
Monday, March 7, 2022

Computer Systems

Winter 2022

Stanford University

Computer Science Department

Reading: Chapter 5, textbook

Lecturer: Chris Gregg

CS 107

Lecture 16:
Optimization

Today's Topics
• Programs from class: /afs/ir/class/cs107/samples/lect16

• Optimization:

• What optimizing compilers do and don't do

• GCC explorer: https://godbolt.org/g/3p91t2

• Memory Performance

• How memory is organized

• Caching

• Impact of temporal and spatial locality

• Profiling tools

• Measuring runtime and memory performance

https://godbolt.org/g/3p91t2

A few quotes on optimization
“We should forget about small efficiencies, say about 97% of the time: premature
optimization is the root of all evil. ”

— Donald Knuth

“More computing sins are committed in the name of efficiency (without necessarily
achieving it) than for any other single reason - including blind stupidity.”

— W.A. Wulf (University of Virginia)

“Bottlenecks occur in surprising places, so don't try to second guess and put in a
speed hack until you have proven that's where the bottleneck is.”

— Rob Pike (Google, created UTF-8, the Go programming language)

Optimization Considerations

Measure, measure, measure! Time your code to see if there is even an issue. We
optimize code to make it faster (or smaller) — if there isn't a problem already, don't
optimize. In other words, if it works okay at the scale you care about, don't try and
optimize.

For example, if the code scales well already, it probably doesn't need to be
optimized further.

Use the correct algorithm and design — optimization won't change Big O or fix
a bad design, and your biggest win will be because you've chosen the correct
algorithms to begin with.

Optimization Considerations

Keep it simple! — Simple code that is easy to understand and debug is generally
best. In this case you are optimizing the programmer's time. This is especially true
for the parts of your code that aren't providing the bottleneck.

Let gcc do its optimizations — don't pre-optimize, and after you compile with a
high optimization in gcc, look at the assembly code and analyze it to see where you
may be able to optimize.

Optimize explicitly as a last resort — measure again, and attack the bottlenecks
first.

Optimization Blockers

Programmers need to be careful to write code that can be optimized!

Although this isn't always possible, it is a good goal to have.

Let's look at two functions:

void twiddle1(long *xp,
 long *yp)
{
 *xp += *yp;
 *xp += *yp;
}

void twiddle2(long *xp,
 long *yp)
{
 *xp += 2 * *yp;
}

The functions perform the same thing, right?

Optimization Blockers

Oops — if the pointer is the same, we have a
problem! Pointers can be optimization blockers. gcc
won't optimize twiddle1 to twiddle2, because it
could lead to incorrect code.

$./twiddle 2 3

a: 2, b:3

after twiddle1(&a,&b), a = 8

a: 2, b:3

after twiddle2(&a,&b), a = 8

a: 2

after twiddle1(&a,&a), a = 8

a: 2

after twiddle2(&a,&a), a = 6

void twiddle1(long *xp,
 long *yp)
{
 *xp += *yp;
 *xp += *yp;
}

void twiddle2(long *xp,
 long *yp)
{
 *xp += 2 * *yp;
}

Optimization Examples: Constant Folding

GCC explorer: https://gcc.godbolt.org/z/vbfTjehPa

-O0 -O2

The compiler doesn't need to do as
many real-time calculations, and folds
the constants into two calculations.

unsigned long CF(unsigned long val)
{
 unsigned long ones = ~0U/UCHAR_MAX;
 unsigned long highs = ones << (CHAR_BIT - 1);
 return (val - ones) & highs;
}

pushq %rbp
movq %rsp, %rbp
movq %rdi, -24(%rbp)
movq $16843009, -8(%rbp)
movq -8(%rbp), %rax
salq $7, %rax
movq %rax, -16(%rbp)
movq -24(%rbp), %rax
subq -8(%rbp), %rax
andq -16(%rbp), %rax
popq %rbp
ret

leaq -16843009(%rdi), %rax
andl $2155905152, %eax
ret

https://gcc.godbolt.org/z/vbfTjehPa

Optimization Ex: Common Subexpression Elimination

GCC explorer: https://gcc.godbolt.org/z/5oK5PxY5s
int CSE(int num, int val)
{
 int a = (val + 50);
 int b = num*a - (50 + val);
 return (val + (100/2)) + b;
}

