
Friday, February 11, 2022

Computer Systems

Winter 2022

Stanford University

Computer Science Department

Reading: Course Reader: x86-64 Assembly
Language, Textbook: Chapter 3.1-3.4

Lecturer: Chris Gregg

CS 107
Lecture 11:

Assembly Part II

2

Today's Topics
• Reading: Course Reader: x86-64 Assembly Language, Textbook: Chapter

3.5-3.6
• Logistics

• Midterm Comments
• Programs from class: /afs/ir/class/cs107/samples/lect11
• More x86 Assembly Language

• Review of what we know so far
• The lea instruction
• pushing and popping from the stack
• Unary operations, Binary operations, Shift operations
• Special multiplication and division
• Control

• Condition codes
• Conditional branches

3

What did we cover last Monday?
• Registers:

• 16 regular integer registers, %rax, %rbx, ...
• naming is historical, and a register has four nested parts:

• Operand forms: lots of ways we can refer to immediate values, register
values, or memory:

%rax %eax %ax %al return value

Operand Value Comment
%rax 0x100 Register
0x104 0xAB Absolute address
$0x108
(%rax)

0x108 Immediate
(%rax) 0xFF Address 0x100
4(%rax) 0xAB Address 0x104
9(%rax,%rdx) 0x11 Address 0x10C
260(%rcx,%rdx) 0x13 Address 0x108
0xFC(,%rcx,4) 0xFF Address 0x100
(%rax,%rdx,4) 0x11 Address 0x10C

Address Value Register Value
0x100 0xFF %rax 0x100
0x104 0xAB %rcx 0x1
0x108 0x13 %rdx 0x3
0x10C 0x11

4

What did we cover last Monday? (continued)
• Data movement instructions:

• Examples:

Instruction Effect Description
MOV S, D D ⟵ S Move
 movb Move byte
 movw Move word
 movl Move double word
 movq Move quad word
movabsq I, R R ⟵ I Move absolute quad word

1 movl $0x4050,%eax Immediate—Register, 4 bytes

2 movw %cx,%dx Register—Register, 2 bytes

3 movb (%rdi,%rcx),%al Memory—Register, 1 byte

4 movb $-17,(%rsp) Immediate—Memory, 1 byte

5 movq %rax,-12(%rbp) Register—Memory, 8 bytes

5

What did we cover last Monday? (continued)

movl $0x4050, %eax
movq %rsp, %rax
movw %ax, %dx
movl $1,%ecx
movb (%rdi, %rcx), %al
movb $0x61, (%rsp)
movb $0x61,(%rdi, %rcx)
movq %rax, 12(%rsp)

./mov_examples_main
Before function call: hello
After function call: hallo

6

The lea instruction
• The lea instruction is related to the mov instruction. It has the form of an instruction

that reads from memory to a register, but it does not reference memory at all.
• It's first operand appears to be a memory reference, but instead of reading from the

designated location, the instruction copies the effective address to the destination.
• You can think of it as the "&" operator in C — it retrieves the address of a memory

location:

Instruction Effect Description

leaq S,D D ⟵ &S Load effective address

Examples: if %rax holds value x and %rcx holds value y:
leaq 6(%rax), %rdx : %rdx now holds x + 6
leaq (%rax,%rcx), %rdx : %rdx now holds x + y
leaq (%rax,%rcx,4), %rdx : %rdx now holds x + 4*y
leaq 7(%rax,%rax,8), %rdx : %rdx now holds 7 + 9x
leaq 0xA(,%rcx,4), %rdx : %rdx now holds 10 + 4y
leaq 9(%rax,%rcx,2), %rdx : %rdx now holds 9 + x + 2y

7

The lea instruction
• Take a look at the following C code (left) and assembly generated by gcc (right):

#include<stdlib.h>
#include<stdio.h>

int main() {
 int a = 42;
 int *aptr = &a;
 printf("a: %d, aptr: %p", a, aptr);
}

.LC0:
 .string "a: %d, aptr: %p"
main:
 subq $24, %rsp
 movl $42, 12(%rsp)
 leaq 12(%rsp), %rdx
 movl $42, %esi
 movl $.LC0, %edi
 movl $0, %eax
 call printf
 movl $0, %eax
 addq $24, %rsp
 ret

• Notice that the value 42 is moved into
memory via a mov instruction, while the
address of that value is moved into %rdx
using the lea instruction. In both cases,
12(%rsp) is the location in memory that
is referred to, but mov moves data to that
address, and lea moves the address into
the register.

