
Friday, March 11, 2022

Computer Systems

Winter 2022

Stanford University

Computer Science Department

Lecturer: Chris Gregg

CS 107
Lecture 19: Review

and Wrap-up

Today's Topics

1.Comments on Heap Allocator, debugging
2.Review / Examples

•Major final topics
•Topics from midterm to review

3.Wrap-up
•Future courses in CS?
•Why is X coded in C?

Comments on Heap Allocator and Debugging
•The heap allocator assignment is challenging!
•Many students hand in incomplete explicit heap allocators
•Repeat: many students hand in incomplete explicit heap allocators

•There are two primary reasons we don't look at your code in office hours:
1.You really do need to struggle with debugging your own code. At this point in
the class, we've given you all the tools to do just that. The debugging aspect
of this assignment is more important than simply writing a heap allocator!
(perhaps the last assignment isn't the best time to force you to debug your
own code, and I'm happy to brainstorm other ideas for future classes).

2.Everyone's solution is different, and we would never have time in office hours
to figure out exactly what you are trying to do (and again, see point 1)

Major Final Topics

x86-64 Assembly
Runtime Stack

Managing the heap / heap allocation

x86-64 Example Problem
Convert the assembly on the right to the original C code on the left:

Dump of assembler code for function mystery:
 0x400566 <+0>: mov $0x0,%edx
 0x40056b <+5>: jmp 0x40057d <mystery+23>
 0x40056d <+7>: mov (%rdi,%rdx,8),%rax
 0x400571 <+11>: add $0x1,%rdx
 0x400575 <+15>: add (%rdi,%rdx,8),%rax
 0x400579 <+19>: test $0x1,%al
 0x40057b <+21>: jne 0x40058d <mystery+39>
 0x40057d <+23>: lea -0x1(%rsi),%rax
 0x400581 <+27>: cmp %rax,%rdx
 0x400584 <+30>: jb 0x40056d <mystery+7>
 0x400586 <+32>: mov $0xffffffffffffffff,%rax
 0x40058d <+39>: repz retq
End of assembler dump.

long mystery(long *arr, size_t nelems)
{
 for () {

 size_t sum = ___________________;

 if (________________________)

 return __________;
 }

 return _______________;
}

x86-64 Example Answer
Convert the assembly on the right to the original C code on the left:

Dump of assembler code for function mystery:
 0x400566 <+0>: mov $0x0,%edx
 0x40056b <+5>: jmp 0x40057d <mystery+23>
 0x40056d <+7>: mov (%rdi,%rdx,8),%rax
 0x400571 <+11>: add $0x1,%rdx
 0x400575 <+15>: add (%rdi,%rdx,8),%rax
 0x400579 <+19>: test $0x1,%al
 0x40057b <+21>: jne 0x40058d <mystery+39>
 0x40057d <+23>: lea -0x1(%rsi),%rax
 0x400581 <+27>: cmp %rax,%rdx
 0x400584 <+30>: jb 0x40056d <mystery+7>
 0x400586 <+32>: mov $0xffffffffffffffff,%rax
 0x40058d <+39>: repz retq
End of assembler dump.

long mystery(long *arr, size_t nelems)
{
 for (size_t i=0; i < nelems-1; i++) {

 size_t sum = arr[i] + arr[i+1];

 if (sum % 2 == 1)

 return sum;
 }

 return -1;
}

Runtime Stack Example Problem
int authenticate()
{
 char goodpw[8];
 get_one_time_pw(goodpw);

 char pw[8];
 printf("What is your password?\n");
 gets(pw);

 if (strcmp(pw,goodpw) != 0) {
 printf("Sorry, wrong password!\n");
 return 0; // user not okay
 } else {
 printf("You have been authenticated!\n");
 return 1; // user okay
 }
}

int main(int argc, char **argv)
{
 int authenticated;
 authenticated = authenticate();
 if (authenticated) {
 printf("Welcome to the US Treasury!\n");
 }
 return 0;
}

Now that you've finished CS 107, you have
been hired by a security firm. The first job
you have is to find out how a hacker was
able to become authenticated on a client's
system. Here is what you know:

1. The code to the left is the C code to
grant access.

2. The hacker had access to the binary for
the C code, but could only run it on their
own system to test. The hacker did not
have access to the get_one_time_pw
function, which grants a one-time
password that changes each time the
program is run. (continued...)

