
Monday, February 28, 2022

Computer Systems

Winter 2022

Stanford University

Computer Science Department

Lecturer: Chris Gregg

CS 107
Lecture 15: Managing

the Heap Part II malloc()
calloc()
realloc()
free()

Today's Topics
• Programs from class: /afs/ir/class/cs107/samples/lect15
• Review of implicit heap allocator
• Explicit heap allocator
• More examples!
• Extra slides: Casting and structs

Implicit Free List (review from Friday)
•On Monday, we discussed the implicit free list, which is one common (though slow...)
way to create a heap allocator. It uses what is called a block header to hold the
information.

•The block header is actually stored in the same memory area as the payload, and it
generally precedes the payload.

88

F

96 bytes
0x100 0x108 0x110 0x118 0x120 0x128 0x130 0x138 0x140 0x148 0x150 0x158

Implicit Free List (review from Monday)
a = malloc(16);

16

U aaaaaaaa 64

F

•This is where things start to get a bit tricky. The heap allocator has 96 bytes, and it
needs to keep the free block information in those 96 bytes (I N C E P T I O N)
•In other words, the heap allocator is using part of the 96 bytes as housekeeping.
•Note here that there are now 16 bytes of overhead, because there are two header
blocks.
•Here, the first 8-byte header block denotes 16 Used bytes, then there is a 16 byte
payload, and then there is another 8-byte header to denote the 64 free bytes after.

96 bytes
0x100 0x108 0x110 0x118 0x120 0x128 0x130 0x138 0x140 0x148 0x150 0x158

Address Value
e 0xffffe820
d 0xffffe818
c 0xffffe810
b 0xffffe808
a 0xffffe800 0x108

Implicit Free List (review from Monday)
a = malloc(16);
b = malloc(8);

16

U aaaaaaaa 8

U bbbb 48

F

•We changed the header to reflect the fact that 8 bytes are going to to b, and we
added a header for the remaining 48 bytes.
•Also, note that the pointer returned for a is 0x108, and the pointer returned for b
is 0x120.

96 bytes
0x100 0x108 0x110 0x118 0x120 0x128 0x130 0x138 0x140 0x148 0x150 0x158

Address Value
e 0xffffe820
d 0xffffe818
c 0xffffe810
b 0xffffe808 0x120
a 0xffffe800 0x108

Implicit Free List (review from Monday)
a = malloc(16);
b = malloc(8);
c = malloc(24);

16

U aaaaaaaa 8

U bbbb 24

U cccccccccccc 16

F

•Now we only have 16 bytes left for payloads…let's free some memory.

96 bytes
0x100 0x108 0x110 0x118 0x120 0x128 0x130 0x138 0x140 0x148 0x150 0x158

Address Value
e 0xffffe820
d 0xffffe818
c 0xffffe810 0x130
b 0xffffe808 0x120
a 0xffffe800 0x108

Implicit Free List (review from Monday)
a = malloc(16);
b = malloc(8);
c = malloc(24);
free(a);

16

U aaaaaaaa 8

U bbbb 24

U cccccccccccc 16

F

•Notice that 0x108 will be passed to free. How do we know how much to free?
•We have to do some pointer arithmetic, so we can grab the 16 from address
0x100 (this diagram does not reflect the free yet).

•As you'll find out when writing your heap allocator: the arithmetic is super
important.

96 bytes
0x100 0x108 0x110 0x118 0x120 0x128 0x130 0x138 0x140 0x148 0x150 0x158

Address Value
e 0xffffe820
d 0xffffe818
c 0xffffe810 0x130
b 0xffffe808 0x120
a 0xffffe800 0x108

Implicit Free List (review from Monday)
a = malloc(16);
b = malloc(8);
c = malloc(24);
free(a);

16

F

8

U bbbb 24

U cccccccccccc 16

F

•The diagram now reflects the free.

96 bytes
0x100 0x108 0x110 0x118 0x120 0x128 0x130 0x138 0x140 0x148 0x150 0x158

Address Value
e 0xffffe820
d 0xffffe818
c 0xffffe810 0x130
b 0xffffe808 0x120
a 0xffffe800 0x108

Implicit Free List (review from Monday)
a = malloc(16);
b = malloc(8);
c = malloc(24);
free(a);
free(c);

16

F

8

U bbbb 24

U cccccccccccc 16

F

•Again, 0x130 is passed in to this free, so we need to figure out that we need to
look at address 0x128 for the amount of bytes to free.

96 bytes
0x100 0x108 0x110 0x118 0x120 0x128 0x130 0x138 0x140 0x148 0x150 0x158

Address Value
e 0xffffe820
d 0xffffe818
c 0xffffe810 0x130
b 0xffffe808 0x120
a 0xffffe800 0x108

Implicit Free List (review from Monday)
a = malloc(16);
b = malloc(8);
c = malloc(24);
free(a);
free(c);

16

F

8

U bbbb 24

F
16

F

•One choice for the free is this diagram. Note that we have actually fragmented
our free space! It looks like we only have a block of 24 bytes and then a block of
16 bytes to allocate, yet we should have a block of 48 bytes (we can save a
header, too!)

96 bytes
0x100 0x108 0x110 0x118 0x120 0x128 0x130 0x138 0x140 0x148 0x150 0x158

Address Value
e 0xffffe820
d 0xffffe818
c 0xffffe810 0x130
b 0xffffe808 0x120
a 0xffffe800 0x108

Implicit Free List (review from Monday)
a = malloc(16);
b = malloc(8);
c = malloc(24);
free(a);
free(c);

16

F

8

U bbbb 48

F

•When we combine free blocks, this is called coalescing, and it is an important tool
that the heap allocator uses to keep memory as unfragmented as possible.
•We can't coalesce any more because b is in the middle, and we absolutely cannot
move that block until the program we gave it to frees it.

96 bytes
0x100 0x108 0x110 0x118 0x120 0x128 0x130 0x138 0x140 0x148 0x150 0x158

Address Value
e 0xffffe820
d 0xffffe818
c 0xffffe810 0x130
b 0xffffe808 0x120
a 0xffffe800 0x108

Implicit Free List

16

F

8

U bbbb 48

F

96 bytes
0x100 0x108 0x110 0x118 0x120 0x128 0x130 0x138 0x140 0x148 0x150 0x158

•Let's answer the questions we posed before:
•How do we track the information in a block?

•The header block that holds the bytes in the block and the state (free or used)
•How do we organize/find free blocks?

•Linear search, starting from the first block.
•How do we pick which free block from available options?

• If the block is free and has enough space we can choose it, though there are other options
(covered in the next few slides).

•What do we do with excess space when allocating a block?
• If we can fit another header and still have at least a block's worth of space, we can do that. If
we can't, it should just become part of the block we are allocating.

•How do we recycle a freed block?
•Mark it free, and coalesce if we can.

Placement: first-fit, next-fit, best-fit
The method we have described simply finds the first available block that is free and fits the
request, and then starts from the beginning again on a future allocation. This is called a
first-fit placement policy. One drawback is that you always have to start from the beginning
of the heap, and it can be slow. Another drawback is that it can leave "splinters" (small free
blocks) towards the beginning of the list. One advantage is that it leaves large blocks
towards the end of the list, which allows for larger allocations if necessary.