• Note: we often use the lea instruction for
calculations that aren't memory addresses! This
is because we get a nifty linear equation from
lea, and it really doesn't matter if it isn't an
address.

https://godbolt.org/#g:!((g:!((g:!((h:codeEditor,i:(filename:'1',fontScale:14,fontUsePx:'0',j:1,lang:___c,selection:(endColumn:2,endLineNumber:8,positionColumn:2,positionLineNumber:8,selectionStartColumn:2,selectionStartLineNumber:8,startColumn:2,startLineNumber:8),source:'%23include%3Cstdlib.h%3E%0A%23include%3Cstdio.h%3E%0A%0Aint+main()+%7B%0A++++int+a+=+42;%0A++++int+*aptr+=+&a;%0A++++printf(%22a:+%25d,+aptr:+%25p%22,+a,+aptr);%0A%7D'),l:'5',n:'0',o:'C+source+%231',t:'0')),k:50,l:'4',n:'0',o:'',s:0,t:'0'),(g:!((h:compiler,i:(compiler:cg93,filters:(b:'0',binary:'1',commentOnly:'0',demangle:'0',directives:'0',execute:'1',intel:'1',libraryCode:'0',trim:'1'),flagsViewOpen:'1',fontScale:14,fontUsePx:'0',j:1,lang:___c,libs:!(),options:'-g+-Og+-std=c99',selection:(endColumn:12,endLineNumber:13,positionColumn:12,positionLineNumber:13,selectionStartColumn:12,selectionStartLineNumber:13,startColumn:12,startLineNumber:13),source:1,tree:'1'),l:'5',n:'0',o:'x86-64+gcc+9.3+(C,+Editor+%231,+Compiler+%231)',t:'0')),k:50,l:'4',n:'0',o:'',s:0,t:'0')),l:'2',n:'0',o:'',t:'0')),version:4

8

Pushing and Popping from the Stack
• As we have seen from stack-based memory allocation in C, the stack is an

important part of our program, and assembly language has two built-in
operations to use the stack.

• Just like the stack ADT, they have a first-in, first-out discipline.
• By convention, we draw stacks upside down, and the stack "grows" downward.

Stack "bottom"

Stack "top"

Increasing
address

.

.

.

0x108

9

Pushing and Popping from the Stack
• The push and pop operations write and read from the stack, and they also

modify the stack pointer, %rsp:
Instruct
ion

Effect Description
pushq S R[%rsp] ⟵ R[%rsp]-8; Push quad word

M[R[%rsp]] ⟵ S
popq D D ⟵ M[R[%rsp]]; Push quad word

R[%rsp] ⟵ R[%rsp]+8

Stack "bottom"

Stack "top"

Increasing
address

.

.

.

0x108

10

Pushing and Popping from the Stack
• Example:

Initially
%rax 0x123
%rdx 0
%rsp 0x108

Stack "bottom"

Stack "top"

Increasing
address

.

.

.

0x108

11

Pushing and Popping from the Stack
• Example:

Initially
%rax 0x123
%rdx 0
%rsp 0x108

pushq %rax
%rax 0x123
%rdx 0
%rsp 0x100

Stack "bottom"

Stack "top"

Increasing
address

.

.

.

0x108

Stack "bottom"

Stack "top"

Increasing
address

.

.

.

0x108

0x1230x100

12

Pushing and Popping from the Stack
• Example:

Initially
%rax 0x123
%rdx 0
%rsp 0x108

pushq %rax
%rax 0x123
%rdx 0
%rsp 0x100

Stack "bottom"

Stack "top"

Increasing
address

.

.

.

0x108

Stack "bottom"

Stack "top"

Increasing
address

.

.

.

0x108

0x1230x100

popq %rdx
%rax 0x123
%rdx 0x123
%rsp 0x108

Stack "bottom"

Stack "top"

Increasing
address

.

.

.

0x108

0x1230x100

13

Pushing and Popping from the Stack
• As you can tell, pushing a quad word onto the stack involves first decrementing

the stack pointer by 8, and then writing the value at the new top-of-stack
address.

• Therefore, the behavior of the instruction pushq %rbp is equivalent to the pair of
instructions:
subq $8, %rsp (subq is a subtraction, and this decrements the stack pointer)
movq $rbp,(%rsp) (Store %rbp on the stack)

• The behavior of the instruction popq %rax is equivalent to the pair of
instructions:
movq (%rsp), %rax (Read %rax from the stack)
addq $8,%rsp (Increment the stack pointer)

14

Unary Instructions

Instruction Effect Description
inc D D ⟵ D + 1 Increment
dec D D ⟵ D - 1 Decrement
neg D D ⟵ -D Negate
not D D ⟵ ~D Complement

The following instructions act on a single operand (register or memory):

inc D is reminiscent of C's ++ operator, and neg D is reminiscent of C's -- operator.

Examples: incq 16(%rax)
 decq %rdx
 not %rcx

15

Binary Instructions

Instruction Effect Description
add S, D D ⟵ D + S Add
sub S, D D ⟵ D - S Subtract
imul S, D D ⟵ D * S Multiply
xor S, D D ⟵ D ^ S Exclusive-or
or S, D D ⟵ D | S Or
and S, D D ⟵ D & S And

The following instructions act on two operands (register or memory, but not both):

Reading the syntax is a bit tricky — e.g., subq %rax,%rdx decrements %rdx by
%rax, and can be read as "Subtract %rax from %rdx"

Examples: addq %rcx,(%rax)
 xorq $16,(%rax,%rdx,8)
 subq %rdx,8(%rax)

16

Shift Instructions

Instruction Effect Description
sal k, D D ⟵ D << k Left shift
shl k, D D ⟵ D << k Left shift (same as sal)
sar k, D D ⟵ D >>A k Arithmetic right shift
shr k, D D ⟵ D >>L k Logical right shift

The following instructions perform shifts. The first operand can be either an
immediate value or the byte %cl (and only that register!)

