
1
This document is copyright (C) Stanford Computer Science and Nick Troccoli, licensed under Creative Commons Attribution 2.5 License. All rights reserved.

Based on slides created by Marty Stepp, Cynthia Lee, Chris Gregg, and others.

CS107, Lecture 16
assign6 / Floa,ng Point

Reading: B&O 2.4

2

Plan For Today
• assign6
• Representing real numbers and (thought experiment) fixed point
• Floating Point: Normalized values
• Floating Point: Special/denormalized values
• Floating Point Arithmetic

cp -r /afs/ir/class/cs107/samples/lectures/lect16 .

3

Plan For Today
• assign6
• Representing real numbers and (thought experiment) fixed point
• Floating Point: Normalized values
• Floating Point: Special/denormalized values
• Floating Point Arithmetic

cp -r /afs/ir/class/cs107/samples/lectures/lect16 .

4

Assign6: Heap Allocator
• Implement your own implicit and explicit free list allocators
• Many things specified explicitly in the spec, but some design decisions (search

policy for free blocks, etc.) up to you!
• Bump allocator provided as implementation example

5

Assign6: Tips
• Understand heap allocator design before you start coding (e.g. how does it find

a free block? What does a header look like? Etc.)
• Start early and develop incrementally – you do not need to implement the

whole allocator before testing!
• Test thoroughly
• Become familiar with the test harness code
• Watch the getting started videos!
• Take advantage of Ed and helper hours

What questions do you have about working on assign6?

6

Plan For Today
• assign6
• Represen0ng real numbers and (thought experiment) fixed point
• FloaRng Point: Normalized values
• FloaRng Point: Special/denormalized values
• FloaRng Point ArithmeRc

cp -r /afs/ir/class/cs107/samples/lectures/lect16 .

7

How can a computer
represent real numbers in

addition to integer
numbers?

8

Learning Goals
Understand the design and compromises of the floating point representation,
including:
• Fixed point vs. floating point
• How a floating point number is represented in binary
• Issues with floating point imprecision
• Other potential pitfalls using floating point numbers in programs

9

Real Numbers
• We previously discussed representing integer numbers using two’s

complement.
• However, this system does not represent real numbers such as 3/5 or 0.25.
• How can we design a representation for real numbers?

10

Real Numbers
Problem: There are an infinite number of real number values between two
numbers!

Integers between 0 and 2: 1
Real Numbers Between 0 and 2: 0.1, 0.01, 0.001, 0.0001, 0.00001,…

We need a fixed-width representation for real numbers. Therefore, by
definition, we will not be able to represent all numbers.

11

Real Numbers
Problem: every number base has un-representable real numbers.

Base 10: 1/610 = 0.16666666…..10

Base 2: 1/1010 = 0.000110011001100110011…2

Therefore, by representing in base 2, we will not be able to represent all
numbers, even those we can exactly represent in base 10.

12

Thought Experiment: Fixed Point
Idea: Like in base 10, let’s add binary decimal places to our exisRng number
representaRon.

1 0 1 1 . 0 1 1
23 22 21 20 2-1 2-2 2-3

5 9 3 4 . 2 1 6
103 102 101 100 10-1 10-2 10-3

13

Thought Experiment: Fixed Point
Idea: Like in base 10, let’s add binary decimal places to our existing number
representation.

Pros: arithmetic is easy! And we know exactly how much precision we have.

1 0 1 1 . 0 1 1
8s 4s 2s 1s 1/2s 1/4s 1/8s

14

Thought Experiment: Fixed Point
Problem: we must fix where the decimal point is in our representation. What
should we pick? This also fixes us to 1 place per bit.

. 0 1 1 0 0 1 1
1/2s 1/4s 1/8s …

1 0 1 1 0 . 1 1
16s 8s 4s 2s 1s 1/2s 1/4s

15

The Problem with Fixed Point
Problem: We must fix where the decimal point is in our representation. This
fixes our precision.

11.....0.0
79 bits

6.022e23 =
(base 10) (base 2)

0.0.....01
111 bits

6.626e-34 =
To store both these numbers in the same fixed-point representation, the bit
width of the type would need to be at least 190 bits wide!

16

Let’s Get Real
What would be nice to have in a real number representation?
• Represent widest range of numbers possible
• Flexible “floating” decimal point
• Represent scientific notation numbers, e.g. 1.2 x 106

• Still be able to compare quickly
• Have more predictable overflow behavior

17

Plan For Today
• assign6
• Representing real numbers and (thought experiment) fixed point
• Floating Point: Normalized values
• Floating Point: Special/denormalized values
• Floating Point Arithmetic

cp -r /afs/ir/class/cs107/samples/lectures/lect16 .