A second method is called next-fit, and was first proposed by Donald Knuth. With next-fit,
you start looking for follow-on blocks after the location of the last allocation. If you found a
suitable block before, you have a good chance to find another one in the same location. It is
still not clear whether next-fit leads to better (or comparable) memory utilization.

The final method is called best-fit, and relies on searching the entire heap to find a block
that matches the requested allocation the best. The obvious drawback of best-fit is that it
requires an exhaustive search of the list.

Splitting and Coalescing
We have already described both splitting and coalescing as used in the implicit free list
implementation.

Splitting the memory block is necessary when you have one large block to work with
(which is what you will have for the heap allocator assignment). However, the heap
allocator can request an increase in the size of the block of memory (using the sbrk
system call), meaning that you could have a policy to use the entire block and just
request more. But, we aren't going to cover that low level in this course.

Coalescing does not have to happen when you free — you can postpone coalescing
until future mallocs or reallocs, and while it makes malloc a bit slower, frees are
lighting fast.

More on Coalescing: coalescing backwards
Coalescing forwards is straightforward:

16

F

8

U bbbb 24

F
8

F

96 bytes
0x100 0x108 0x110 0x118 0x120 0x128 0x130 0x138 0x140 0x148 0x150 0x158

If we just freed the 24-byte block, we know exactly where the next block is in order to
see if it (and subsequent blocks) are free.

However, what if we had just freed the 8 byte block? How could we coalesce the two
blocks?

One way would be to look through the whole list from the beginning, keeping track of
where the just-freed block is. But…this is slow.

More on Coalescing: coalescing backwards
Coalescing forwards is straightforward:

16

F

8

U bbbb 24

F
8

F

96 bytes
0x100 0x108 0x110 0x118 0x120 0x128 0x130 0x138 0x140 0x148 0x150 0x158

Another method (described by Knuth) is to keep a footer on each block, as well. The footer is identical
to the header. The above list would look like this with headers and footers (assume we were using them
the whole time, and we have to add more space because of the extra overhead):

16

F

16

F

8

U bbbb 8

U
24

F

24

F

8

F

8

F

160 bytes
0x100 0x108 0x110 0x118 0x120 0x128 0x130 0x138 0x140 0x148 0x150 0x158 0x160 0x168 0x170 0x178

Now, let's say we just freed the 8 byte block at 0x168. We can look eight bytes back (to
0x160) at the footer for the 24-byte block, and we can see that it is also free, and we
can coalesce.

More on Coalescing: coalescing backwards

16

F

16

F

8

U bbbb 8

U
24

F

24

F

8

F

8

F

160 bytes
0x100 0x108 0x110 0x118 0x120 0x128 0x130 0x138 0x140 0x148 0x150 0x158 0x160 0x168 0x170 0x178

Freed block

More on Coalescing: coalescing backwards

16

F

16

F

8

U bbbb 8

U
24

F

24

F

8

F

8

F

160 bytes
0x100 0x108 0x110 0x118 0x120 0x128 0x130 0x138 0x140 0x148 0x150 0x158 0x160 0x168 0x170 0x178

Freed block
header

More on Coalescing: coalescing backwards

16

F

16

F

8

U bbbb 8

U
24

F

24

F

8

F

8

F

160 bytes
0x100 0x108 0x110 0x118 0x120 0x128 0x130 0x138 0x140 0x148 0x150 0x158 0x160 0x168 0x170 0x178

Footer for
previous

block (also
free)

More on Coalescing: coalescing backwards

16

F

16

F

8

U bbbb 8

U
24

F

24

F

8

F

8

F

160 bytes
0x100 0x108 0x110 0x118 0x120 0x128 0x130 0x138 0x140 0x148 0x150 0x158 0x160 0x168 0x170 0x178

Entire free
area

16

F

16

F

8

U bbbb 8

U
56

F

56

F

160 bytes
0x100 0x108 0x110 0x118 0x120 0x128 0x130 0x138 0x140 0x148 0x150 0x158 0x160 0x168 0x170 0x178

After coalescing
backwards

Explicit Free List
One critical issue with the implicit list is the problem with the linear search to find free
blocks (by the way: the implicit list just keeps a pointer to the first block for first-fit).

The explicit free list solves this problem by keeping a linked list of free blocks embedded
in the memory. This is best shown with an example. As before, let's start with an empty
block of memory. With an explicit list, we keep a pointer to the first free block.

152

F

160 bytes
0x100 0x108 0x110 0x118 0x120 0x128 0x130 0x138 0x140 0x148 0x150 0x158 0x160 0x168 0x170 0x178

We use two blocks in the payload of the free block to point to the next and previous free
blocks.

Explicit Free List
One critical issue with the implicit list is the problem with the linear search to find free
blocks (by the way: the implicit list just keeps a pointer to the first block for first-fit).

The explicit free list solves this problem by keeping a linked list of free blocks embedded
in the memory. This is best shown with an example. As before, let's start with an empty
block of memory. With an explicit list, we keep a pointer to the first free block.

152

F

160 bytes
0x100 0x108 0x110 0x118 0x120 0x128 0x130 0x138 0x140 0x148 0x150 0x158 0x160 0x168 0x170 0x178

We use two blocks in the payload of the free block to point to the next and previous free
blocks.

Explicit Free List
One critical issue with the implicit list is the problem with the linear search to find free
blocks (by the way: the implicit list just keeps a pointer to the first block for first-fit).

The explicit free list solves this problem by keeping a linked list of free blocks embedded
in the memory. This is best shown with an example. As before, let's start with an empty
block of memory. With an explicit list, we keep a pointer to the first free block.

152

F

P:

0x0

N:

0x0

160 bytes
0x100 0x108 0x110 0x118 0x120 0x128 0x130 0x138 0x140 0x148 0x150 0x158 0x160 0x168 0x170 0x178

We use two blocks in the payload of the free block to point to the next and previous free
blocks. In this case, there aren't any more free blocks, so they are NULL pointers.

0x100 First Free Block

Explicit Free List

16

U aaaaaaaa 96

F
P:

0x0
N:

0x0

160 bytes
0x100 0x108 0x110 0x118 0x120 0x128 0x130 0x138 0x140 0x148 0x150 0x158 0x160 0x168 0x170 0x178

a = malloc(16);

If we malloc 16, then we allocate as we would in the implicit list, but now we have a
pointer to the next free block, and that block still has no previous or next free block.
Notice something important: the two pointers we had just got eaten up by the payload!

0x118 First Free Block

Explicit Free List

16

U aaaaaaaa 16

U bbbbbbbb 24

U cccccccccccc 48

F
P:

0x0
N:

0x0

160 bytes
0x100 0x108 0x110 0x118 0x120 0x128 0x130 0x138 0x140 0x148 0x150 0x158 0x160 0x168 0x170 0x178

a = malloc(16);
b = malloc(8);
c = malloc(24);
We continue the process. Note that we must leave at least 16 bytes in a block to save
room for pointers if we eventually free (e.g., b has more space than it requested).