Technically, you could shift up to 255 with %cl, but the data width operation determines
how many bits are shifted, and the high order bits are ignored. For example, if %cl has
a value of 0xFF, then shlb shifts by 7 (ignoring the upper bits), shlw shifts by 15, shll
would shift by 31, and shlq would shift by 63.

Examples: shll $3,(%rax)
 shr %cl,(%rax,%rdx,8)
 sar $4,8(%rax)

17

Special Multiplication Instructions

Instruction Effect Description
imulq S R[%rdx]:R[%rax] ⟵ S × R[%rax] Signed full multiply
mulq S R[%rdx]:R[%rax] ⟵ S × R[%rax] Unsigned full multiply

Recall that multiplying two 64-bit numbers can produce a 128-bit result. The
x86-64 instruction set supports 128-bit numbers with the "oct" (16-byte) size.

The imulq instruction has two forms. One, shown on slide 15, takes two operands
and leaves the result in a single 64-bit register, truncating if necessary (and acts the
same on signed and unsigned numbers). Example: imulq %rbx, %rcx

The second form (shown above) multiplies the source by %rax, and puts the
product into the 128-bit %rdx (upper 64 bits) and %rax (lower 64 bits).

Example: mul %rdx
This multiples %rdx by %rax and puts the result into the combined %rdx:%rax
registers.

18

Multiplication Example
#include <stdio.h>
#include <stdlib.h>
#include <inttypes.h>

typedef unsigned __int128 uint128_t;

void store_uprod(uint128_t *dest,
 uint64_t x, uint64_t y)
{
 *dest = x * (uint128_t) y;
}

int main()
{
 uint64_t x = 2000000000000; // 2 trillion
 uint64_t y = 3000000000000; // 3 trillion

 uint128_t z;
 store_uprod(&z,x,y);

 print_uint128(z); // see lect12 code
 // for function definition
 return 0;
}

mov %rsi,%rax
mul %rdx
mov %rax,(%rdi)
mov %rdx,0x8(%rdi)
retq

Note: %rdi is 1st argument
 %rsi is 2nd argument
 %rdx is 3rd argument

19

Special Division Operations

Instruction Effect Description
cqto R[%rdx]:R[%rax] ⟵ SignExtend(R[%rax]) Convert to oct word
idivq S R[%rdx] ⟵ R[%rdx]:R[%rax] mod S; Signed divide

R[%rax] ⟵ R[%rdx]:R[%rax] ÷ S
divq S R[%rdx] ⟵ R[%rdx]:R[%rax] mod S; Unsigned divide

R[%rax] ⟵ R[%rdx]:R[%rax] ÷ S

Slide 11 did not list a division instruction or modulus instruction. There are
single-operand divide instructions (shown below):

The dividend for the idivq and divq instructions is the 128-bit quantity in registers %rdx
(high-order 64-bits) and %rax (low-order 64-bits). The divisor is the operand source. The
quotient from the division is stored in %rax, and the remainder is stored in %rdx.

For most division, the dividend is just in %rax, and %rdx is either all zeros (for unsigned,
or the sign bit of %rax (for signed arithmetic). The ctqo instruction can be used to
accomplish this.

20

Division Example
void remdiv(long x, long y,
 long *qp, long *rp)
{
 long q = x / y;
 long r = x % y;
 *qp = q;
 *rp = r;
}

mov %rdx,%r8 # copy qp
mov %rdi,%rax # Move x to lower 8 bytes of dividend
cqto # Sign-extend to upper 8 bytes of dividend
idiv %rsi # Divide by y
mov %rax,(%r8) # Store quotient at qp
mov %rdx,(%rcx) # Store remainder at rp
retq

Note: %rdi is 1st argument
 %rsi is 2nd argument
 %rdx is 3rd argument
 %rcx is 4th argument

gcc is clever enough to see that only one division is needed!

21

3 minute break

22

Control
• So far, we have only been discussing "straight-line" code, where one

instruction happens directly after the previous instruction.
• However, it is often necessary to perform one instruction or another

instruction based on the logic in our programs, and assembly code gives us
tools to do this.

• We can alter the flow of code using a "jump" instruction, which indicates that
the next instruction will be somewhere else in the program (this is called a
branch)

• We will start by discussing "condition codes" that are set when we do
arithmetic (and other operations), and then we will talk about jump
instructions to change control flow.

23

Condition Codes
• Besides the registers we have already discussed, the CPU has a separate

set of single-bit condition code registers describing attributes of recent
operations.

• We can use these registers (by testing them) to perform branches in the
code.

• These are the most useful condition code registers:
• CF: Carry flag. The most recent operation generated a carry out of the most

significant bit. Used to detect overflow for unsigned operations.
• ZF: Zero flag. The most recent operation yielded zero.
• SF: Sign flag. The most operation yielded a negative value.
• OF: Overflow flag. The most recent operation caused a two's-complement overflow—

either negative or positive.