18

Let’s Get Real
What would be nice to have in a real number representation?
q Represent widest range of numbers possible
q Flexible “floating” decimal point
q Still be able to compare quickly
q Represent scientific notation numbers, e.g. 1.2 x 106

q Have more predictable overflow behavior

19

IEEE floating point
IEEE Standard 754
• Established in 1985 as a uniform standard for

floating point arithmetic
• Supported by all major systems today

Hardware: specialized co-processor vs. integrated into main chip

Driven by numerical concerns
• Behavior defined in mathematical terms
• Clear standards for rounding, overflow, underflow
• Support for transcendental functions (roots, trig, exponentials, logs)
• Hard to make fast in hardware

Numerical analysts predominated over hardware designers in defining standard

20

IEEE Floating Point
Let’s aim to represent numbers of the following scientific-notation-like format:

𝑉 = −1 ! ×𝑀 × 2"
Sign bit, 𝑠:
negative (s == 1)
positive (s == 0)

Mantissa, 𝑀 :
Significant digits,
also called
significand

Exponent, 𝐸:
Scales value by
(possibly negative)
power of 2

21

IEEE Floating Point
Let’s aim to represent numbers of the following scientific-notation-like format:

𝑉 = −1 ! ×𝑀 × 2"

s exponent (8 bits) fraction (23 bits)

31 30 23 22 0

⚠Quirky! Exponent and fracRon are not
encoded as 𝑀 and 𝐸 in 2’s complement!

22

Exponent

exponent (Binary)
11111111
11111110
11111101
11111100

…
00000011
00000010
00000001
00000000

s exponent (8 bits) fraction (23 bits)

normalized

special

denormalized

exponent (Binary) 𝐸 (Base 10)
11111111 RESERVED
11111110 127
11111101 126
11111100 125

… …
00000011 -124
00000010 -125
00000001 -126
00000000 RESERVED

23

Exponent: Normalized values

exponent (Binary) 𝐸 (Base 10)
11111111 RESERVED
11111110 127
11111101 126
11111100 125

… …
00000011 -124
00000010 -125
00000001 -126
00000000 RESERVED

s exponent (8 bits) fraction (23 bits)

🤔

• Based on this table, how do we
compute an exponent from a
binary value?
• Why would this be a good idea?

(hint: what if we wanted to
compare two floats with >, <, =?)

24

Exponent: Normalized values

• Not 2’s complement
• 𝐸 = exponent – bias,

where float bias = 28-1 – 1 = 127
• Exponents are sequentially

represented starting from
000…1 (most negative) to
111…10 (most positive).
• Bit-level comparison is fast!

exponent (Binary) 𝐸 (Base 10)
11111111 RESERVED
11111110 127
11111101 126
11111100 125

… …
00000011 -124
00000010 -125
00000001 -126
00000000 RESERVED

s exponent (8 bits) fraction (23 bits)

25

Fraction

𝑥 ∗ 2!
• We could just encode whatever x is in the fraction field. But there’s a trick we

can use to make the most out of the bits we have.

s exponent (8 bits) fraction (23 bits)

26

An Interesting Observation
In Base 10:
42.4 x 105 = 4.24 x 106

324.5 x 105 = 3.245 x 107

0.624 x 105 = 6.24 x 104

In Base 2:
10.1 x 25 = 1.01 x 26

1011.1 x 25 = 1.0111 x 28

0.110 x 25 = 1.10 x 24

We tend to adjust the exponent
unRl we get down to one place
to the lek of the decimal point.

Observation: in base 2, this
means there is always a 1 to the
left of the decimal point!

27

Fraction

𝑥 ∗ 2!
• We can adjust this value to fit the format described previously. Then, x will

always be in the format 1.XXXXXXXXX…
• Therefore, in the fraction portion, we can encode just what is to the right of

the decimal point! This means we get one more digit for precision.