0x150 First Free Block

Explicit Free List
a = malloc(16);
b = malloc(8);
c = malloc(24);
free(b);

Now when we free b, we point to the newly freed memory, and update the pointers

16

U aaaaaaaa 16

U bbbbbbbb 24

U cccccccccccc 48

F
P:

0x0
N:

0x0

160 bytes
0x100 0x108 0x110 0x118 0x120 0x128 0x130 0x138 0x140 0x148 0x150 0x158 0x160 0x168 0x170 0x178

0x150 First Free Block

Explicit Free List

160 bytes
0x100 0x108 0x110 0x118 0x120 0x128 0x130 0x138 0x140 0x148 0x150 0x158 0x160 0x168 0x170 0x178

a = malloc(16);
b = malloc(8);
c = malloc(24);
free(b);

Now when we free b, we point to the newly freed memory, and update the pointers

16

U aaaaaaaa 16

F
P:

0x0
N:

0x150
24

U cccccccccccc 48

F
P:

0x118
N:

0x0

0x118 First Free Block The newly freed block becomes the first free block (it is
added to the beginning of the list)

Explicit Free List

160 bytes
0x100 0x108 0x110 0x118 0x120 0x128 0x130 0x138 0x140 0x148 0x150 0x158 0x160 0x168 0x170 0x178

Why is this better than the implicit free list?

16

U aaaaaaaa 16

F
P:

0x0
N:

0x150
24

U cccccccccccc 48

F
P:

0x118
N:

0x0

0x118 First Free Block

Explicit Free List

160 bytes
0x100 0x108 0x110 0x118 0x120 0x128 0x130 0x138 0x140 0x148 0x150 0x158 0x160 0x168 0x170 0x178

Why is this better than the implicit free list?

16

U aaaaaaaa 16

F
P:

0x0
N:

0x150
24

U cccccccccccc 48

F
P:

0x118
N:

0x0

0x118

•We can now traverse only the free blocks!
•This is much faster than traversing the whole list.
•For instance, if we now tried to malloc 24 bytes, we would only need to look
through two blocks (0x118 and then 0x150) to find enough space.

First Free Block

More on Implicit and Explicit Heap Allocation
• For Assignment 7, you will be writing two heap allocators: implicit and explicit.
• Let's perform the following allocation and free on both allocators, to practice more.

Note: the method outlined here doesn't have to be exactly how you implement the
allocators (and in fact, they can be improved conceptually to be faster, etc.), but this
should give you an overview of the differences and some details.

a 0 24
a 1 20
a 2 16
f 1
a 3 32
a 4 12
f 3
r 2 60

allocation 0 for 24 bytes
allocation 1 for 20 bytes
allocation 2 for 16 bytes
free 1
allocation 3 for 32 bytes
allocation 4 for 12 bytes
free 3
reallocate 2 to 60 bytes

Implict Heap Allocation

Heap size: 256 bytes
0 8 10 18 20 28 30 38 40 48 50 58 60 68 70 78 80 88 90 98 a0 a8 b0 b8 c0 c8 d0 d8 e0 e8 f0 f8

• We will start with the following free heap

• Headers will take up 8 bytes.

a 0 24
a 1 20
a 2 16
f 1
a 3 32
a 4 12
f 3
r 2 60

• Addresses are in hex

Implict Heap Allocation

Heap size: 256 bytes
0 8 10 18 20 28 30 38 40 48 50 58 60 68 70 78 80 88 90 98 a0 a8 b0 b8 c0 c8 d0 d8 e0 e8 f0 f8

248

F

• After initialization, header holds the value of the whole free area, and designates it as (F)ree

a 0 24
a 1 20
a 2 16
f 1
a 3 32
a 4 12
f 3
r 2 60

 pointer to heap • Addresses are in hex
• Byte allocations are in decimal

Implict Heap Allocation

Heap size: 256 bytes
0 8 10 18 20 28 30 38 40 48 50 58 60 68 70 78 80 88 90 98 a0 a8 b0 b8 c0 c8 d0 d8 e0 e8 f0 f8

248

F

• Allocation of 24 bytes

a 0 24
a 1 20
a 2 16
f 1
a 3 32
a 4 12
f 3
r 2 60

 pointer to heap
1. Is the block free? yes

yes

use this block

2. Is there enough space for the request?

Implict Heap Allocation

Heap size: 256 bytes
0 8 10 18 20 28 30 38 40 48 50 58 60 68 70 78 80 88 90 98 a0 a8 b0 b8 c0 c8 d0 d8 e0 e8 f0 f8

24

U

216

F

a 0 24
a 1 20
a 2 16
f 1
a 3 32
a 4 12
f 3
r 2 60

 pointer to heap
yes

yes

use this block

• Allocation of 24 bytes

1. Is the block free?
2. Is there enough space for the request?

0000000

Implict Heap Allocation
• Allocation of 20 bytes

a 0 24
a 1 20
a 2 16
f 1
a 3 32
a 4 12
f 3
r 2 60

 pointer to heap
1. Is the block free? no

Heap size: 256 bytes
0 8 10 18 20 28 30 38 40 48 50 58 60 68 70 78 80 88 90 98 a0 a8 b0 b8 c0 c8 d0 d8 e0 e8 f0 f8

24

U

216

F0000000

2. Go to next block (use pointer arithmetic to get there)

Implict Heap Allocation
• Allocation of 20 bytes

a 0 24
a 1 20
a 2 16
f 1
a 3 32
a 4 12
f 3
r 2 60

 pointer to heap
1. Is the block free?
2. Is there enough space for the request?

yes

Heap size: 256 bytes
0 8 10 18 20 28 30 38 40 48 50 58 60 68 70 78 80 88 90 98 a0 a8 b0 b8 c0 c8 d0 d8 e0 e8 f0 f8

24

U

216

F

yes

use this block

0000000

Implict Heap Allocation
• Allocation of 20 bytes

a 0 24
a 1 20
a 2 16
f 1
a 3 32
a 4 12
f 3
r 2 60

 pointer to heap
1. Is the block free?
2. Is there enough space for the request?

yes

Heap size: 256 bytes
0 8 10 18 20 28 30 38 40 48 50 58 60 68 70 78 80 88 90 98 a0 a8 b0 b8 c0 c8 d0 d8 e0 e8 f0 f8

24

U

24

U

184

F

yes

use this block

Why 24 bytes? 8-byte alignment

0000000 1111111

Is this strictly necessary here? No — the header
blocks don't have to be aligned to 8-byte
boundaries. But it may make it easier! Remember,
all allocations must be on an 8-byte alignment.