pushq %rbp
movq %rsp, %rbp
movl %edi, -20(%rbp)
movl %esi, -24(%rbp)
movl -24(%rbp), %eax
addl $50, %eax
movl %eax, -4(%rbp)
movl -20(%rbp), %eax
imull -4(%rbp), %eax
movl -24(%rbp), %edx
addl $50, %edx
subl %edx, %eax
movl %eax, -8(%rbp)
movl -24(%rbp), %eax
leal 50(%rax), %edx
movl -8(%rbp), %eax
addl %edx, %eax
popq %rbp
ret

leal 50(%rsi), %eax
imull %edi, %eax
ret

-O0

-O2

The complier is able to eliminate
subexpressions by determining that they
are the same.

https://gcc.godbolt.org/z/5oK5PxY5s

Optimization Ex: Strength Reduction

GCC explorer: https://gcc.godbolt.org/z/cW7n4G3hT
int SR(int a, int val)
{
 unsigned int b = 5*val;
 int c = b / (1 << val);
 return (b + c) % 2;
}pushq %rbp

movq %rsp, %rbp
movl %edi, -20(%rbp)
movl -20(%rbp), %edx
movl %edx, %eax
sall $2, %eax
addl %edx, %eax
movl %eax, -4(%rbp)
movl -20(%rbp), %eax
movl -4(%rbp), %edx
movl %eax, %ecx
shrl %cl, %edx
movl %edx, %eax
movl %eax, -8(%rbp)
movl -8(%rbp), %edx
movl -4(%rbp), %eax
addl %edx, %eax
andl $1, %eax
popq %rbp
ret

leal (%rdi,%rdi,4), %eax
movl %edi, %ecx
movl %eax, %edx
shrl %cl, %edx
addl %edx, %eax
andl $1, %eax
ret

-O0

-O2

The complier replaces expensive (strong)
operations (e.g., divides) with equivalent
expressions that are less strong.

https://gcc.godbolt.org/z/cW7n4G3hT

Optimization Ex: Code Motion

GCC explorer: https://gcc.godbolt.org/z/zh6YMjjb8
int CM(int val)
{
 int sum = 0;
 do {
 sum += 6 + 14*val;
 } while (sum < (9/val));
 return sum;
}

 pushq %rbp
 movq %rsp, %rbp
 movl %edi, -20(%rbp)
 movl $0, -4(%rbp)
.L2:
 movl -20(%rbp), %eax
 addl %eax, %eax
 leal 0(,%rax,8), %edx
 subl %eax, %edx
 movl %edx, %eax
 addl $6, %eax
 addl %eax, -4(%rbp)
 movl $9, %eax
 cltd
 idivl -20(%rbp)
 cmpl -4(%rbp), %eax
 jg .L2
 movl -4(%rbp), %eax
 popq %rbp
 ret

 movl $9, %eax
 xorl %ecx, %ecx
 cltd
 idivl %edi
 imull $14, %edi, %esi
 addl $6, %esi
.L2:
 addl %esi, %ecx
 cmpl %eax, %ecx
 jl .L2
 movl %ecx, %eax
 ret

-O0

-O2 The compiler
moves code out
of loops if it can:
it only needs to
perform the
operation once,
so it does.

https://gcc.godbolt.org/z/zh6YMjjb8

Optimization Ex: Dead Code Elimination
GCC explorer:

 https://gcc.godbolt.org/z/r1eeWEarG

int DC(int param1, int param2)
{
 if (param1 < param2 && param1 > param2) // can this test ever be true?
 printf("The end of the world is near!\n");

 int result;
 for (int i = 0; i < 1000; i++)
 result *= i;

 if (param1 == param2) // if/else obviously same on both paths
 param1++;
 else
 param1++;

 if (param1 == 0) // if/else no-so-obviously same on both paths
 return 0;
 else
 return param1;
}

.LC0:

.string "The end of the world is near!"
DC:

pushq %rbp
movq %rsp, %rbp
subq $32, %rsp
movl %edi, -20(%rbp)
movl %esi, -24(%rbp)
movl -20(%rbp), %eax
cmpl -24(%rbp), %eax
jge .L2
movl -20(%rbp), %eax
cmpl -24(%rbp), %eax
jle .L2
movl $.LC0, %edi
call puts

.L2:
movl $0, -8(%rbp)
jmp .L3

.L4:
movl -4(%rbp), %eax
imull -8(%rbp), %eax
movl %eax, -4(%rbp)
addl $1, -8(%rbp)

.L3:
cmpl $999, -8(%rbp)
jle .L4
movl -20(%rbp), %eax
cmpl -24(%rbp), %eax
jne .L5
addl $1, -20(%rbp)
jmp .L6

.L5:
addl $1, -20(%rbp)

.L6:
cmpl $0, -20(%rbp)
jne .L7
movl $0, %eax
jmp .L8

.L7:
movl -20(%rbp), %eax

.L8:
leave
ret

DC:
 leal 1(%rdi), %eax
 ret

-O0

-O2 The compiler realizes that
most of the code does not
perform useful work, so it
just removes it!

https://gcc.godbolt.org/z/r1eeWEarG

gcc and optimization
-O0 // faithful, literal match to C, and the best for debugging

-Og // streamlined, but debug-friendly

-O2 // apply all acceptable optimizations

-O3 // even more optimizations, but relies strongly on exact C specification (e.g., if
you assume, for instance that signed numbers wrap, your code might break with this
optimization level)

-Os // optimize for code size; performs the -O2 optimizations that don't increase
the code size (e.g., no function alignment)

You can see all optimizations that will be run by compiling with the following flags:

gcc -O3 prog.c -o prog -Q --help=optimizers

gcc and optimization
gcc knows the hardware you are running on, including:

• Register allocation

• Instruction choice

• Alignment

All transformations made by gcc during optimization should be legal and equivalent to
your original C program.

• The compiler knows about compile time, not run time.

• The optimizations are conservative (e.g., it rarely tries to perform too much

optimization with pointers, and it rarely removes a function unless it knows
enough about it to do so).

gcc and optimization
How do we measure performance?

• Timers! There are a number of different ways to do it. One timer, rtdsc, is only
available in assembly, although we can write a C program to access it by using
"inline assembly" or linking to an assembly function.

• We can also use valgrind --tool=callgrind

You should time unoptimized vs. optimized

• mult.c

• sorts.c

• fact.c

• array.c

What gcc cannot do
gcc cannot fix algorithmic weaknesses, or big-O!

If you optimize too early yourself, gcc may not be able to figure out any further
optimizations

gcc generally cannot remove function calls, nor can it "see through" pointers to
determine if aliasing has occurred.

What gcc can do
Example: summing the char values in a string
int charsum(char *s)
{
 int sum = 0;
 for (size_t i = 0; i < strlen(s); i++) {
 sum += s[i];
 }
 return sum;
}

1. What is going to cause the bottleneck for this function?

int charsum(char *s)
{
 int sum = 0;
 for (size_t i = 0; i < strlen(s); i++) {
 sum += s[i];
 }
 return sum;
}

1. What is going to cause the bottleneck for this function?
strlen(s) -- it must search one character at a time!

Example: summing the char values in a string

What gcc can do

int charsum(char *s)
{
 int sum = 0;
 for (size_t i = 0; i < strlen(s); i++) {
 sum += s[i];
 }
 return sum;
}

1. What is going to cause the bottleneck for this function?
strlen(s) -- it must search one character at a time!

2. What can the compiler do about it?

1. What is going to cause the bottleneck for this function?

Example: summing the char values in a string

What gcc can do

int charsum(char *s)
{
 int sum = 0;
 for (size_t i = 0; i < strlen(s); i++) {
 sum += s[i];
 }
 return sum;
}

1. What is going to cause the bottleneck for this function?
strlen(s) -- it must search one character at a time!

2. What can the compiler do about it?

1. What is going to cause the bottleneck for this function?

int charsum2(char *s)
{
 int sum = 0;
 size_t len = strlen(s);
 for (size_t i = 0; i < len; i++) {
 sum += s[i];
 }
 return sum;
}