24

Condition Codes: Examples
• CF: Carry flag. The most recent operation generated a carry out of the most

significant b/t. Used to detect overflow for unsigned operations.
• ZF: Zero flag. The most recent operation yielded zero.
• SF: Sign flag. The most operation yielded a negative value.
• OF: Overflow flag. The most recent operation caused a two's-complement overflow—

either negative or positive.

int a = 5;
int b = -5;
int t = a + b;

Which flag above would be set?

The ZF flag.

25

Condition Codes: Examples
• CF: Carry flag. The most recent operation generated a carry out of the most

significant b/t. Used to detect overflow for unsigned operations.
• ZF: Zero flag. The most recent operation yielded zero.
• SF: Sign flag. The most operation yielded a negative value.
• OF: Overflow flag. The most recent operation caused a two's-complement overflow—

either negative or positive.

int a = 5;
int b = -5;
int t = a + b;

Which flag above would be set?

The ZF flag.

int a = 5;
int b = -20;
int t = a + b;

Which flag above would be set?

The SF flag.

26

Condition Codes
• The leaq instruction does not set any condition codes (because it is intended

for address computations), but the other arithmetic instructions we talked about
do set them (inc, dec, neg, not, add, sub, imul, xor, or, and, shl, sar,
shr, etc.)

• For logical operations (e.g., xor), the carry and overflow flags are set to 0.
• For shift operations, the carry flag is set to the last bit shifted out, while the

overflow flag is set to zero.
• inc and dec set the overflow and zero flags, but leave the carry flag unchanged

(see here about a potential reason why).

https://stackoverflow.com/questions/13435142/why-do-the-inc-and-dec-instructions-not-affect-the-carry-flag-cf

27

cmp and test
• There are two types of instructions we can use that set the condition codes

without altering any other registers, the cmp and test instructions:

Instruction Based on Description
CMP S1, S2 S2 - S1 Compare
 cmpb Compare byte
 cmpw Compare word
 cmpl Compare double word
 cmpq Compare quad word

TEST S1, S2 S2 & S1 Test

 testb Test byte
 testw Test word
 testl Test double word
 testq Test quad word

• By setting the condition codes,
we can set up for a jump or
other logic, based on some
condition (e.g., whether a
register has reached a certain
value.

• Be careful! The operands for
cmp are listed in reverse order!
(cmp is based on the sub
instruction)

• Often, we use
testq %rax, %rax to see
whether %rax is negative, zero,
or positive.

28

Accessing the Condition Codes
• There are three common ways to use the condition codes:

1. We can set a single byte to 0 or 1 depending on some combination of the
condition codes.

2. We can conditionally jump to some other part of the program.
3. We can conditionally transfer data.

29

• There are three common ways to use the condition codes:
1. We can set a single byte to 0 or 1 depending on some combination of the
condition codes.

2. We can conditionally jump to some other part of the program.
3. We can conditionally transfer data.

Accessing the Condition Codes

Instruction Synonym Set Condition
sete D setz Equal / zero
setne D setnz Not equal / not zero
sets D Negative
setns D Nonnegative
setg D setnle Greater (signed >)
setge D setnl Greater or equal (signed >=)
setl D setnge Less (signed <)
setle D setng Less or equal (signed <=)
seta D setnbe Above (unsigned >)
setae D setnb Above or equal (unsigned >=)
setb D setnae Below (unsigned <)
setbe D setna Below or equal (unsigned <=)

int comp(data_t a, data_t b)

a in %rdi, b in %rsi

comp:

cmpq %rsi, %rdi # Compare a:b

setl %al # Set low-order byte of

 # %eax to 0 or 1

movzbl %al, %eax # Clear rest of %eax

 # (and rest of %rax)

ret

Example: a < b

30

• There are three common ways to use the condition codes:
1. We can set a single byte to 0 or 1 depending on some combination of the
condition codes.

2. We can conditionally jump to some other part of the program.
3. We can conditionally transfer data.

Accessing the Condition Codes

Instruction Synonym Set Condition
jmp Label Direct jump

jmp *Operand Indirect jump

je Label jz Equal / zero (ZF=1)
jne Label jnz Not equal / not zero (ZF=0)
js Label Negative (SF=1)
jns Label Nonnegative (SF=0)
jg Label jnle Greater (signed >) (SF=0 and SF=OF)
jge Label jnl Greater or equal (signed >=) (SF=OF)
jl Label jnge Less (signed <) (SF != OF)
jle Label jng Less or equal (signed <=) (ZF=1 or SF!=OF)

ja Label jnbe Above (unsigned >) (CF = 0 and ZF = 0)
jae Label jnb Above or equal (unsigned >=) (CF = 0)
jb Label jnae Below (unsigned <) (CF = 1)
jbe Label jna Below or equal (unsigned <=) (CF = 1 or ZF = 1)

• Jump instructions jump to labels
in assembly code, and those
labels are changed to
addresses (most often relative)

• jmp is an unconditional jump,
meaning that the jump is always
taken.

• Unconditional jumps can be
direct or indirect

• Conditional jumps must be
direct.