Value encoded = 1._[FRACTION BINARY DIGITS]_

s exponent (8 bits) fraction (23 bits)

28

Practice #1

1. Is this number:

2. Is this number:

3. Bonus: What is the number?

s exponent (8 bits) fraction (23 bits)

0 0111 1110 0000 0000 0000 0000 0000 000

A. Greater than 0?
B. Less than 0?

A. Less than -1?
B. Between -1 and 1?
C. Greater than 1?

🤔

𝑉 = −1 ! ×𝑀 × 2"

29

Practice #1

1. Is this number:

2. Is this number:

3. Bonus: What is the number?

s exponent (8 bits) fraction (23 bits)

0 0111 1110 0000 0000 0000 0000 0000 000

A. Greater than 0?
B. Less than 0?

A. Less than -1?
B. Between -1 and 1?
C. Greater than 1?

−1 !×1.0 × 2"# = 0.5

𝑉 = −1 ! ×𝑀 × 2"

30

Let’s Get Real
What would be nice to have in a real number representation?
ü Represent widest range of numbers possible
ü Flexible “floating” decimal point
ü Still be able to compare quickly
q Represent scientific notation numbers, e.g. 1.2 x 106

q Have more predictable overflow behavior

31

Plan For Today
• assign6
• Representing real numbers and (thought experiment) fixed point
• Floating Point: Normalized values
• Floating Point: Special/denormalized values
• Floating Point Arithmetic

cp -r /afs/ir/class/cs107/samples/lectures/lect16 .

32

All zeros: Zero + denormalized floats
Zero (+0, -0)

Denormalized floats:

• Smallest normalized exponent: 𝐸 = 1 − bias = −126
• Mantissa has no leading zero: 𝑀 = 0. [fracRon bits]

🤔

s exponent (8 bits) fraction (23 bits)
any 0000 0000 all zeros

Why would we want so much
precision for tiny numbers?

s exponent (8 bits) fraction (23 bits)
any 0000 0000 any nonzero

𝑉 = −1 ! ×𝑀 × 2"

33

All zeros: Zero + denormalized floats
Zero (+0, -0)

Denormalized floats:

• Smallest normalized exponent: 𝐸 = 1 − bias = −126
• Mantissa has no leading zero: 𝑀 = 0. [fracRon bits]

s exponent (8 bits) fraction (23 bits)
any 0000 0000 all zeros

s exponent (8 bits) fraction (23 bits)
any 0000 0000 any nonzero

𝑉 = −1 ! ×𝑀 × 2"

Denormalized values enable gradual
underflow (too-small-to-represent floats).

34

All ones: Infinity and NaN
Infinity (+inf, -inf)

Not a number (NaN):

Computation result that is an
invalid mathematical real number.

🤔

s exponent (8 bits) fraction (23 bits)
any 1111 1111 all zeros

What kind of mathematical
computation would result in a non-
real number? (hint: square root)

s exponent (8 bits) fraction (23 bits)
any 1111 1111 any nonzero

Why would we want to represent infinity?

35

What kind of mathematical
computation would result in a non-
real number? (hint: square root)

All ones: Infinity and NaN
Infinity (+inf, -inf)

Not a number (NaN):

Computation result that is an
invalid mathematical real number.

s exponent (8 bits) fraction (23 bits)
any 1111 1111 all zeros

s exponent (8 bits) fraction (23 bits)
any 1111 1111 any nonzero

Examples: sqrt(x) (i.e., ! 𝑥), where x
is negative, #

#
, ∞ + −∞ , etc.

Floats have built-in handling of overflow:
infinity + anything = infinity.

36

Let’s Get Real
What would be nice to have in a real number representation?
ü Represent widest range of numbers possible
ü Flexible “floating” decimal point
ü Still be able to compare quickly
ü Represent scientific notation numbers, e.g. 1.2 x 106

ü Have more predictable overflow behavior

37

Number Ranges
• 32-bit integer (type int):

› -2,147,483,648 to 2147483647
• 64-bit integer (type long):

› −9,223,372,036,854,775,808 to 9,223,372,036,854,775,807
• 32-bit floating point (type float):
• ~1.2 x10-38 to ~3.4 x1038

• Not all numbers in the range can be represented (not even all integers in the range can
be represented!)
• Gaps can get quite large! (larger the exponent, larger the gap between successive

fraction values)

• 64-bit floating point (type double):
• ~2.2 x10-308 to ~1.8 x10308

38

Skipping Numbers
• We said that it’s not possible to represent all real numbers using a fixed-width

representation. What does this look like?

Float Converter
• https://www.h-schmidt.net/FloatConverter/IEEE754.html

Floats and Graphics
• https://www.shadertoy.com/view/4tVyDK

https://www.h-schmidt.net/FloatConverter/IEEE754.html
https://www.shadertoy.com/view/4tVyDK

39

Plan For Today
• assign6
• Representing real numbers and (thought experiment) fixed point
• Floating Point: Normalized values
• Floating Point: Special/denormalized values
• Floating Point Arithmetic

cp -r /afs/ir/class/cs107/samples/lectures/lect16 .