Example: summing the char values in a string

What gcc can do

What gcc cannot do
Example: converting a string to lowercase
void lower1(char *s)
{
 for (size_t i = 0; i < strlen(s); i++) {
 if (s[i] >= 'A' && s[i] <= 'Z') {
 s[i] -= ('A' - 'a');
 }
 }
}

1. What is going to cause the bottleneck for this function?

What gcc cannot do
Example: converting a string to lowercase
void lower1(char *s)
{
 for (size_t i = 0; i < strlen(s); i++) {
 if (s[i] >= 'A' && s[i] <= 'Z') {
 s[i] -= ('A' - 'a');
 }
 }
}

1. What is going to cause the bottleneck for this function?
strlen(s) -- it must search one character at at time!

What gcc cannot do
Example: converting a string to lowercase
void lower1(char *s)
{
 for (size_t i = 0; i < strlen(s); i++) {
 if (s[i] >= 'A' && s[i] <= 'Z') {
 s[i] -= ('A' - 'a');
 }
 }
}

1. What is going to cause the bottleneck for this function?
strlen(s) -- it must search one character at at time!

2. Can the compiler move this out of the loop?

What gcc cannot do
Example: converting a string to lowercase
void lower1(char *s)
{
 for (size_t i = 0; i < strlen(s); i++) {
 if (s[i] >= 'A' && s[i] <= 'Z') {
 s[i] -= ('A' - 'a');
 }
 }
}

1. What is going to cause the bottleneck for this function?
strlen(s) -- it must search one character at at time!

2. Can the compiler move this out of the loop?
It cannot! Because s is changing, the compiler won't risk moving
strlen() outside the loop. It can't figure out that a zero won't ever be put
into the string (changing the string's length).

Hand-optimization
Let's look at some code for a vector -- this is the textbook example in chapter 5
handout: /afs/ir/class/cs107/samples/lect16/vector_handout.pdf

Let's look at the combine functions (there are four versions). The first version is this:

void combine1(vec_ptr v, data_t *dest)
{
 *dest = IDENT; // 0
 for (long i = 0; i < vec_length(v); i++) {
 data_t val;
 get_vec_element(v, i, &val);
 *dest = *dest OP val; // OP is +
 }
}

What might we do to improve this function?

Original clock-ticks per call to combine1:

-O1: 11.3

-O2: 9.3

Hand-optimization
Let's look at some code for a vector -- this is the textbook example in chapter 5
handout: /afs/ir/class/cs107/samples/lect16/vector_handout.pdf

Let's look at the combine functions (there are four versions). The first version is this:

void combine1(vec_ptr v, data_t *dest)
{
 *dest = IDENT;
 for (long i = 0; i < vec_length(v); i++) {
 data_t val;
 get_vec_element(v, i, &val);
 *dest = *dest OP val;
 }
}

What might we do to improve this function?

Let's move the call to vec_length out of the function.

Original clock-ticks per call to combine1:

-O1: 11.3

-O2: 9.3

Hand-optimization
Here is combine2:
// move call to vec_length out of loop
void combine2(vec_ptr v, data_t *dest)
{
 long length = vec_length(v);

 *dest = IDENT;
 for (long i = 0; i < length; i++) {
 data_t val;
 get_vec_element(v, i, &val);
 *dest = *dest OP val;
 }
}

Better! Both optimizations ended up about
the same for combine2. Can we do better?

Clock-ticks for combine1 and combine2:

 comb1 comb2

-O1: 11.3 5.8

-O2: 9.3 5.8

Hand-optimization
Here is combine2:
// move call to vec_length out of loop
void combine2(vec_ptr v, data_t *dest)
{
 long length = vec_length(v);

 *dest = IDENT;
 for (long i = 0; i < length; i++) {
 data_t val;
 get_vec_element(v, i, &val);
 *dest = *dest OP val;
 }
}

Better! Both optimizations ended up about
the same for combine2. Can we do better?

Clock-ticks for combine1 and combine2:

 comb1 comb2

-O1: 11.3 5.8

-O2: 9.3 5.8

Maybe the call to get_vec_element seems like it may be
causing a bottleneck. Let's look at that function.

