
Friday, February 17, 2022

Computer Systems

Winter 2022

Stanford University

Computer Science Department

Reading: Course Reader: x86-64 Assembly
Language, Textbook: Chapter 3.1-3.4

Lecturer: Chris Gregg

CS 107
Lecture 13:

Assembly Part IV

0x40055d <val_at_index> movslq %esi,%rsi
0x400560 <val_at_index+3> mov (%rdi,%rsi,4),%eax
0x400563 <val_at_index+6> retq

Today's Topics
• Reading: Chapter 3.7.4-3.7.6, 3.8-3.9
• Programs from class: /afs/ir/class/cs107/samples/lect13
• Logistics

• Midterm requests in by Monday morning
• Final day of x86 Assembly Language

• Procedures (from last slide-deck)
• Local storage on the stack
• Local storage in registers
• Recursion

• Arrays
• Structures
• Alignment
• Function pointers

• Assembly wrap-up, and comments on binary bomb assignment.

Array Allocation and Access
• Arrays in C map in a fairly straightforward way to X86 assembly code, thanks to

the addressing modes available in instructions.
• When we perform pointer arithmetic, the assembly code that is produced will have

address computations built into them.
• Optimizing compilers are very good at simplifying the address computations (in lab

you will see another optimizing compiler benefit in the form of division — if the
compiler can avoid dividing, it will!). Because of the transformations, compiler-
generated assembly for arrays often doesn't look like what you are expecting.

• Consider the following form of a data type T and integer constant N:

• The starting location is designated as xA
• The declaration allocates N * sizeof(T) bytes, and gives us an identifier that

we can use as a pointer (but it isn't a pointer!), with a value of xA.

T A[N]

Array Allocation and Access
• Example:

char A[12];
char *B[8];
int C[6];
double *D[5]

Array Element Size Total Size Start address Element i
A 1 12 xA xA + i
B 8 64 xB xB + 8i
C 4 24 xC xC + 4i
D 8 40 xD xD + 8i

• The memory referencing operations in x86-64 are designed to simplify array
access. Suppose we wanted to access C[3] above. If the address of C is in
register %rdx, and 3 is in register %rcx

• The following copies C[3] into %eax,

movl (%rdx,%rcx,4), %eax

Pointer Arithmetic
• C allows arithmetic on pointers, where the computed value is calculated according

to the size of the data type referenced by the pointer.
• The array reference A[i] is identical to *(A+i)
• Example: if the address of array E is in %rdx, and the integer index, i, is in %rcx,

the following are some expressions involving E:

Expression Type Value Assembly Code
E int * xE movq %rdx, %rax

E[0] int

int

M[xE] movl (%rdx), %eax

E[i] int M[xE+4i] movl (%rdx,%rcx,4) %eax

&E[2] int * xE+8 leaq 8(%rdx), %rax

E+i-1 int * xE+4i-4 leaq -4(%rdx,%rcx,4), %rax

*(E+i-3) int M[xE+4i-12] movl -12(%rdx,%rcx,4) %eax

&E[i]-E long i movq %rcx,%rax

Pointer Arithmetic
• Practice: xS is the address of a short integer array, S, stored in %rdx, and a long

integer index, i, is stored in register %rcx.
• For each of the following expressions, give its type, a formula for its value, and an

assembly-code implementation. The result should be stored in %rax if it is a
pointer, and the result should be in register %ax if it has a data type short.

Expression Type Value Assembly Code

S+1

S[3]

&S[i]

S[4*i+1]

S+i-5

Pointer Arithmetic
• Practice: xS is the address of a short integer array, S, stored in %rdx, and a long

integer index, i, is stored in register %rcx.
• For each of the following expressions, give its type, a formula for its value, and an

assembly-code implementation. The result should be stored in %rax if it is a
pointer, and the result should be in register %ax if it has a data type short.

Expression Type Value Assembly Code

S+1 short * xS + 2 leaq 2(%rdx),%rax

S[3] short M[xS + 6] movw 6(%rdx),%ax

&S[i] short * xS + 2i leaq (%rdx,%rcx,2),%rax

S[4*i+1] short M[xS + 8i + 2] movw 2(%rdx,%rcx,8),%ax

S+i-5 short * xS + 2i - 10 leaq -10(%rdx,%rcx,2),%rax

Structures
• The C struct declaration is used to group objects of different types into a single

unit.
• Each "field" is referenced by a name, and can be accessed using dot (.) or (if

there is a pointer to the struct) arrow (->) notation.
• Structures are kept in contiguous memory
• A pointer to a struct is to its first byte, and the compiler maintains the byte offset

information for each field.
• In assembly, the references to the fields are via the byte offsets.