40

Key (floating) points

Single operations are commutative,
but sequence is not associative.

(a + b) equals (b + a)
But (a + b) + c may not equal a + (b + c)

Equality comparison operations are
often unwise.

Approximation and rounding is
inevitable.

41

Key (floating) points

Single operations are commutative,
but sequence is not associative.

(a + b) equals (b + a)
But (a + b) + c may not equal a + (b + c)

Equality comparison operations are
often unwise.

Approximation and rounding is
inevitable.

42

FAST!

Nick’s Official
Guide To Making
Money

It’s easy!

43

Demo: Float Arithmetic

bank.c

Try it yourself:
./bank 100 1 # deposit
./bank 100 -1 # withdraw
./bank 100000000 -1 # make bank
./bank 16777216 1 # lose bank

44

Introducing “Minifloat”
For a more compact example representation, we will use an 8 bit “minifloat”
with a 4 bit exponent, 3 bit fraction and bias of 7 (note: minifloat is just for
example purposes, and is not a real datatype).

7 6 3 2 0

s exponent (4 bits) fraction (3 bits)

45

Floating Point Arithmetic
In minifloat, with a balance of $128, a deposit of $4 would not be recorded at
Nick’s Bank. Why not?

Let’s step through the calculations to add these two numbers (note: this is just
for understanding; real float calculations are more efficient).

128:

4:

0 1110 000

0 1001 000

46

Floating Point Arithmetic

To add real numbers, we must align their binary points:

128.00
+ 4.00

132.00

What does 132.00 look like as a minifloat?

128:

4:

0 1110 000

0 1001 000

47

Floating Point Arithmetic

Step 1: convert from base 10 to binary

What is 132 in binary? 1 0 0 0 0 1 0 0

132: ? ???? ???

48

Floating Point Arithmetic

Step 2: find how many places we need to shift left
to put the number in 1.xxx format. This fills in the
exponent component.

0b10000100 = 0b1.0000100 x 27

7 + bias of 7 = 14 for minifloat exponent

132: ? 1110 ???

49

Floating Point Arithmetic

Step 3: take as many digits to the right of the
binary decimal point as we can for the fractional
component, rounding if needed.

0b10000100 = 0b1.0000100 x 27

132: ? 1110 000

50

Floating Point Arithmetic

Step 4: if the sign is positive, the sign bit is 0.
Otherwise, it’s 1.

+132

Sign bit is 0.
132: 0 1110 000

51

Floating Point Arithmetic
The binary minifloat representation for 132 thus equals the following:

This is the same as the binary representation for 128 that we had before!

We didn’t have enough bits to differentiate
between 128 and 132.

0 1110 000

52

Floating Point Arithmetic
Another way to corroborate this: the next-largest minifloat that can be
represented after 128 is 144. 132 isn’t representable!

= 1.125 x 27

Key Idea: the smallest float hop
increase we can take is incrementing
the fractional component by 1.

0 1110 001144:

53

Floating Point Arithmetic
Is this just overflowing? It turns out it’s more subtle.

float a = 3.14;
float b = 1e20;
printf("(3.14 + 1e20) - 1e20 = %g\n", (a + b) - b); // prints 0
printf("3.14 + (1e20 - 1e20) = %g\n", a + (b - b)); // prints 3.14

Floating point arithmetic is not associative. The order of operations matters!
• The first line loses precision when first adding 3.14 and 1e20, as we have seen.
• The second line first evaluates 1e20 – 1e20 = 0, and then adds 3.14

54

Demo: Float Equality

float_equality.c

55

Floating Point Arithmetic
Float arithmetic is an issue with most languages, not just C!
• http://geocar.sdf1.org/numbers.html

http://geocar.sdf1.org/numbers.html

56

Let’s Get Real
What would be nice to have in a real number representation?
ü Represent widest range of numbers possible
ü Flexible “floating” decimal point
ü Still be able to compare quickly
ü Represent scientific notation numbers, e.g. 1.2 x 106

ü Have more predictable overflow behavior

57

Floats Summary
• IEEE Floating Point is a carefully-thought-out standard. It’s complicated but

engineered for their goals.
• Floats have an extremely wide range but cannot represent every number in

that range.
• Some approximation and rounding may occur! This means you don’t want to

use floats e.g. for currency.
• Associativity does not hold for numbers far apart in the range
• Equality comparison operations are often unwise.

58

Recap
• Recap: Generics with Function Pointers
• Representing real numbers
• Fixed Point
• Break: Announcements
• Floating Point
• Floating Point Arithmetic

Next time: assembly language