Implict Heap Allocation
• Allocation of 16 bytes

a 0 24
a 1 20
a 2 16
f 1
a 3 32
a 4 12
f 3
r 2 60

 pointer to heap
1. Is the block free?
2. Go to next block (use pointer arithmetic to get there)

no

Heap size: 256 bytes
0 8 10 18 20 28 30 38 40 48 50 58 60 68 70 78 80 88 90 98 a0 a8 b0 b8 c0 c8 d0 d8 e0 e8 f0 f8

24

U

24

U

184

F0000000 1111111

Implict Heap Allocation
• Allocation of 16 bytes

a 0 24
a 1 20
a 2 16
f 1
a 3 32
a 4 12
f 3
r 2 60

 pointer to heap
1. Is the block free?
2. Go to next block (use pointer arithmetic to get there)

no

Heap size: 256 bytes
0 8 10 18 20 28 30 38 40 48 50 58 60 68 70 78 80 88 90 98 a0 a8 b0 b8 c0 c8 d0 d8 e0 e8 f0 f8

24

U

24

U

184

F0000000 1111111

Implict Heap Allocation
• Allocation of 16 bytes

a 0 24
a 1 20
a 2 16
f 1
a 3 32
a 4 12
f 3
r 2 60

 pointer to heap
1. Is the block free?
2. Is there enough space for the request?

yes

Heap size: 256 bytes
0 8 10 18 20 28 30 38 40 48 50 58 60 68 70 78 80 88 90 98 a0 a8 b0 b8 c0 c8 d0 d8 e0 e8 f0 f8

24

U

24

U

184

F

yes

use this block

0000000 1111111

Implict Heap Allocation
• Allocation of 16 bytes

a 0 24
a 1 20
a 2 16
f 1
a 3 32
a 4 12
f 3
r 2 60

 pointer to heap
1. Is the block free?
2. Is there enough space for the request?

yes

Heap size: 256 bytes
0 8 10 18 20 28 30 38 40 48 50 58 60 68 70 78 80 88 90 98 a0 a8 b0 b8 c0 c8 d0 d8 e0 e8 f0 f8

24

U

24

U

16

U

160

F

yes

use this block

0000000 1111111 2222

Implict Heap Allocation
• Free 1

a 0 24
a 1 20
a 2 16
f 1
a 3 32
a 4 12
f 3
r 2 60

 pointer to heap
1. Mark as free

Heap size: 256 bytes
0 8 10 18 20 28 30 38 40 48 50 58 60 68 70 78 80 88 90 98 a0 a8 b0 b8 c0 c8 d0 d8 e0 e8 f0 f8

24

U

24

U

16

U

160

F0000000 1111111 2222

Implict Heap Allocation
• Free 1

a 0 24
a 1 20
a 2 16
f 1
a 3 32
a 4 12
f 3
r 2 60

 pointer to heap
1. Mark as free

Heap size: 256 bytes
0 8 10 18 20 28 30 38 40 48 50 58 60 68 70 78 80 88 90 98 a0 a8 b0 b8 c0 c8 d0 d8 e0 e8 f0 f8

24

U

24

F

16

U

160

F0000000 2222

Implict Heap Allocation
• Allocation of 32 bytes

a 0 24
a 1 20
a 2 16
f 1
a 3 32
a 4 12
f 3
r 2 60

 pointer to heap
1. Is the block free? no

0000000

Heap size: 256 bytes
0 8 10 18 20 28 30 38 40 48 50 58 60 68 70 78 80 88 90 98 a0 a8 b0 b8 c0 c8 d0 d8 e0 e8 f0 f8

24

U

24

F

16

U

160

F

2. Go to next block (use pointer arithmetic to get there)

2222

Implict Heap Allocation
• Allocation of 32 bytes

a 0 24
a 1 20
a 2 16
f 1
a 3 32
a 4 12
f 3
r 2 60

 pointer to heap
1. Is the block free?
2. Is there enough space for the request?

yes

0000000

Heap size: 256 bytes
0 8 10 18 20 28 30 38 40 48 50 58 60 68 70 78 80 88 90 98 a0 a8 b0 b8 c0 c8 d0 d8 e0 e8 f0 f8

24

U

24

F

16

U

160

F

no
3. Go to next block (use pointer arithmetic to get there)

2222

Implict Heap Allocation
• Allocation of 32 bytes

a 0 24
a 1 20
a 2 16
f 1
a 3 32
a 4 12
f 3
r 2 60

 pointer to heap
1. Is the block free? no

0000000

Heap size: 256 bytes
0 8 10 18 20 28 30 38 40 48 50 58 60 68 70 78 80 88 90 98 a0 a8 b0 b8 c0 c8 d0 d8 e0 e8 f0 f8

24

U

24

F

16

U

160

F

2. Go to next block (use pointer arithmetic to get there)

2222

Implict Heap Allocation
• Allocation of 32 bytes

a 0 24
a 1 20
a 2 16
f 1
a 3 32
a 4 12
f 3
r 2 60

 pointer to heap
1. Is the block free?
2. Is there enough space for the request?

yes

0000000

Heap size: 256 bytes
0 8 10 18 20 28 30 38 40 48 50 58 60 68 70 78 80 88 90 98 a0 a8 b0 b8 c0 c8 d0 d8 e0 e8 f0 f8

24

U

24

F

16

U

160

F

yes

use this block

2222

Implict Heap Allocation
• Allocation of 32 bytes

a 0 24
a 1 20
a 2 16
f 1
a 3 32
a 4 12
f 3
r 2 60

 pointer to heap
1. Is the block free?
2. Is there enough space for the request?

yes

0000000

Heap size: 256 bytes
0 8 10 18 20 28 30 38 40 48 50 58 60 68 70 78 80 88 90 98 a0 a8 b0 b8 c0 c8 d0 d8 e0 e8 f0 f8

24

U

24

F

16

U

32

U

120

F

yes

use this block

2222 3333333333

Implict Heap Allocation
• Allocation of 12 bytes

a 0 24
a 1 20
a 2 16
f 1
a 3 32
a 4 12
f 3
r 2 60

 pointer to heap
1. Is the block free? no

0000000

Heap size: 256 bytes
0 8 10 18 20 28 30 38 40 48 50 58 60 68 70 78 80 88 90 98 a0 a8 b0 b8 c0 c8 d0 d8 e0 e8 f0 f8

24

U

24

F

16

U

32

U

120

F2222 3333333333

2. Go to next block (use pointer arithmetic to get there)

Implict Heap Allocation
• Allocation of 12 bytes

a 0 24
a 1 20
a 2 16
f 1
a 3 32
a 4 12
f 3
r 2 60

 pointer to heap
1. Is the block free? yes

0000000

Heap size: 256 bytes
0 8 10 18 20 28 30 38 40 48 50 58 60 68 70 78 80 88 90 98 a0 a8 b0 b8 c0 c8 d0 d8 e0 e8 f0 f8

24

U

24

F

16

U

32

U

120

F2222 3333333333

2. Is there enough space for request? yes

use this block

Implict Heap Allocation
• Allocation of 12 bytes

a 0 24
a 1 20
a 2 16
f 1
a 3 32
a 4 12
f 3
r 2 60

 pointer to heap
1. Is the block free? yes

0000000

Heap size: 256 bytes
0 8 10 18 20 28 30 38 40 48 50 58 60 68 70 78 80 88 90 98 a0 a8 b0 b8 c0 c8 d0 d8 e0 e8 f0 f8

