Normalized values
• Floating Point: Special/denormalized values
• Floating Point Arithmetic

cp -r /afs/ir/class/cs107/samples/lectures/lect16 .
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All zeros: Zero + denormalized floats
Zero (+0, -0)

Denormalized floats:

• Smallest normalized exponent: 𝐸 = 1 − bias = −126
• Mantissa has no leading zero: 𝑀 = 0. [fracRon bits]

🤔

s exponent (8 bits) fraction (23 bits)
any 0000 0000 all zeros

Why would we want so much 
precision for tiny numbers?

s exponent (8 bits) fraction (23 bits)
any 0000 0000 any nonzero

𝑉 = −1 ! ×𝑀 × 2"
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All zeros: Zero + denormalized floats
Zero (+0, -0)

Denormalized floats:

• Smallest normalized exponent: 𝐸 = 1 − bias = −126
• Mantissa has no leading zero: 𝑀 = 0. [fracRon bits]

s exponent (8 bits) fraction (23 bits)
any 0000 0000 all zeros

s exponent (8 bits) fraction (23 bits)
any 0000 0000 any nonzero

𝑉 = −1 ! ×𝑀 × 2"

Denormalized values enable gradual 
underflow (too-small-to-represent floats).
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All ones: Infinity and NaN
Infinity (+inf, -inf)

Not a number (NaN):

Computation result that is an
invalid mathematical real number.

🤔

s exponent (8 bits) fraction (23 bits)
any 1111 1111 all zeros

What kind of mathematical 
computation would result in a non-
real number? (hint: square root)

s exponent (8 bits) fraction (23 bits)
any 1111 1111 any nonzero

Why would we want to represent infinity?
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What kind of mathematical 
computation would result in a non-
real number? (hint: square root)

All ones: Infinity and NaN
Infinity (+inf, -inf)

Not a number (NaN):

Computation result that is an
invalid mathematical real number.

s exponent (8 bits) fraction (23 bits)
any 1111 1111 all zeros

s exponent (8 bits) fraction (23 bits)
any 1111 1111 any nonzero

Examples: sqrt(x) (i.e., ! 𝑥), where x
is negative, #

#
, ∞ + −∞ , etc.

Floats have built-in handling of overflow: 
infinity + anything = infinity.
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Let’s Get Real
What would be nice to have in a real number representation?
ü Represent widest range of numbers possible
ü Flexible “floating” decimal point
ü Still be able to compare quickly
ü Represent scientific notation numbers, e.g. 1.2 x 106

ü Have more predictable overflow behavior
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Number Ranges
• 32-bit integer (type int):

› -2,147,483,648 to 2147483647
• 64-bit integer (type long):

› −9,223,372,036,854,775,808 to 9,223,372,036,854,775,807 
• 32-bit floating point (type float):
• ~1.2 x10-38 to ~3.4 x1038

• Not all numbers in the range can be represented (not even all integers in the range can 
be represented!)
• Gaps can get quite large! (larger the exponent, larger the gap between successive 

fraction values)

• 64-bit floating point (type double): 
• ~2.2 x10-308 to ~1.8 x10308 
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Skipping Numbers
• We said that it’s not possible to represent all real numbers using a fixed-width 

representation.  What does this look like?

Float Converter
• https://www.h-schmidt.net/FloatConverter/IEEE754.html

Floats and Graphics
• https://www.shadertoy.com/view/4tVyDK

https://www.h-schmidt.net/FloatConverter/IEEE754.html
https://www.shadertoy.com/view/4tVyDK
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Plan For Today
• assign6
• Representing real numbers and (thought experiment) fixed point
• Floating Point: Normalized values
• Floating Point: Special/denormalized values
• Floating Point Arithmetic

cp -r /afs/ir/class/cs107/samples/lectures/lect16 .
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Key (floating) points

Single operations are commutative, 
but sequence is not associative.

(a + b) equals (b + a)
But (a + b) + c may not equal a + (b + c)

Equality comparison operations are 
often unwise.

Approximation and rounding is 
inevitable.
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Key (floating) points

Single operations are commutative, 
but sequence is not associative.

(a + b) equals (b + a)
But (a + b) + c may not equal a + (b + c)

Equality comparison operations are 
often unwise.