31

Jump instructions example

void loop()
{
 int i = 0;
 while (i < 100) {
 ++i;
 }
}

Compile to an object file:
gcc -c -Og while_loop.c

$ gdb while_loop.o
The target architecture is assumed to be i386:x86-64
Reading symbols from while_loop.o...done.
(gdb) disas loop
Dump of assembler code for function loop:
 0x0000000000000000 <+0>: mov $0x0,%eax
 0x0000000000000005 <+5>: jmp 0xa <loop+10>
 0x0000000000000007 <+7>: add $0x1,%eax
 0x000000000000000a <+10>: cmp $0x63,%eax
 0x000000000000000d <+13>: jle 0x7 <loop+7>
 0x000000000000000f <+15>: repz retq
End of assembler dump.

32

Jump instructions example

void loop()
{
 int i = 0;
 while (i < 100) {
 ++i;
 }
}

$ gdb while_loop.o
The target architecture is assumed to be i386:x86-64
Reading symbols from while_loop.o...done.
(gdb) disas loop
Dump of assembler code for function loop:
 0x0000000000000000 <+0>: mov $0x0,%eax
 0x0000000000000005 <+5>: jmp 0xa <loop+10>
 0x0000000000000007 <+7>: add $0x1,%eax
 0x000000000000000a <+10>: cmp $0x63,%eax
 0x000000000000000d <+13>: jle 0x7 <loop+7>
 0x000000000000000f <+15>: repz retq
End of assembler dump.

Set %eax to 0
Compile to an object file:
gcc -c -Og while_loop.c

33

Jump instructions example

void loop()
{
 int i = 0;
 while (i < 100) {
 ++i;
 }
}

$ gdb while_loop.o
The target architecture is assumed to be i386:x86-64
Reading symbols from while_loop.o...done.
(gdb) disas loop
Dump of assembler code for function loop:
 0x0000000000000000 <+0>: mov $0x0,%eax
 0x0000000000000005 <+5>: jmp 0xa <loop+10>
 0x0000000000000007 <+7>: add $0x1,%eax
 0x000000000000000a <+10>: cmp $0x63,%eax
 0x000000000000000d <+13>: jle 0x7 <loop+7>
 0x000000000000000f <+15>: repz retq
End of assembler dump.

%rax: 0
Compile to an object file:
gcc -c -Og while_loop.c

34

Jump instructions example

void loop()
{
 int i = 0;
 while (i < 100) {
 ++i;
 }
}

$ gdb while_loop.o
The target architecture is assumed to be i386:x86-64
Reading symbols from while_loop.o...done.
(gdb) disas loop
Dump of assembler code for function loop:
 0x0000000000000000 <+0>: mov $0x0,%eax
 0x0000000000000005 <+5>: jmp 0xa <loop+10>
 0x0000000000000007 <+7>: add $0x1,%eax
 0x000000000000000a <+10>: cmp $0x63,%eax
 0x000000000000000d <+13>: jle 0x7 <loop+7>
 0x000000000000000f <+15>: repz retq
End of assembler dump.

compare %eax to 0x63 (99d) by
subtracting %eax - 0x63, setting the Sign
Flag (SF) because the result is negative.

%rax: 0
Compile to an object file:
gcc -c -Og while_loop.c

35

Jump instructions example

void loop()
{
 int i = 0;
 while (i < 100) {
 ++i;
 }
}

$ gdb while_loop.o
The target architecture is assumed to be i386:x86-64
Reading symbols from while_loop.o...done.
(gdb) disas loop
Dump of assembler code for function loop:
 0x0000000000000000 <+0>: mov $0x0,%eax
 0x0000000000000005 <+5>: jmp 0xa <loop+10>
 0x0000000000000007 <+7>: add $0x1,%eax
 0x000000000000000a <+10>: cmp $0x63,%eax
 0x000000000000000d <+13>: jle 0x7 <loop+7>
 0x000000000000000f <+15>: repz retq
End of assembler dump.

jle is "jump less than or equal." The Sign
Flag indicates that the result was negative
(less than), so we jump to 0x7.

%rax: 0
Compile to an object file:
gcc -c -Og while_loop.c

36

Jump instructions example

void loop()
{
 int i = 0;
 while (i < 100) {
 ++i;
 }
}

$ gdb while_loop.o
The target architecture is assumed to be i386:x86-64
Reading symbols from while_loop.o...done.
(gdb) disas loop
Dump of assembler code for function loop:
 0x0000000000000000 <+0>: mov $0x0,%eax
 0x0000000000000005 <+5>: jmp 0xa <loop+10>
 0x0000000000000007 <+7>: add $0x1,%eax
 0x000000000000000a <+10>: cmp $0x63,%eax
 0x000000000000000d <+13>: jle 0x7 <loop+7>
 0x000000000000000f <+15>: repz retq
End of assembler dump.