24

U

24

U

16

U

32

U

120

F2222 3333333333

2. Is there enough space for request? yes

use this block

4444444

Why not 12 or 16? alignment and not enough space after

Implict Heap Allocation
• Free 3

a 0 24
a 1 20
a 2 16
f 1
a 3 32
a 4 12
f 3
r 2 60

 pointer to heap
1. Set to free

0000000

Heap size: 256 bytes
0 8 10 18 20 28 30 38 40 48 50 58 60 68 70 78 80 88 90 98 a0 a8 b0 b8 c0 c8 d0 d8 e0 e8 f0 f8

24

U

24

U

16

U

32

U

120

F2222 33333333334444444

Implict Heap Allocation
• Free 3

a 0 24
a 1 20
a 2 16
f 1
a 3 32
a 4 12
f 3
r 2 60

 pointer to heap
1. Set to free

0000000

Heap size: 256 bytes
0 8 10 18 20 28 30 38 40 48 50 58 60 68 70 78 80 88 90 98 a0 a8 b0 b8 c0 c8 d0 d8 e0 e8 f0 f8

24

U

24

U

16

U

32

F

120

F22224444444

No coalescing for implicit!

Implict Heap Allocation
• Realloc 2 to 60 bytes

a 0 24
a 1 20
a 2 16
f 1
a 3 32
a 4 12
f 3
r 2 60

 pointer to heap
1. Enough space after?

0000000

Heap size: 256 bytes
0 8 10 18 20 28 30 38 40 48 50 58 60 68 70 78 80 88 90 98 a0 a8 b0 b8 c0 c8 d0 d8 e0 e8 f0 f8

24

U

24

U

16

U

32

F

120

F22224444444

yes (take as much space to the right as
possible, but only for realloc, not

malloc)
If no, we would have had to move
the block by searching through he
whole list for a spot with enough

space (see the next slide)

Implict Heap Allocation
• Realloc 2 to 60 bytes

a 0 24
a 1 20
a 2 16
f 1
a 3 32
a 4 12
f 3
r 2 60

 pointer to heap
1. Is the block free?

0000000

Heap size: 256 bytes
0 8 10 18 20 28 30 38 40 48 50 58 60 68 70 78 80 88 90 98 a0 a8 b0 b8 c0 c8 d0 d8 e0 e8 f0 f8

24

U

24

U

16

U

32

F

16

U

96

F22224444444

no
Check next block

5555

Assume, for a moment, that there had not been
space. We would have started searching

Implict Heap Allocation
• Realloc 2 to 60 bytes

a 0 24
a 1 20
a 2 16
f 1
a 3 32
a 4 12
f 3
r 2 60

 pointer to heap
1. Is the block free?

0000000

Heap size: 256 bytes
0 8 10 18 20 28 30 38 40 48 50 58 60 68 70 78 80 88 90 98 a0 a8 b0 b8 c0 c8 d0 d8 e0 e8 f0 f8

24

U

24

U

16

U

32

F

16

U

96

F22224444444

no
Check next block

5555

Assume, for a moment, that there had not been
space. We would have started searching

Implict Heap Allocation
• Realloc 2 to 60 bytes

a 0 24
a 1 20
a 2 16
f 1
a 3 32
a 4 12
f 3
r 2 60

 pointer to heap
1. Is the block free?

0000000

Heap size: 256 bytes
0 8 10 18 20 28 30 38 40 48 50 58 60 68 70 78 80 88 90 98 a0 a8 b0 b8 c0 c8 d0 d8 e0 e8 f0 f8

24

U

24

U

16

U

32

F

16

U

96

F22224444444

no
Check next block

5555

Assume, for a moment, that there had not been
space. We would have started searching

Implict Heap Allocation
• Realloc 2 to 60 bytes

a 0 24
a 1 20
a 2 16
f 1
a 3 32
a 4 12
f 3
r 2 60

 pointer to heap
1. Is the block free?

0000000

Heap size: 256 bytes
0 8 10 18 20 28 30 38 40 48 50 58 60 68 70 78 80 88 90 98 a0 a8 b0 b8 c0 c8 d0 d8 e0 e8 f0 f8

24

U

24

U

16

U

32

F

16

U

96

F22224444444

yes

Check next block

5555

Assume, for a moment, that there had not been
space. We would have started searching

2. Is there enough space? no

Implict Heap Allocation
• Realloc 2 to 60 bytes

a 0 24
a 1 20
a 2 16
f 1
a 3 32
a 4 12
f 3
r 2 60

 pointer to heap
1. Is the block free?

0000000

Heap size: 256 bytes
0 8 10 18 20 28 30 38 40 48 50 58 60 68 70 78 80 88 90 98 a0 a8 b0 b8 c0 c8 d0 d8 e0 e8 f0 f8

24

U

24

U

16

U

32

F

16

U

96

F22224444444

no

5555

Assume, for a moment, that there had not been
space. We would have started searching

Check next block

Implict Heap Allocation
• Realloc 2 to 60 bytes

a 0 24
a 1 20
a 2 16
f 1
a 3 32
a 4 12
f 3
r 2 60

 pointer to heap
1. Is the block free?

0000000

Heap size: 256 bytes
0 8 10 18 20 28 30 38 40 48 50 58 60 68 70 78 80 88 90 98 a0 a8 b0 b8 c0 c8 d0 d8 e0 e8 f0 f8

24

U

24

U

16

U

32

F

16

U

96

F22224444444

yes
2. Is there enough room? yes

Move 2, free, and update

5555

Assume, for a moment, that there had not been
space. We would have started searching

Implict Heap Allocation
• Realloc 2 to 60 bytes

a 0 24
a 1 20
a 2 16
f 1
a 3 32
a 4 12
f 3
r 2 60

 pointer to heap
1. Is the block free?

0000000

Heap size: 256 bytes
0 8 10 18 20 28 30 38 40 48 50 58 60 68 70 78 80 88 90 98 a0 a8 b0 b8 c0 c8 d0 d8 e0 e8 f0 f8

24

U

24

U

16

F

32

F

16

U

64

F

24

F222222222222222222224444444

yes
2. Is there enough room? yes

Move 2, free, and update

5555

Assume, for a moment, that there had not been
space. We would have started searching

Implict Heap Allocation
• Realloc 2 to 60 bytes

a 0 24
a 1 20
a 2 16
f 1
a 3 32
a 4 12
f 3
r 2 60

 pointer to heap
1. Is the block free?

0000000

Heap size: 256 bytes
0 8 10 18 20 28 30 38 40 48 50 58 60 68 70 78 80 88 90 98 a0 a8 b0 b8 c0 c8 d0 d8 e0 e8 f0 f8

24

U

24

U

16

U

32

F

120

F22224444444

yes
2. Is there enough room? yes (take as much as

possible to the right)
Back to the version where we do have space, if we

count all the possible free space to the right

Implict Heap Allocation
• Realloc 2 to 60 bytes

a 0 24
a 1 20
a 2 16
f 1
a 3 32
a 4 12
f 3
r 2 60

 pointer to heap
1. Is the block free?