Structures
• Example:
struct rec {
 int i;
 int j;
 int a[2];
 int *p;
};

• This structure has four fields: two 4-byte values of type int, a
two-element array of type int, and an 8-byte int pointer, for a
total of 24 bytes:

Offset 0 4 8 16 24

Contents i j a[0] a[1] p

• The numbers along the top of the diagram are the byte offsets of the fields from
the beginning of the structure.

• Note that the array is embedded in the structure.
• To access the fields, the compiler generates code that adds the field offset to the

address of the structure.

Structures
• Example:
struct rec {
 int i;
 int j;
 int a[2];
 int *p;
};

• This structure has four fields: two 4-byte values of type int, a
two-element array of type int, and an 8-byte int pointer, for a
total of 24 bytes:

Offset 0 4 8 16 24

Contents i j a[0] a[1] p

• Example: Variable r of type struct rec * is in register %rdi. The following copies
element r->i to element r->j:
movl (%rdi), %eax // get r->i
movl %eax, 4(%rdi) // store in r->j

• The offset of i is 0, so i's field is %rdi. The offset of j is 4, so the offset of 4 is
added to the address of %rdi to store into j.

Structures
• Example:
struct rec {
 int i;
 int j;
 int a[2];
 int *p;
};

• This structure has four fields: two 4-byte values of type int, a
two-element array of type int, and an 8-byte int pointer, for a
total of 24 bytes:

Offset 0 4 8 16 24

Contents i j a[0] a[1] p

• We can generate a pointer to a field by adding the field's offset to the struct
address. To generate &(r->a[1]) we add offset 8 + 4 = 12. For a pointer r
in register %rdi and long int variable i in %rsi, we can generate the pointer
value &(r->a[i]) with one instruction:

leaq 8(%rdi,%rsi,4), %rax // set %rax to &r->a[i]

Structures
• Example:
struct rec {
 int i;
 int j;
 int a[2];
 int *p;
};

• This structure has four fields: two 4-byte values of type int, a
two-element array of type int, and an 8-byte int pointer, for a
total of 24 bytes:

Offset 0 4 8 16 24

Contents i j a[0] a[1] p

• The following code implements r->p = &r->a[r->i + r->j];
// r in %rdi
movl 4(%rdi),%eax // get r->j
addl (%rdi),%eax // add r->i
cltq // extend %eax to 8 bytes, %rax
leaq 8(%rdi,%rax,4), %rax // compute &r->a[r->i + r->j]
movq %rax, 16(%rdi) // store in r->p

Structures
• Example:
struct rec {
 int i;
 int j;
 int a[2];
 int *p;
};

• This structure has four fields: two 4-byte values of type int, a
two-element array of type int, and an 8-byte int pointer, for a
total of 24 bytes:

Offset 0 4 8 16 24

Contents i j a[0] a[1] p

• Notice that all struct manipulation is handled at compile time, and the machine
code doesn't contain any information about the field declarations or the names of
the fields.

• The compiler does all the work, keeping track as it produces the assembly code.
• BTW, if you're curious about how the compiler actually does the transformation

from C to assembly, take a compilers class, e.g., CS143.

Data Alignment
• Computer systems often put restrictions on the allowable addresses for primitive

data types, requiring that the address for some objects must be a multiple of
some value K (normally 2, 4, or 8).

• These alignment restrictions simplify the design of the hardware.
• For example, suppose that a processor always fetches 8 bytes from the memory

system, and an address must be a multiple of 8. If we can guarantee that any
double will be aligned to have its address as a multiple of 8, then we can read or
write the values with a single memory access.