Add 1 to %eax

%rax: 1
Compile to an object file:
gcc -c -Og while_loop.c

37

Jump instructions example

void loop()
{
 int i = 0;
 while (i < 100) {
 ++i;
 }
}

$ gdb while_loop.o
The target architecture is assumed to be i386:x86-64
Reading symbols from while_loop.o...done.
(gdb) disas loop
Dump of assembler code for function loop:
 0x0000000000000000 <+0>: mov $0x0,%eax
 0x0000000000000005 <+5>: jmp 0xa <loop+10>
 0x0000000000000007 <+7>: add $0x1,%eax
 0x000000000000000a <+10>: cmp $0x63,%eax
 0x000000000000000d <+13>: jle 0x7 <loop+7>
 0x000000000000000f <+15>: repz retq
End of assembler dump.

%rax: 1

Compare %eax to 0x63 (99d) by subtracting %eax - 0x63. When %rax
is 0, what flags change based on the the comparison? (We care about Zero
Flag, Sign Flag, Carry Flag, and Overflow Flag):

Compile to an object file:
gcc -c -Og while_loop.c

0 - 99, so SF and CF

38

Jump instructions example

void loop()
{
 int i = 0;
 while (i < 100) {
 ++i;
 }
}

$ gdb while_loop.o
The target architecture is assumed to be i386:x86-64
Reading symbols from while_loop.o...done.
(gdb) disas loop
Dump of assembler code for function loop:
 0x0000000000000000 <+0>: mov $0x0,%eax
 0x0000000000000005 <+5>: jmp 0xa <loop+10>
 0x0000000000000007 <+7>: add $0x1,%eax
 0x000000000000000a <+10>: cmp $0x63,%eax
 0x000000000000000d <+13>: jle 0x7 <loop+7>
 0x000000000000000f <+15>: repz retq
End of assembler dump.

%rax: 1

Eventually, this will become positive (when
%eax is 100), and the loop will end.

Compile to an object file:
gcc -c -Og while_loop.c

39

Jump instructions example

void loop()
{
 int i = 0;
 while (i < 100) {
 ++i;
 }
}

$ gdb while_loop.o
The target architecture is assumed to be i386:x86-64
Reading symbols from while_loop.o...done.
(gdb) disas loop
Dump of assembler code for function loop:
 0x0000000000000000 <+0>: mov $0x0,%eax
 0x0000000000000005 <+5>: jmp 0xa <loop+10>
 0x0000000000000007 <+7>: add $0x1,%eax
 0x000000000000000a <+10>: cmp $0x63,%eax
 0x000000000000000d <+13>: jle 0x7 <loop+7>
 0x000000000000000f <+15>: repz retq
End of assembler dump.

Could the compiler have done better with
this loop?

Compile to an object file:
gcc -c -Og while_loop.c

40

Jump instructions example

void loop()
{
 int i = 0;
 while (i < 100) {
 ++i;
 }
}

Compile to an object file:
gcc -c -Og while_loop.c

$ gdb while_loop.o
The target architecture is assumed to be i386:x86-64
Reading symbols from while_loop.o...done.
(gdb) disas loop
Dump of assembler code for function loop:
 0x0000000000000000 <+0>: mov $0x64,%eax
 0x0000000000000005 <+5>: sub $0x1,%eax
 0x0000000000000008 <+8>: jne 0x5 <loop+5>
 0x000000000000000a <+10>: repz retq
End of assembler dump.

Fewer lines, less jumping!

gcc -c -O1 while_loop.c

41

Jump instructions example

void loop()
{
 int i = 0;
 while (i < 100) {
 ++i;
 }
}

Compile to an object file:
gcc -c -Og while_loop.c

$ gdb while_loop.o
The target architecture is assumed to be i386:x86-64
Reading symbols from while_loop.o...done.
(gdb) disas loop
Dump of assembler code for function loop:
 0x0000000000000000 <+0>: mov $0x64,%eax
 0x0000000000000005 <+5>: sub $0x1,%eax
 0x0000000000000008 <+8>: jne 0x5 <loop+5>
 0x000000000000000a <+10>: repz retq
End of assembler dump.

Could we do better?

gcc -c -O1 while_loop.c

42

Jump instructions example

void loop()
{
 int i = 0;
 while (i < 100) {
 ++i;
 }
}

Compile to an object file:
gcc -c -Og while_loop.c

$ gdb while_loop.o
The target architecture is assumed to be i386:x86-64
Reading symbols from while_loop.o...done.
(gdb) disas loop
Dump of assembler code for function loop:
 0x0000000000000000 <+0>: repz retq
End of assembler dump.

Sure! As the optimization level goes up, gcc
gets smarter! The compiler realized that this
loop is not doing anything, so it completely
optimized it out!

gcc -c -O1 while_loop.c
gcc -c -O2 while_loop.c

43

Digging Deeper: Jump Instruction Encodings
• As we have mentioned before, assembly language is still one step higher than

machine code.
• It is instructive in this case to look at the machine code for some jump

instructions, just to see how the underlying machine is referencing where to
jump.

• Remember, %rip is the instruction pointer, which has an address of the current
instruction.
• Well…kind of. On older x86 machines, when an instruction was executing,

the first thing that happened was that %rip is changed to point to the next
instruction. The instruction set has retained this behavior.