0000000

Heap size: 256 bytes
0 8 10 18 20 28 30 38 40 48 50 58 60 68 70 78 80 88 90 98 a0 a8 b0 b8 c0 c8 d0 d8 e0 e8 f0 f8

24

U

24

U

64

U

112

F222222222222222222224444444

yes
2. Is there enough room? yes (take as much as

possible to the right)3. Expand block
Back to the version where we do have space, if we

count all the possible free space to the right

Explicit Heap Allocation

Heap size: 256 bytes
0 8 10 18 20 28 30 38 40 48 50 58 60 68 70 78 80 88 90 98 a0 a8 b0 b8 c0 c8 d0 d8 e0 e8 f0 f8

248

F \0 \0

• After initialization, header holds the value of the whole free area, and designates it as (F)ree

a 0 24
a 1 20
a 2 16
f 1
a 3 32
a 4 12
f 3
r 2 60

 pointer to free block • Addresses are in hex
• Byte allocations are in decimal
• The pointer to the heap is always to a free block!
• For explicit, we will have two pointers that live in the

potential payload area (in yellow).
• The pointers are the previous and next pointers for

our linked list, although in this case they will both be
NULL because there aren't any other nodes.

next prev

Explicit Heap Allocation

Heap size: 256 bytes
0 8 10 18 20 28 30 38 40 48 50 58 60 68 70 78 80 88 90 98 a0 a8 b0 b8 c0 c8 d0 d8 e0 e8 f0 f8

248

F \0 \0

• Allocate 24 bytes

a 0 24
a 1 20
a 2 16
f 1
a 3 32
a 4 12
f 3
r 2 60

• Is there enough space? pointer to free block yes
use this block

next prev

Explicit Heap Allocation

Heap size: 256 bytes
0 8 10 18 20 28 30 38 40 48 50 58 60 68 70 78 80 88 90 98 a0 a8 b0 b8 c0 c8 d0 d8 e0 e8 f0 f8

24

U

216

F \0 \0

• Allocate 24 bytes

a 0 24
a 1 20
a 2 16
f 1
a 3 32
a 4 12
f 3
r 2 60

• Is there enough space? pointer to free block yes
use this block

• The pointers become part of the allocated space,
because we don't need them now!

• We update the heap pointer to point to a free
block.

0000000

next prev

Explicit Heap Allocation

Heap size: 256 bytes
0 8 10 18 20 28 30 38 40 48 50 58 60 68 70 78 80 88 90 98 a0 a8 b0 b8 c0 c8 d0 d8 e0 e8 f0 f8

24

U

216

F \0 \0

• Allocate 20 bytes

a 0 24
a 1 20
a 2 16
f 1
a 3 32
a 4 12
f 3
r 2 60

• Is there enough space? pointer to free block yes
use this block

• The pointers become part of the allocated space,
because we don't need them now!

• We update the heap pointer to point to a free
block.

0000000

next prev

Explicit Heap Allocation

Heap size: 256 bytes
0 8 10 18 20 28 30 38 40 48 50 58 60 68 70 78 80 88 90 98 a0 a8 b0 b8 c0 c8 d0 d8 e0 e8 f0 f8

24

U

24

U

184

F \0 \0

• Allocate 20 bytes

a 0 24
a 1 20
a 2 16
f 1
a 3 32
a 4 12
f 3
r 2 60

• Is there enough space? pointer to free block yes
use this block

• The pointers become part of the allocated space,
because we don't need them now!

• We update the heap pointer to point to a free
block.

0000000 1111111

next prev

Explicit Heap Allocation

Heap size: 256 bytes
0 8 10 18 20 28 30 38 40 48 50 58 60 68 70 78 80 88 90 98 a0 a8 b0 b8 c0 c8 d0 d8 e0 e8 f0 f8

24

U

24

U

184

F \0 \0

• Allocate 16 bytes

a 0 24
a 1 20
a 2 16
f 1
a 3 32
a 4 12
f 3
r 2 60

• Is there enough space? pointer to free block yes
use this block

• The pointers become part of the allocated space,
because we don't need them now!

• We update the heap pointer to point to a free
block.

0000000 1111111

next prev

Explicit Heap Allocation

Heap size: 256 bytes
0 8 10 18 20 28 30 38 40 48 50 58 60 68 70 78 80 88 90 98 a0 a8 b0 b8 c0 c8 d0 d8 e0 e8 f0 f8

24

U

24

U

16

U

160

F \0 \0

• Allocate 16 bytes

a 0 24
a 1 20
a 2 16
f 1
a 3 32
a 4 12
f 3
r 2 60

• Is there enough space? pointer to free block yes
use this block

• The pointers become part of the allocated space,
because we don't need them now!

• We update the heap pointer to point to a free
block.

0000000 1111111 2222
next prev

Explicit Heap Allocation

Heap size: 256 bytes
0 8 10 18 20 28 30 38 40 48 50 58 60 68 70 78 80 88 90 98 a0 a8 b0 b8 c0 c8 d0 d8 e0 e8 f0 f8

24

U

24

U

16

U

160

F \0 \0

• Free 1

a 0 24
a 1 20
a 2 16
f 1
a 3 32
a 4 12
f 3
r 2 60

• Free, and add to linked list pointer to free block

0000000 1111111 2222
next prev

Explicit Heap Allocation

Heap size: 256 bytes
0 8 10 18 20 28 30 38 40 48 50 58 60 68 70 78 80 88 90 98 a0 a8 b0 b8 c0 c8 d0 d8 e0 e8 f0 f8

24

U

24

F 58 \0 16

U
160

F \0 20

• Free 1

a 0 24
a 1 20
a 2 16
f 1
a 3 32
a 4 12
f 3
r 2 60

• Free, and add to linked list
• (remember to update all necessary

doubly-linked list pointers!)

 pointer to free block

0000000 2222
next prevnext prev

Explicit Heap Allocation

Heap size: 256 bytes
0 8 10 18 20 28 30 38 40 48 50 58 60 68 70 78 80 88 90 98 a0 a8 b0 b8 c0 c8 d0 d8 e0 e8 f0 f8

24

U

24

F 58 \0 16

U
160

F \0 20

• Allocate 32 bytes

a 0 24
a 1 20
a 2 16
f 1
a 3 32
a 4 12
f 3
r 2 60

• Check head of list (green) — is there enough
room?

 pointer to free block

0000000 2222

no
Follow next pointer

next prevnext prev

Explicit Heap Allocation

Heap size: 256 bytes
0 8 10 18 20 28 30 38 40 48 50 58 60 68 70 78 80 88 90 98 a0 a8 b0 b8 c0 c8 d0 d8 e0 e8 f0 f8

24

U

24

F 58 \0 16

U
160

F \0 20

• Allocate 32 bytes

a 0 24
a 1 20
a 2 16
f 1
a 3 32
a 4 12
f 3
r 2 60

 pointer to free block

0000000 2222
next prevnext prev

Explicit Heap Allocation

Heap size: 256 bytes
0 8 10 18 20 28 30 38 40 48 50 58 60 68 70 78 80 88 90 98 a0 a8 b0 b8 c0 c8 d0 d8 e0 e8 f0 f8

