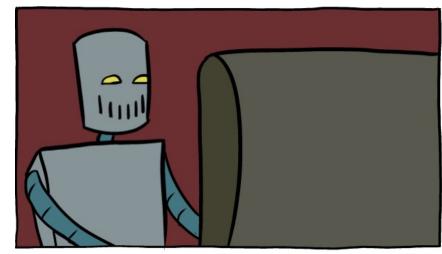
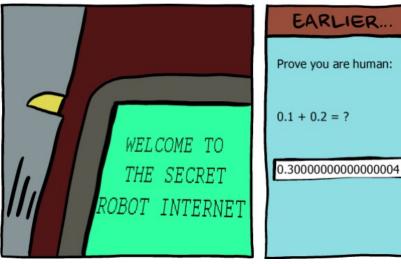
CS107, Lecture 16 assign6 / Floating Point

Reading: B&O 2.4





Plan For Today

- assign6
- Representing real numbers and (thought experiment) fixed point
- Floating Point: Normalized values
- Floating Point: Special/denormalized values
- Floating Point Arithmetic

Plan For Today

- assign6
- Representing real numbers and (thought experiment) fixed point
- Floating Point: Normalized values
- Floating Point: Special/denormalized values
- Floating Point Arithmetic

Assign6: Heap Allocator

- Implement your own implicit and explicit free list allocators
- Many things specified explicitly in the spec, but some design decisions (search policy for free blocks, etc.) up to you!
- Bump allocator provided as implementation example

Assign6: Tips

- Understand heap allocator design *before* you start coding (e.g. how does it find a free block? What does a header look like? Etc.)
- Start early and develop incrementally you do not need to implement the whole allocator before testing!
- Test thoroughly
- Become familiar with the test harness code
- Watch the getting started videos!
- Take advantage of Ed and helper hours

What questions do you have about working on assign6?

Plan For Today

- assign6
- Representing real numbers and (thought experiment) fixed point
- Floating Point: Normalized values
- Floating Point: Special/denormalized values
- Floating Point Arithmetic

How can a computer represent real numbers in addition to integer numbers?

Learning Goals

Understand the design and compromises of the floating point representation, including:

- Fixed point vs. floating point
- How a floating point number is represented in binary
- Issues with floating point imprecision
- Other potential pitfalls using floating point numbers in programs

Real Numbers

- We previously discussed representing integer numbers using two's complement.
- However, this system does not represent real numbers such as 3/5 or 0.25.
- How can we design a representation for real numbers?

Real Numbers

Problem: There are an *infinite* number of real number values between two numbers!

Integers between 0 and 2: 1

Real Numbers Between 0 and 2: 0.1, 0.01, 0.001, 0.0001, 0.00001,...

We need a fixed-width representation for real numbers. Therefore, by definition, we will not be able to represent all numbers.

Real Numbers

Problem: every number base has un-representable real numbers.

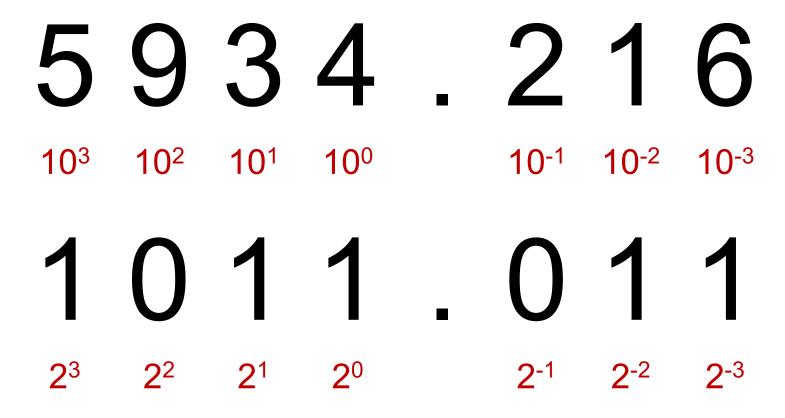
Base 10: $1/6_{10} = 0.16666666...._{10}$

Base 2: $1/10_{10} = 0.00011001100110011..._2$

Therefore, by representing in base 2, we will not be able to represent all numbers, even those we can exactly represent in base 10.