• For x86-64, Intel recommends the following alignments for best performance:

K Types
1 char

2 short

4 int, float

8 long, double, char *

Data Alignment
• The compiler enforces alignment by making sure that every data type is organized

in such a way that every field within the struct satisfies the alignment restrictions.
• For example, let's look at the following struct:

struct S1 {
 int i;
 char c;
 int j;
};

• If the compiler used a minimal allocation:
• This would make it impossible to align fields i (offset 0) and j (offset 5). Instead,

the compiler inserts a 3-byte gap between fields c and j:

Offset 0 4 5 9

Contents i c j

Offset 0 4 5 8 12

Contents i c j

• So, don't be surprised if your structs have a sizeof() that is larger than you expect!

Function Pointers in Assembly
• Let's look at the following code:
void *gfind_max(void *arr, int n, size_t elemsz,
 int (*compar)(const void *, const void *))
{
 void *pmax = arr;
 for (int i = 1; i < n; i++) {
 void *ith = (char *)arr + i*elemsz;
 if (compar(ith, pmax) > 0)
 pmax = ith;
 }
 return pmax;
}

int cmp_alpha(const void *p, const void *q)
{
 const char *first = *(const char **)p;
 const char *second = *(const char **)q;
 return strcmp(first, second);
}

int main(int argc, char *argv[])
{
 char **pmax = gfind_max(argv+1, argc-1, sizeof(argv[0]), cmp_alpha);
 printf("max = %s\n", *pmax);
 return 0;
}

Function Pointers in Assembly
• Let's look at the following code:
void *gfind_max(void *arr, int n, size_t elemsz,
 int (*compar)(const void *, const void *))
{
 void *pmax = arr;
 for (int i = 1; i < n; i++) {
 void *ith = (char *)arr + i*elemsz;
 if (compar(ith, pmax) > 0)
 pmax = ith;
 }
 return pmax;
}

int cmp_alpha(const void *p, const void *q)
{
 const char *first = *(const char **)p;
 const char *second = *(const char **)q;
 return strcmp(first, second);
}

int main(int argc, char *argv[])
{
 char **pmax = gfind_max(argv+1, argc-1, sizeof(argv[0]), cmp_alpha);
 printf("max = %s\n", *pmax);
 return 0;
}

• Because compar is a function
pointer, the compiler calls the
function via the address that is
in the compar variable.

• Let's take a look at this in gdb.

References and Advanced Reading
• References:

• Stanford guide to x86-64: https://web.stanford.edu/class/cs107/guide/
x86-64.html

• CS107 one-page of x86-64: https://web.stanford.edu/class/cs107/resources/
onepage_x86-64.pdf

• gdbtui: https://beej.us/guide/bggdb/
• More gdbtui: https://sourceware.org/gdb/onlinedocs/gdb/TUI.html
• Compiler explorer: https://gcc.godbolt.org

• Advanced Reading:
• Stack frame layout on x86-64: https://eli.thegreenplace.net/2011/09/06/stack-

frame-layout-on-x86-64
• x86-64 Intel Software Developer manual: https://software.intel.com/sites/

default/files/managed/39/c5/325462-sdm-vol-1-2abcd-3abcd.pdf
• history of x86 instructions: https://en.wikipedia.org/wiki/X86_instruction_listings
• x86-64 Wikipedia: https://en.wikipedia.org/wiki/X86-64

https://web.stanford.edu/class/cs107/guide/x86-64.html
https://web.stanford.edu/class/cs107/guide/x86-64.html
https://web.stanford.edu/class/cs107/resources/onepage_x86-64.pdf
https://web.stanford.edu/class/cs107/resources/onepage_x86-64.pdf
https://beej.us/guide/bggdb/
https://sourceware.org/gdb/onlinedocs/gdb/TUI.html
https://gcc.godbolt.org
https://eli.thegreenplace.net/2011/09/06/stack-frame-layout-on-x86-64
https://eli.thegreenplace.net/2011/09/06/stack-frame-layout-on-x86-64
https://software.intel.com/sites/default/files/managed/39/c5/325462-sdm-vol-1-2abcd-3abcd.pdf
https://software.intel.com/sites/default/files/managed/39/c5/325462-sdm-vol-1-2abcd-3abcd.pdf
https://software.intel.com/sites/default/files/managed/39/c5/325462-sdm-vol-1-2abcd-3abcd.pdf
https://en.wikipedia.org/wiki/X86_instruction_listings
https://en.wikipedia.org/wiki/X86-64

Extra Slides

Extra Slides