• Jump instructions are often encoded to jump relative to %rip. Let's see what
that means in practice…

44

Digging Deeper: Jump Instruction Encodings
• Let's look at our while loop again:

void loop()
{
 int i = 0;
 while (i < 100) {
 ++i;
 }
}

Run the objdump program:
objdump -d while_loop.o

Disassembly of section .text:

0000000000000000 <loop>:
 0: b8 00 00 00 00 mov $0x0,%eax
 5: eb 03 jmp a <loop+0xa>
 7: 83 c0 01 add $0x1,%eax
 a: 83 f8 63 cmp $0x63,%eax
 d: 7e f8 jle 7 <loop+0x7>
 f: f3 c3 repz retqCompile to an object file:

gcc -c -Og while_loop.c

45

Digging Deeper: Jump Instruction Encodings
• Take the following function:

void loop()
{
 int i = 0;
 while (i < 100) {
 ++i;
 }
}

Run the objdump program:
objdump -d while_loop.o

Disassembly of section .text:

0000000000000000 <loop>:
 0: b8 00 00 00 00 mov $0x0,%eax
 5: eb 03 jmp a <loop+0xa>
 7: 83 c0 01 add $0x1,%eax
 a: 83 f8 63 cmp $0x63,%eax
 d: 7e f8 jle 7 <loop+0x7>
 f: f3 c3 repz retq

0-based addresses for each
instruction (will be replaced
with real addresses when a full
program is created)

Compile to an object file:
gcc -c -Og while_loop.c

46

Digging Deeper: Jump Instruction Encodings
• Take the following function:

void loop()
{
 int i = 0;
 while (i < 100) {
 ++i;
 }
}

Run the objdump program:
objdump -d while_loop.o

Disassembly of section .text:

0000000000000000 <loop>:
 0: b8 00 00 00 00 mov $0x0,%eax
 5: eb 03 jmp a <loop+0xa>
 7: 83 c0 01 add $0x1,%eax
 a: 83 f8 63 cmp $0x63,%eax
 d: 7e f8 jle 7 <loop+0x7>
 f: f3 c3 repz retq

Machine code for the instructions.
Instructions are "variable length" —
the mov instruction is 5 bytes, the
tmp is 3 bytes, etc.

Compile to an object file:
gcc -c -Og while_loop.c

47

Digging Deeper: Jump Instruction Encodings
• Take the following function:

void loop()
{
 int i = 0;
 while (i < 100) {
 ++i;
 }
}

Run the objdump program:
objdump -d while_loop.o

Disassembly of section .text:

0000000000000000 <loop>:
 0: b8 00 00 00 00 mov $0x0,%eax
 5: eb 03 jmp a <loop+0xa>
 7: 83 c0 01 add $0x1,%eax
 a: 83 f8 63 cmp $0x63,%eax
 d: 7e f8 jle 7 <loop+0x7>
 f: f3 c3 repz retq

The jmp instruction. "eb" means that this is a jmp,
and 03 is the number of instructions to jump, relative
to %rip. When the instruction is executing, %rip is
set to the next instruction (7 in this case). So…7 + 3
is 0xa, so this instruction jumps to 0xa.

Compile to an object file:
gcc -c -Og while_loop.c

48

Digging Deeper: Jump Instruction Encodings
• Take the following function:

void loop()
{
 int i = 0;
 while (i < 100) {
 ++i;
 }
}

Run the objdump program:
objdump -d while_loop.o

Disassembly of section .text:

0000000000000000 <loop>:
 0: b8 00 00 00 00 mov $0x0,%eax
 5: eb 03 jmp a <loop+0xa>
 7: 83 c0 01 add $0x1,%eax
 a: 83 f8 63 cmp $0x63,%eax
 d: 7e f8 jle 7 <loop+0x7>
 f: f3 c3 repz retq

The cmp instruction. Notice that the 0x63 is
embedded into the machine code, because it is an
immediate value.

Compile to an object file:
gcc -c -Og while_loop.c

49

Digging Deeper: Jump Instruction Encodings
• Take the following function:

void loop()
{
 int i = 0;
 while (i < 100) {
 ++i;
 }
}

Run the objdump program:
objdump -d while_loop.o

Disassembly of section .text:

0000000000000000 <loop>:
 0: b8 00 00 00 00 mov $0x0,%eax
 5: eb 03 jmp a <loop+0xa>
 7: 83 c0 01 add $0x1,%eax
 a: 83 f8 63 cmp $0x63,%eax
 d: 7e f8 jle 7 <loop+0x7>
 f: f3 c3 repz retq

The jle instruction. "7e" means that this is a jle
(jump if less than), and f8 is the number of instructions
to jump (in two's complement! So, it means -8), relative
to %rip, which is at 0xf when the instruction is running.
So, 0xf - 8 is 0xa, so this instruction jumps to 0x7.