Thought Experiment: Fixed Point

Idea: Like in base 10, let's add binary decimal places to our existing number representation.



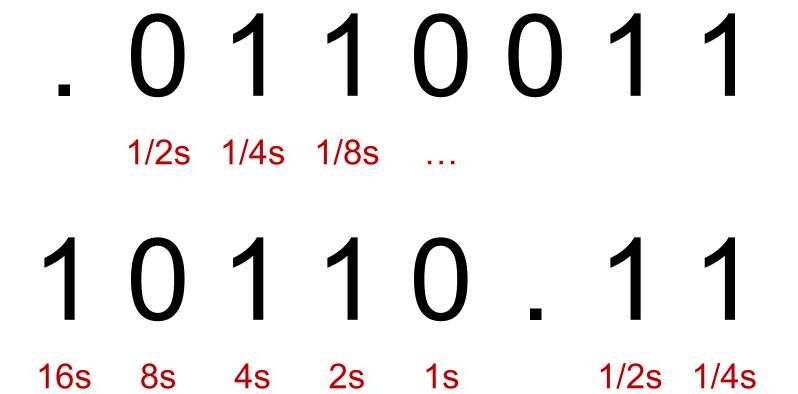
Thought Experiment: Fixed Point

Idea: Like in base 10, let's add binary decimal places to our existing number representation.

Pros: arithmetic is easy! And we know exactly how much precision we have.

Thought Experiment: Fixed Point

Problem: we must fix where the decimal point is in our representation. What should we pick? This also fixes us to 1 place per bit.



The Problem with Fixed Point

Problem: We must fix where the decimal point is in our representation. This fixes our **precision**.

$$6.022e23 = 11...0.0$$
(base 10)
 $6.626e-34 = 0.0..01$

111 bits

To store both these numbers in the same fixed-point representation, the bit width of the type would need to be at least 190 bits wide!

Let's Get Real

What would be nice to have in a real number representation?

- Represent widest range of numbers possible
- Flexible "floating" decimal point
- Represent scientific notation numbers, e.g. 1.2 x 10⁶
- Still be able to compare quickly
- Have more predictable overflow behavior

Plan For Today

- assign6
- Representing real numbers and (thought experiment) fixed point
- Floating Point: Normalized values
- Floating Point: Special/denormalized values
- Floating Point Arithmetic

Let's Get Real

- What would be nice to have in a real number representation?
- ☐ Represent widest range of numbers possible
- ☐ Flexible "floating" decimal point
- ☐ Still be able to compare quickly
- \square Represent scientific notation numbers, e.g. 1.2 x 10⁶
- ☐ Have more predictable overflow behavior

IEEE floating point

IEEE Standard 754

- Established in 1985 as a uniform standard for floating point arithmetic
- Supported by all major systems today
 Hardware: specialized co-processor vs. integrated into main chip

Driven by numerical concerns

- Behavior defined in mathematical terms
- Clear standards for rounding, overflow, underflow
- Support for transcendental functions (roots, trig, exponentials, logs)
- Hard to make fast in hardware
 Numerical analysts predominated over hardware designers in defining standard

Will Kahan
 (chief architect of standard)

IEEE Floating Point

Let's aim to represent numbers of the following scientific-notation-like format:

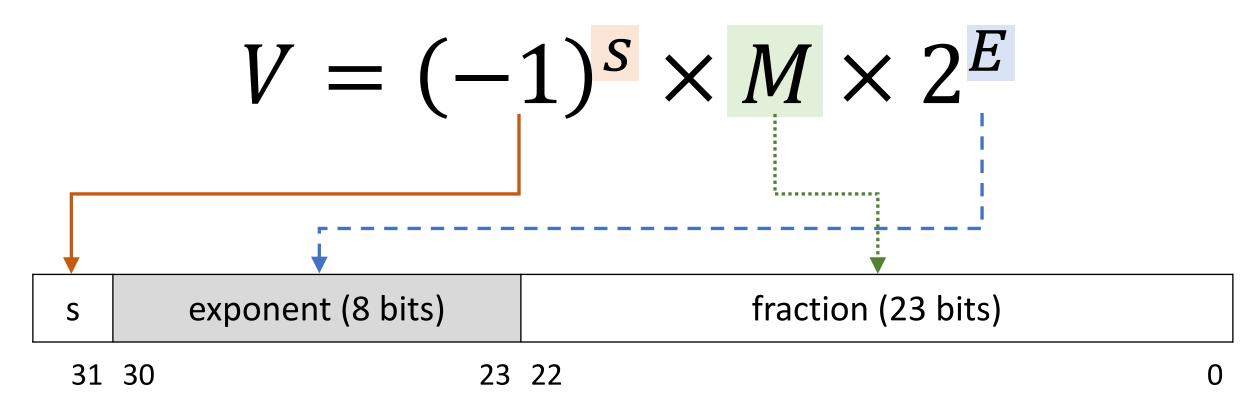
$$V = (-1)^{s} \times M \times 2^{E}$$

Sign bit, s: negative (s == 1) positive (s == 0) Mantissa, *M*:
Significant digits, also called significand

Exponent, *E*:
Scales value by
(possibly negative)
power of 2

IEEE Floating Point

Let's aim to represent numbers of the following scientific-notation-like format:



• Quirky! Exponent and fraction are not encoded as M and E in 2's complement!

Exponent

s exponent (8 bits)

fraction (23 bits)

exponent (Binary)	E (Base 10)
1111111	RESERVED
11111110	127
11111101	126
11111100	125
•••	•••
0000011	-124
0000010	-125
0000001	-126
0000000	RESERVED

special

normalized

denormalized

Exponent: Normalized values

s exponent (8 bits)

fraction (23 bits)

exponent (Binary)	E (Base 10)
11111111	RESERVED
11111110	127
11111101	126
11111100	125
•••	•••
0000011	-124
0000010	-125
0000001	-126
00000000	RESERVED

- Based on this table, how do we compute an exponent from a binary value?
- Why would this be a good idea? (hint: what if we wanted to compare two floats with >, <, =?)

Exponent: Normalized values

s exponent (8 bits)

fraction (23 bits)

exponent (Binary)	E (Base 10)
11111111	RESERVED
11111110	127
11111101	126
11111100	125
•••	•••
0000011	-124
0000010	-125
0000001	-126
00000000	RESERVED

- Not 2's complement
- E = exponent bias, where float bias = $2^{8-1} - 1 = 127$
- Exponents are sequentially represented starting from 000...1 (most negative) to 111...10 (most positive).
- Bit-level comparison is fast!

Fraction

s exponent (8 bits) fraction (23 bits)

 $\chi * 2^{y}$

• We could just encode whatever x is in the fraction field. But there's a trick we can use to make the most out of the bits we have.

An Interesting Observation

In Base 10:

$$42.4 \times 10^5 = 4.24 \times 10^6$$

$$324.5 \times 10^5 = 3.245 \times 10^7$$

$$0.624 \times 10^5 = 6.24 \times 10^4$$

We tend to adjust the exponent until we get down to one place to the left of the decimal point.

In Base 2:

$$10.1 \times 2^5 = 1.01 \times 2^6$$

$$1011.1 \times 2^5 = 1.0111 \times 2^8$$

$$0.110 \times 2^5 = 1.10 \times 2^4$$

Observation: in base 2, this means there is *always* a 1 to the left of the decimal point!

Fraction

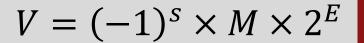
s exponent (8 bits) fraction (23 bits)

 $\chi * 2^y$

- We can adjust this value to fit the format described previously. Then, x will always be in the format 1.XXXXXXXXXX...
- Therefore, in the fraction portion, we can encode just what is to the right of the decimal point! This means we get one more digit for precision.

Value encoded = 1._[FRACTION BINARY DIGITS]_

Practice #1



S	exponent (8 bits)	fraction (23 bits)
0	0111 1110	0000 0000 0000 0000 0000

1. Is this number:

- A. Greater than 0?
- B. Less than 0?

2. Is this number:

- A. Less than -1?
- B. Between -1 and 1?
- C. Greater than 1?
- 3. Bonus: What is the number?

Practice #1

S	exponent (8 bits)	fraction (23 bits)
0	0111 1110	0000 0000 0000 0000 0000

1. Is this number:

- A. Greater than 0?
- B. Less than 0?