Hand-optimization
// move call to vec_length out of loop
void combine2(vec_ptr v, data_t *dest)
{
 long length = vec_length(v);

 *dest = IDENT;
 for (long i = 0; i < length; i++) {
 data_t val;
 get_vec_element(v, i, &val);
 *dest = *dest OP val;
 }
}

Here is the get_vec_element function:

/*
 * Retrieve vector element and store at dest.
 * Return 0 (out of bounds) or 1 (successful)
 */
int get_vec_element(vec_ptr v, long index,
data_t *dest)
{
 if (index < 0 || index >= v->len)
 return 0;
 *dest = v->data[index];
 return 1;
}

Hmm...maybe the bounds checking is the
issue. Let's just get rid of the function
altogether and directly access the data.

This does break some abstraction, but it is in
the name of speed!

Clock-ticks for combine1 and combine2:

 comb1 comb2

-O1: 11.3 5.8

-O2: 9.3 5.8

Hand-optimization

// direct access to vector data
void combine3(vec_ptr v, data_t *dest)
{
 long length = vec_length(v);
 data_t *data = get_vec_start(v);

 *dest = IDENT;
 for (long i = 0; i < length; i++) {
 *dest = *dest OP data[i];
 }
}

It looks like the -O1 actually got worse! It probably is about the same, actually,
but our timing isn't perfect. The -O2 did get much better, and we should look at
the assembly code to see why.

Is there anything else we can do to make this faster?

Clock-ticks for combine1 and combine2:

 comb1 comb2 comb3

-O1: 11.3 5.8 6.02

-O2: 9.3 5.8 1.9

Here is combine3:

Hand-optimization

// direct access to vector data
void combine3(vec_ptr v, data_t *dest)
{
 long length = vec_length(v);
 data_t *data = get_vec_start(v);

 *dest = IDENT;
 for (long i = 0; i < length; i++) {
 *dest = *dest OP data[i];
 }
}

There are three memory references in the following line:

 *dest = *dest OP data[i];

We really only need to update memory at the end of the function, so let's do it.

Clock-ticks for combine1 and combine2:

 comb1 comb2 comb3

-O1: 11.3 5.8 6.02

-O2: 9.3 5.8 1.9

Here is combine3:

Hand-optimization

// accumulate result in local variable
void combine4(vec_ptr v, data_t *dest)
{
 long length = vec_length(v);
 data_t *data = get_vec_start(v);
 data_t acc = IDENT;

 for (long i = 0; i < length; i++) {
 acc = acc OP data[i];
 }

 *dest = acc;
}

This is much better! We were able to save 5x time in the -O1 version, and 6x
time in the -O2 version. From the comb1 -O1 version to the comb4 -O2 version,
we have a 7.5x improvement in time.

Clock-ticks for combine1 and combine2:

 comb1 comb2 comb3 comb4

-O1: 11.3 5.8 6.02 2.3

-O2: 9.3 5.8 1.9 1.5

Here is combine4:

Caching
Computers these days have many levels of memory, from registers, to cache, to main
memory, to disk memory. The myth machines, with a Core i7 CPU have the following
memory structure (find out by typing lscpu)

L3

cache

L2

cache

256KB 8MB 32GB 1TB

4 B/cycle

40 cycles

Memory goes from really fast (registers) to really slow (disk),
and as data is more frequently used, it ends up in faster and
faster memory.

Caching and Locality
All caching depends on locality.

Temporal locality
Repeat access to same data tends to be co-located in TIME

Things I have used recently, I am likely to use again soon

Spatial locality
Related data tends to be co-located in SPACE 
Data that is near a used item is more likely to also be accessed

Realistic scenario:
97% cache hit rate 
Cache hit costs 1 cycle 
Cache miss costs 100 cycles 
How much of your memory access time spent on 3% of accesses that are cache
misses?

array.c

Using Callgrind
Run program under callgrind, creates file callgrind.out.pid

valgrind --tool=callgrind ./array_opt
Process file to see source annotated with count per line

callgrind_annotate --auto=yes callgrind.out.<pid>