Compile to an object file:
gcc -c -Og while_loop.c

50

Practice: Reverse-engineer Assembly to C
• Take the following function:

long test(long x, long y, long z) {
 long val = __________;
 if (__________) {
 if (_________)
 val = __________;
 else
 val = __________;
 } else if (__________)
 val = __________;
 return val;
}

x in %rdi, y in %rsi, z in %rdx
test:
 leaq (%rdi,%rsi), %rax
 addq %rdx, %rax
 cmpq $-3, %rdi
 jge .L2
 cmpq %rdx, %rsi
 jge .L3
 movq %rdi, %rax
 imulq %rsi, %rax
 ret
.L3:
 movq %rsi, %rax
 imulq %rdx, %rax
 ret
.L2:
 cmpq $2, %rdi
 jle .L4
 movq %rdi, %rax
 imulq %rdx, %rax
.L4:
 rep; ret

51

Practice: Reverse-engineer Assembly to C
• Take the following function:

long test(long x, long y, long z) {
 long val = x + y + z;
 if (x < -3) {
 if (y < z)
 val = x * y;
 else
 val = y * z;
 } else if (x > 2)
 val = x * z;
 return val;
}

x in %rdi, y in %rsi, z in %rdx
test:
 leaq (%rdi, %rsi), %rax
 addq %rdx, %rax
 cmpq $-3, %rdi
 jge .L2
 cmpq %rdx, %rsi
 jge .L3
 movq %rdi, %rax
 imulq %rsi, %rax
 ret
.L3:
 movq %rsi, %rax
 imulq %rdx, %rax
 ret
.L2:
 cmpq $2, %rdi
 jle .L4
 movq %rdi, %rax
 imulq %rdx, %rax
.L4:
 rep; ret

52

Conditional Moves
• The x86 processor provides a set of "conditional move" instructions that move

memory based on the result of the condition codes, and that are completely
analogous to the jump instructions:
Instruction Synonym Move Condition
cmove S,R cmovz Equal / zero (ZF=1)
cmovne S,R cmovnz Not equal / not zero (ZF=0)
cmovs S,R Negative (SF=1)
cmovns S,R Nonnegative (SF=0)
cmovg S,R cmovnle Greater (signed >) (SF=0 and SF=OF)
cmovge S,R cmovnl Greater or equal (signed >=) (SF=OF)
cmovl S,R cmovnge Less (signed <) (SF != OF)
cmovle S,R cmovng Less or equal (signed <=) (ZF=1 or SF!=OF)

cmova S,R cmovnbe Above (unsigned >) (CF = 0 and ZF = 0)
cmovae S,R cmovnb Above or equal (unsigned >=) (CF = 0)
cmovb S,R cmovnae Below (unsigned <) (CF = 1)
cmovbe S,R cmovna Below or equal (unsigned <=) (CF = 1 or ZF = 1)

• With these instructions, we
can sometimes eliminate
branches, which are
particularly inefficient on
modern computer
hardware.

53

Jumps -vs- Conditional Move
long absdiff(long x, long y)
{
 long result;
 if (x < y)
 result = y - x;
 else
 result = x - y;
 return result;
}

long cmovdiff(long x, long y)
{
 long rval = y-x;
 long eval = x-y;
 long ntest = x >= y;
 if (ntest) rval = eval;
 return rval;
}

x in %rdi, y in %rsi
cmovdiff:
 movq %rsi, %rax
 subq %rdi, %rax
 movq %rdi, %rdx
 subq %rsi, %rdx
 cmpq %rsi, %rdi
 cmovge %rdx, %rax
 ret

x in %rdi, y in %rsi
absdiff:
 cmpq %rsi, %rdi
 jge .L2
 movq %rsi, %rax
 subq %rdi, %rax
 ret
.L2:
 movq %rdi, %rax
 subq %rsi, %rax
 ret

Which is faster?
Let's test!

54

References and Advanced Reading
• References:

• Stanford guide to x86-64: https://web.stanford.edu/class/cs107/guide/
x86-64.html

• CS107 one-page of x86-64: https://web.stanford.edu/class/cs107/resources/
onepage_x86-64.pdf

• gdbtui: https://beej.us/guide/bggdb/
• More gdbtui: https://sourceware.org/gdb/onlinedocs/gdb/TUI.html
• Compiler explorer: https://gcc.godbolt.org

• Advanced Reading:
• x86-64 Intel Software Developer manual: https://software.intel.com/sites/

default/files/managed/39/c5/325462-sdm-vol-1-2abcd-3abcd.pdf
• history of x86 instructions: https://en.wikipedia.org/wiki/

X86_instruction_listings
• x86-64 Wikipedia: https://en.wikipedia.org/wiki/X86-64

https://web.stanford.edu/class/cs107/guide/x86-64.html
https://web.stanford.edu/class/cs107/guide/x86-64.html
https://web.stanford.edu/class/cs107/resources/onepage_x86-64.pdf
https://web.stanford.edu/class/cs107/resources/onepage_x86-64.pdf
https://beej.us/guide/bggdb/
https://sourceware.org/gdb/onlinedocs/gdb/TUI.html
https://gcc.godbolt.org
https://software.intel.com/sites/default/files/managed/39/c5/325462-sdm-vol-1-2abcd-3abcd.pdf
https://software.intel.com/sites/default/files/managed/39/c5/325462-sdm-vol-1-2abcd-3abcd.pdf
https://en.wikipedia.org/wiki/X86_instruction_listings
https://en.wikipedia.org/wiki/X86_instruction_listings
https://en.wikipedia.org/wiki/X86-64