24

U

24

F 58 \0 16

U
160

F \0 20

• Allocate 32 bytes

a 0 24
a 1 20
a 2 16
f 1
a 3 32
a 4 12
f 3
r 2 60

• Check node (green) in list — is there enough
room?

 pointer to free block

0000000 2222

yes
add here and update list

next prevnext prev

Explicit Heap Allocation

Heap size: 256 bytes
0 8 10 18 20 28 30 38 40 48 50 58 60 68 70 78 80 88 90 98 a0 a8 b0 b8 c0 c8 d0 d8 e0 e8 f0 f8

24

U

24

F 88 \0 16

U
32

U

120

F \0 20

• Allocate 32 bytes

a 0 24
a 1 20
a 2 16
f 1
a 3 32
a 4 12
f 3
r 2 60

• Check node in list — is there enough
room?

 pointer to free block

0000000 2222

yes
add here and update list

3333333333
next prevnext prev

Explicit Heap Allocation

Heap size: 256 bytes
0 8 10 18 20 28 30 38 40 48 50 58 60 68 70 78 80 88 90 98 a0 a8 b0 b8 c0 c8 d0 d8 e0 e8 f0 f8

24

U

24

F 88 \0 16

U
32

U

120

F \0 20

• Allocate 12 bytes

a 0 24
a 1 20
a 2 16
f 1
a 3 32
a 4 12
f 3
r 2 60

• Check node (green) in list — is there
enough room?

 pointer to free block

0000000 2222

yes
add here and update list

3333333333
next prevnext prev

Explicit Heap Allocation

Heap size: 256 bytes
0 8 10 18 20 28 30 38 40 48 50 58 60 68 70 78 80 88 90 98 a0 a8 b0 b8 c0 c8 d0 d8 e0 e8 f0 f8

24

U

24

U

16

U

32

U

120

F \0 \0

• Allocate 12 bytes

a 0 24
a 1 20
a 2 16
f 1
a 3 32
a 4 12
f 3
r 2 60

• Check node (green) in list — is there
enough room?

 pointer to free block

0000000 2222

yes
add here and update list

3333333333
next prev

4444444

Explicit Heap Allocation

Heap size: 256 bytes
0 8 10 18 20 28 30 38 40 48 50 58 60 68 70 78 80 88 90 98 a0 a8 b0 b8 c0 c8 d0 d8 e0 e8 f0 f8

24

U

24

U

16

U

32

U

120

F \0 \0

• Free 3

a 0 24
a 1 20
a 2 16
f 1
a 3 32
a 4 12
f 3
r 2 60

• Free 3, and coalesce pointer to free block

0000000 2222 3333333333
next prev

4444444

Explicit Heap Allocation

Heap size: 256 bytes
0 8 10 18 20 28 30 38 40 48 50 58 60 68 70 78 80 88 90 98 a0 a8 b0 b8 c0 c8 d0 d8 e0 e8 f0 f8

24

U

24

U

16

U

160

F \0 \0

• Free 3

a 0 24
a 1 20
a 2 16
f 1
a 3 32
a 4 12
f 3
r 2 60

• Free 3, and coalesce
• Make sure to update linked list

 pointer to free block

0000000 2222
next prev

4444444

Explicit Heap Allocation

Heap size: 256 bytes
0 8 10 18 20 28 30 38 40 48 50 58 60 68 70 78 80 88 90 98 a0 a8 b0 b8 c0 c8 d0 d8 e0 e8 f0 f8

24

U

24

U

16

U

160

F \0 \0

• Reallocate 2 to 60 bytes

a 0 24
a 1 20
a 2 16
f 1
a 3 32
a 4 12
f 3
r 2 60

• Enough space after? pointer to free block

0000000 2222
next prev

4444444

yes
• No move necessary, but we do have

to do our updates.

Explicit Heap Allocation

Heap size: 256 bytes
0 8 10 18 20 28 30 38 40 48 50 58 60 68 70 78 80 88 90 98 a0 a8 b0 b8 c0 c8 d0 d8 e0 e8 f0 f8

24

U

24

U

64

U

112

F \0 \0

• Reallocate 2 to 60 bytes

a 0 24
a 1 20
a 2 16
f 1
a 3 32
a 4 12
f 3
r 2 60

• Enough space after? pointer to free block

0000000 22222222222222222222
next prev

4444444

yes
• No move necessary, but we do have

to do our updates.

References and Advanced Reading
References:
•The textbook is the best reference for this material.
•Here are more slides from a similar course: https://courses.engr.illinois.edu/
cs241/sp2014/lecture/06-HeapMemory_sol.pdf

Advanced Reading:
• Implementation tactics for a heap allocator: https://stackoverflow.com/questions/
2946604/c-implementation-tactics-for-heap-allocators

https://courses.engr.illinois.edu/cs241/sp2014/lecture/06-HeapMemory_sol.pdf
https://courses.engr.illinois.edu/cs241/sp2014/lecture/06-HeapMemory_sol.pdf
https://courses.engr.illinois.edu/cs241/sp2014/lecture/06-HeapMemory_sol.pdf
https://stackoverflow.com/questions/2946604/c-implementation-tactics-for-heap-allocators
https://stackoverflow.com/questions/2946604/c-implementation-tactics-for-heap-allocators
https://stackoverflow.com/questions/2946604/c-implementation-tactics-for-heap-allocators

Extra Slides

Extra Slides

Struct Casting
For your heap allocator assignment, you might want to consider casting all of your
void * pointers to structs, as this will make it easier to debug. It will also
make the code a lot cleaner. Let's see an example of casting structs that helps
see how it is done.

First, here is a struct for some student information (struct_ex.c in samples/
lect15):
typedef struct student_info {
 char email[32];
 int labs_attended;
 double assignment_avg;
 double midterm;
 double final;
} student_info;

We can typedef the struct to
make it easier to work with. Now
we can refer to it as, simply,
student_info.

Struct Casting
Next, let's write an update_info function but without the benefit of any type
information for the struct:

void update_info(void *student, char *email, int labs_attended,
 double assignment_avg, double midterm, double final)
{
 // we have a void *, but we can simply cast it
 student_info *si = (student_info *)student;
 strcpy(si->email, email);
 si->labs_attended = labs_attended;
 si->assignment_avg = assignment_avg;
 si->midterm = midterm;
 si->final = final;
}

We simply cast the void * pointer to our data type, and the struct just
works.

Struct Casting
We can do the same thing for a print function:
void print_student(void *student)
{
 // again, we have a void *, but we can just cast
 student_info *si = (student_info *)student;
 printf("Email: %s\n",si->email);
 printf("Labs attended: %d out of %d\n",si->labs_attended,NUM_LABS);
 printf("Assignment Average: %g\n",si->assignment_avg);
 printf("Midterm: %g\n",si->midterm);
 printf("Final: %g\n",si->final);
 double overall_avg = (si->labs_attended / (double)NUM_LABS * 10 +
 si->assignment_avg * 0.4 +
 (si->midterm * 0.33 + si->final * 0.67) * 0.5);
 printf("Overall average: %g\n\n",overall_avg);
}

Struct Casting
Here is where it gets interesting. In main, we're just going to grab a typeless block
of data:
#define BIG_BLOCK 10000

int main(int argc, char **argv)
{
 // big block of data with no type information :(
 void *student_data = malloc(BIG_BLOCK);

 // let's add some students
 // let's add one at the beginning of the block of data
 update_info(student_data, "cgregg@stanford.edu", 7, 92.0, 83.4, 94.0);

 ...