2. Is this number:

- A. Less than -1?
- B. Between -1 and 1?
- C. Greater than 1?
- 3. Bonus: What is the number?

$$(-1)^0 \times 1.0 \times 2^{-1} = 0.5$$

Let's Get Real

What would be nice to have in a real number representation?

- ✓ Represent widest range of numbers possible
- ✓ Flexible "floating" decimal point
- ✓ Still be able to compare quickly
- \square Represent scientific notation numbers, e.g. 1.2 x 10⁶
- ☐ Have more predictable overflow behavior

Plan For Today

- assign6
- Representing real numbers and (thought experiment) fixed point
- Floating Point: Normalized values
- Floating Point: Special/denormalized values
- Floating Point Arithmetic

All zeros: Zero + denormalized floats

Zero (+0, -0)

S	exponent (8 bits)	fraction (23 bits)
any	0000 0000	all zeros

Denormalized floats:

S	exponent (8 bits)	fraction (23 bits)
any	0000 0000	any nonzero

- Smallest normalized exponent: E = 1 bias = -126
- Mantissa has **no leading zero**: M = 0. [fraction bits]

$$V = (-1)^s \times M \times 2^E$$

Why would we want so much precision for tiny numbers?

All zeros: Zero + denormalized floats

Zero (+0, -0)

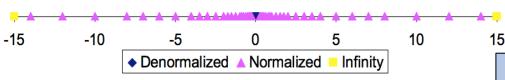
S	exponent (8 bits)	fraction (23 bits)
any	0000 0000	all zeros

Denormalized floats:

S	exponent (8 bits)	fraction (23 bits)
any	0000 0000	any nonzero

- Smallest normalized exponent: E = 1 bias = -126
- Mantissa has **no leading zero**: M = 0. [fraction bits]

$$V = (-1)^s \times M \times 2^E$$



Denormalized values enable gradual underflow (too-small-to-represent floats).

All ones: Infinity and NaN

Infinity (+inf, -inf)

S	exponent (8 bits)	fraction (23 bits)
any	1111 1111	all zeros

Why would we want to represent infinity?

Not a number (NaN):

s exponent (8 bits) fraction (23 bits)
any 1111 1111 any nonzero

Computation result that is an invalid mathematical real number.

What kind of mathematical computation would result in a **non-real** number? (hint: square root)

All ones: Infinity and NaN

Infinity (+inf, -inf)

S	exponent (8 bits)	fraction (23 bits)
any	1111 1111	all zeros

Floats have built-in handling of overflow: infinity + anything = infinity.

Not a number (NaN):

S	exponent (8 bits)	fraction (23 bits)
any	1111 1111	any nonzero

Computation result that is an invalid mathematical real number.

Examples: sqrt(x) (i.e., $\sqrt[2]{x}$), where x is negative, $\frac{\infty}{\infty}$, ∞ + ($-\infty$), etc.

Let's Get Real

What would be nice to have in a real number representation?

- ✓ Represent widest range of numbers possible
- ✓ Flexible "floating" decimal point
- ✓ Still be able to compare quickly
- ✓ Represent scientific notation numbers, e.g. 1.2×10^6
- ✓ Have more predictable overflow behavior

Number Ranges

- 32-bit integer (type int):
 -2,147,483,648 to 2147483647
- 64-bit integer (type long):
 -9,223,372,036,854,775,808 to 9,223,372,036,854,775,807
- 32-bit floating point (type **float**):
 - $^{\sim}1.2 \times 10^{-38}$ to $^{\sim}3.4 \times 10^{38}$
 - Not all numbers in the range can be represented (not even all integers in the range can be represented!)
 - Gaps can get quite large! (larger the exponent, larger the gap between successive fraction values)
- 64-bit floating point (type **double**):
 - ~2.2 x10⁻³⁰⁸ to ~1.8 x10³⁰⁸

Skipping Numbers

• We said that it's not possible to represent *all* real numbers using a fixed-width representation. What does this look like?

Float Converter

https://www.h-schmidt.net/FloatConverter/IEEE754.html

Floats and Graphics

https://www.shadertoy.com/view/4tVyDK

Plan For Today

- assign6
- Representing real numbers and (thought experiment) fixed point
- Floating Point: Normalized values
- Floating Point: Special/denormalized values
- Floating Point Arithmetic

Key (floating) points

Approximation and rounding is inevitable.