Approximation and rounding is 
inevitable.
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FAST!

Nick’s Official 
Guide To Making 
Money

It’s easy!
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Demo: Float Arithmetic

bank.c

Try it yourself:
./bank 100 1        # deposit
./bank 100 -1       # withdraw
./bank 100000000 -1 # make bank
./bank 16777216 1   # lose bank
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Introducing “Minifloat”
For a more compact example representation, we will use an 8 bit “minifloat” 
with a 4 bit exponent, 3 bit fraction and bias of 7 (note: minifloat is just for 
example purposes, and is not a real datatype).

7 6 3 2 0

s exponent (4 bits) fraction (3 bits)
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Floating Point Arithmetic
In minifloat, with a balance of $128, a deposit of $4 would not be recorded at 
Nick’s Bank.  Why not?

Let’s step through the calculations to add these two numbers (note: this is just 
for understanding; real float calculations are more efficient).

128:

4:

0 1110 000

0 1001 000
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Floating Point Arithmetic

To add real numbers, we must align their binary points:

128.00
+    4.00

132.00

What does 132.00 look like as a minifloat?

128:

4:

0 1110 000

0 1001 000
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Floating Point Arithmetic

Step 1: convert from base 10 to binary

What is 132 in binary?   1 0 0 0 0 1 0 0 

132: ? ???? ???
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Floating Point Arithmetic

Step 2: find how many places we need to shift left
to put the number in 1.xxx format.  This fills in the 
exponent component.

0b10000100 = 0b1.0000100 x 27

7 + bias of 7 = 14 for minifloat exponent

132: ? 1110 ???
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Floating Point Arithmetic

Step 3: take as many digits to the right of the 
binary decimal point as we can for the fractional 
component, rounding if needed.

0b10000100 = 0b1.0000100 x 27

132: ? 1110 000
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Floating Point Arithmetic

Step 4: if the sign is positive, the sign bit is 0.  
Otherwise, it’s 1.

+132

Sign bit is 0.
132: 0 1110 000
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Floating Point Arithmetic
The binary minifloat representation for 132 thus equals the following:

This is the same as the binary representation for 128 that we had before!

We didn’t have enough bits to differentiate 
between 128 and 132.

0 1110 000
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Floating Point Arithmetic
Another way to corroborate this: the next-largest minifloat that can be 
represented after 128 is 144.  132 isn’t representable!

= 1.125 x 27

Key Idea: the smallest float hop 
increase we can take is incrementing 
the fractional component by 1.

0 1110 001144:
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Floating Point Arithmetic
Is this just overflowing?  It turns out it’s more subtle.

float a = 3.14;
float b = 1e20;
printf("(3.14 + 1e20) - 1e20 = %g\n", (a + b) - b); // prints 0
printf("3.14 + (1e20 - 1e20) = %g\n", a + (b - b)); // prints 3.14

Floating point arithmetic is not associative.  The order of operations matters!
• The first line loses precision when first adding 3.14 and 1e20, as we have seen.
• The second line first evaluates 1e20 – 1e20 = 0, and then adds 3.14
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Demo: Float Equality

float_equality.c



55

Floating Point Arithmetic
Float arithmetic is an issue with most languages, not just C!
• http://geocar.sdf1.org/numbers.html

http://geocar.sdf1.org/numbers.html
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Let’s Get Real
What would be nice to have in a real number representation?
ü Represent widest range of numbers possible
ü Flexible “floating” decimal point
ü Still be able to compare quickly
ü Represent scientific notation numbers, e.g. 1.2 x 106

ü Have more predictable overflow behavior
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Floats Summary
• IEEE Floating Point is a carefully-thought-out standard.  It’s complicated but 

engineered for their goals.
• Floats have an extremely wide range but cannot represent every number in 

that range.
• Some approximation and rounding may occur!  This means you don’t want to 

use floats e.g. for currency.
• Associativity does not hold for numbers far apart in the range
• Equality comparison operations are often unwise.
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Recap
• Recap: Generics with Function Pointers
• Representing real numbers
• Fixed Point
• Break: Announcements
• Floating Point
• Floating Point Arithmetic

Next time: assembly language