We can add a student to anywhere we want in that block of data (though this
might not be ideal for alignment purposes)

Struct Casting
Again, we can add a student anywhere in the data!

 // it's a big block of data, so we can add a student anywhere :O
 // let's add one 6543 bytes down the line. Remember, we do have to
 // cast if we want pointer arithmetic
 void *random_location = (char *)student_data + 6543;

 update_info(random_location, "super_student@stanford.edu", 8, 100.0, 100.0, 100.0);

 // let's print the two students
 print_student(student_data);
 print_student(random_location);

 free(student_data);
 return 0;
}

We just added a student at location 6543 in our block of data -- we didn't have
to put the data on what would be a struct boundary in an array of structs.

Struct Casting
Let's look at a gdb trace of the program:

$ gdb struct_ex
(gdb) break main
Breakpoint 1 at 0x400756: file struct_ex.c, line 45.
(gdb) run
Starting program: /afs/.ir.stanford.edu/users/c/g/
cgregg/tmp/lect15/struct_ex

Breakpoint 1, main (argc=1, argv=0x7fffffffea78) at
struct_ex.c:45
(gdb) n
47 void *student_data = malloc(BIG_BLOCK);
(gdb)
52 update_info(student_data, "cgregg@stanford.edu",
7, 92.0, 83.4, 94.0);
(gdb) x/10gx student_data
0x602010: 0x0000000000000000 0x0000000000000000
0x602020: 0x0000000000000000 0x0000000000000000
0x602030: 0x0000000000000000 0x0000000000000000
0x602040: 0x0000000000000000 0x0000000000000000
0x602050: 0x0000000000000000 0x0000000000000000
(gdb) n

We can look at the bytes in the
student_data block. One
compact way to do this is with
the "x/gx" command.

Before we update the student,
the data happens to be all 0s.

Struct Casting
Let's look at a gdb trace of the program:

(gdb) n

(gdb) x/10gx student_data
0x602010: 0x7340676765726763 0x2e64726f666e6174
0x602020: 0x0000000000756465 0x0000000000000000
0x602030: 0x0000000000000007 0x4057000000000000
0x602040: 0x4054d9999999999a 0x4057800000000000
0x602050: 0x0000000000000000 0x0000000000000000
(gdb) n

After we update the student, the
info is located in
student_data, but we have to
be careful reading it -- it
presumes little-endian format,
but prints in normal format...

We put in the following information: email: cgregg@stanford.edu, number of
labs: 7.

Struct Casting
Let's look at a gdb trace of the program:

(gdb) n

(gdb) x/10gx student_data
0x602010: 0x7340676765726763 0x2e64726f666e6174
0x602020: 0x0000000000756465 0x0000000000000000
0x602030: 0x0000000000000007 0x4057000000000000
0x602040: 0x4054d9999999999a 0x4057800000000000
0x602050: 0x0000000000000000 0x0000000000000000
(gdb) n

We put in the following information: email: cgregg@stanford.edu, number of
labs: 7.

The long values are read in reverese: 0x60210 is the 0x63 in the first block,
which is a "c".

After we update the student, the
info is located in
student_data, but we have to
be careful reading it -- it
presumes little-endian format,
but prints in normal format...

Struct Casting
Let's look at a gdb trace of the program:

(gdb) n

(gdb) x/10gx student_data
0x602010: 0x7340676765726763 0x2e64726f666e6174
0x602020: 0x0000000000756465 0x0000000000000000
0x602030: 0x0000000000000007 0x4057000000000000
0x602040: 0x4054d9999999999a 0x4057800000000000
0x602050: 0x0000000000000000 0x0000000000000000
(gdb) n

Address 0x60211 is the 0x67 in the first block, which is a "g".

After we update the student, the
info is located in
student_data, but we have to
be careful reading it -- it
presumes little-endian format,
but prints in normal format...

Struct Casting
Let's look at a gdb trace of the program:

(gdb) n

(gdb) x/10gx student_data
0x602010: 0x7340676765726763 0x2e64726f666e6174
0x602020: 0x0000000000756465 0x0000000000000000
0x602030: 0x0000000000000007 0x4057000000000000
0x602040: 0x4054d9999999999a 0x4057800000000000
0x602050: 0x0000000000000000 0x0000000000000000
(gdb) n

Address 0x60212 is the 0x72 in the first block, which is a "r".

After we update the student, the
info is located in
student_data, but we have to
be careful reading it -- it
presumes little-endian format,
but prints in normal format...

Struct Casting
Let's look at a gdb trace of the program:

(gdb) n

(gdb) x/10gx student_data
0x602010: 0x7340676765726763 0x2e64726f666e6174
0x602020: 0x0000000000756465 0x0000000000000000
0x602030: 0x0000000000000007 0x4057000000000000
0x602040: 0x4054d9999999999a 0x4057800000000000
0x602050: 0x0000000000000000 0x0000000000000000
(gdb) n

Address 0x60217 is the 0x73 in the first block, which is a "s" (in stanford.edu)

After we update the student, the
info is located in
student_data, but we have to
be careful reading it -- it
presumes little-endian format,
but prints in normal format...

Struct Casting
Let's look at a gdb trace of the program:

(gdb) n

(gdb) x/10gx student_data
0x602010: 0x7340676765726763 0x2e64726f666e6174
0x602020: 0x0000000000756465 0x0000000000000000
0x602030: 0x0000000000000007 0x4057000000000000
0x602040: 0x4054d9999999999a 0x4057800000000000
0x602050: 0x0000000000000000 0x0000000000000000
(gdb) n

We set aside 32 bytes for the email address, which spans from 0x602010 to
0x60202f.

After we update the student, the
info is located in
student_data, but we have to
be careful reading it -- it
presumes little-endian format,
but prints in normal format...

Struct Casting
Let's look at a gdb trace of the program:

(gdb) n

(gdb) x/10gx student_data
0x602010: 0x7340676765726763 0x2e64726f666e6174
0x602020: 0x0000000000756465 0x0000000000000000
0x602030: 0x0000000000000007 0x4057000000000000
0x602040: 0x4054d9999999999a 0x4057800000000000
0x602050: 0x0000000000000000 0x0000000000000000
(gdb) n

Our next data is the int for the number of labs. It turns out that the alignment
for other fields is going to be on an 8-byte boundary, so the struct actually takes
8 bytes for the int. Again, the addresses are backwards, because the number
itself is in little-endian format. So, 0x602030 is the 0x07 byte, 0x0602031 is
the 0x00 byte to the left of the 0x07, etc.

After we update the student, the
info is located in
student_data, but we have to
be careful reading it -- it
presumes little-endian format,
but prints in normal format...