Single operations are commutative, but sequence is not associative.

(a + b) equals (b + a)

But (a + b) + c may not equal a + (b + c)

Equality comparison operations are often unwise.

Key (floating) points

Approximation and rounding is inevitable.

Single operations are commutative, but sequence is not associative. (a + b) equals (b + a) But (a + b) + c may not equal a + (b + c)

Equality comparison operations are often unwise.

Nick's Officials Guide To Making Money

Demo: Float Arithmetic


```
Try it yourself:
./bank 100 1  # deposit
./bank 100 -1  # withdraw
./bank 100000000 -1 # make bank
./bank 16777216 1 # lose bank
```

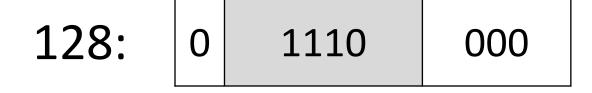
bank.c

Introducing "Minifloat"

For a more compact example representation, we will use an 8 bit "minifloat" with a 4 bit exponent, 3 bit fraction and bias of 7 (note: minifloat is just for example purposes, and is not a real datatype).

7	6		3	2	0
S		exponent (4 bits)		fraction (3 bits))

In minifloat, with a balance of \$128, a deposit of \$4 would not be recorded at Nick's Bank. Why not?



4: 0 1001 000

Let's step through the calculations to add these two numbers (note: this is just for understanding; real float calculations are more efficient).

128: 0 1110 000

4: 0 1001 000

To add real numbers, we must align their binary points:

128.00

+ 4.00

132.00

What does 132.00 look like as a minifloat?

Step 1: convert from base 10 to binary

What is 132 in binary? 1000100

132:

3	????	???
---	------	-----

Step 2: find how many places we need to shift **left** to put the number in 1.xxx format. This fills in the exponent component.

 $0b10000100 = 0b1.0000100 \times 2^{7}$

7 + bias of 7 = 14 for minifloat exponent

132:

? 1110	555
--------	-----

Step 3: take as many digits to the right of the binary decimal point as we can for the fractional component, rounding if needed.

 $0b10000100 = 0b1.0000100 \times 2^{7}$

132: | ?

Step 4: if the sign is positive, the sign bit is 0. Otherwise, it's 1.

+132

Sign bit is 0.

132: 0 1110 000

The binary minifloat representation for 132 thus equals the following:

0 1110 000

This is the **same** as the binary representation for 128 that we had before!

We didn't have enough bits to differentiate between 128 and 132.

Another way to corroborate this: the *next-largest minifloat* that can be represented after 128 is **144**. 132 isn't representable!

144:

0 1110

001

 $= 1.125 \times 2^7$

Key Idea: the smallest float hop increase we can take is incrementing the fractional component by 1.

Is this just overflowing? It turns out it's more subtle.

```
float a = 3.14;
float b = 1e20;
printf("(3.14 + 1e20) - 1e20 = %g\n", (a + b) - b); // prints 0
printf("3.14 + (1e20 - 1e20) = %g\n", a + (b - b)); // prints 3.14
```

Floating point arithmetic is not associative. The order of operations matters!

- The first line loses precision when first adding 3.14 and 1e20, as we have seen.
- The second line first evaluates 1e20 1e20 = 0, and then adds 3.14

Demo: Float Equality

float_equality.c

Float arithmetic is an issue with most languages, not just C!

http://geocar.sdf1.org/numbers.html

Let's Get Real

What would be nice to have in a real number representation?

- ✓ Represent widest range of numbers possible
- ✓ Flexible "floating" decimal point
- ✓ Still be able to compare quickly
- ✓ Represent scientific notation numbers, e.g. 1.2×10^6
- ✓ Have more predictable overflow behavior

Floats Summary

- IEEE Floating Point is a carefully-thought-out standard. It's complicated but engineered for their goals.
- Floats have an extremely wide range but cannot represent every number in that range.
- Some approximation and rounding may occur! This means you don't want to use floats e.g. for currency.
- Associativity does not hold for numbers far apart in the range
- Equality comparison operations are often unwise.

Recap

- Recap: Generics with Function Pointers
- Representing real numbers
- Fixed Point
- Break: Announcements
- Floating Point
- Floating Point Arithmetic

Next time: assembly language