Runtime Stack Example Problem
int authenticate()
{
 char goodpw[8];
 get_one_time_pw(goodpw);

 char pw[8];
 printf("What is your password?\n");
 gets(pw);

 if (strcmp(pw,goodpw) != 0) {
 printf("Sorry, wrong password!\n");
 return 0; // user not okay
 } else {
 printf("You have been authenticated!\n");
 return 1; // user okay
 }
}

int main(int argc, char **argv)
{
 int authenticated;
 authenticated = authenticate();
 if (authenticated) {
 printf("Welcome to the US Treasury!\n");
 }
 return 0;
}

You open the program in gdb, and you break it right before
the call to gets as shown in the disassembly below:

 0x0000000000400609 <+0>: sub $0x28,%rsp
 0x000000000040060d <+4>: lea 0x10(%rsp),%rdi
 0x0000000000400612 <+9>: callq 0x4005f6 <get_one_time_pw>
 0x0000000000400617 <+14>:mov $0x40072c,%edi
 0x000000000040061c <+19>:mov $0x0,%eax
 0x0000000000400621 <+24>:callq 0x4004b0 <printf@plt>
 0x0000000000400626 <+29>:mov %rsp,%rdi
=> 0x0000000000400629 <+32>:callq 0x4004e0 <gets@plt>
 0x000000000040062e <+37>:lea 0x10(%rsp),%rsi
 0x0000000000400633 <+42>:mov %rsp,%rdi
 0x0000000000400636 <+45>:callq 0x4004d0 <strcmp@plt>
 0x000000000040063b <+50>:test %eax,%eax
 0x000000000040063d <+52>:je 0x400655 <authenticate+76>
 0x000000000040063f <+54>:mov $0x400744,%edi
 0x0000000000400644 <+59>:mov $0x0,%eax
 0x0000000000400649 <+64>:callq 0x4004b0 <printf@plt>
 0x000000000040064e <+69>:mov $0x0,%eax
 0x0000000000400653 <+74>:jmp 0x400669 <authenticate+96>
 0x0000000000400655 <+76>:mov $0x40075c,%edi
 0x000000000040065a <+81>:mov $0x0,%eax
 0x000000000040065f <+86>:callq 0x4004b0 <printf@plt>
 0x0000000000400664 <+91>:mov $0x1,%eax
 0x0000000000400669 <+96>:add $0x28,%rsp
 0x000000000040066d <+100>: retq

Runtime Stack Example Problem
You print out some details of the variables, and also the initial
bytes on the stack and find the following:
(gdb) p goodpw
$1 = "hunter2"
(gdb) p &goodpw
$2 = (char (*)[8]) 0x7fffffffe960
(gdb) p &pw
$3 = (char (*)[8]) 0x7fffffffe950
(gdb) x/32bx $rsp
0x7fffffffe950: 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
0x7fffffffe958: 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
0x7fffffffe960: 0x68 0x75 0x6e 0x74 0x65 0x72 0x32 0x00
0x7fffffffe968: 0x00 0x05 0x40 0x00 0x00 0x00 0x00 0x00
(gdb)

1. Using the assembly code, the
stack trace, and your knowledge
of the C library, explain how the
hacker could have gained access
to the system by running the
program.

2. Fill in the create_password.c
program on the following slide
with bytes that will create a
password suitable for gaining
access to the system.

This gives you enough information to determine how the
hacker was successful!

Runtime Stack Example Problem
Change the bytes in the create_password.c program to build a
program that will create a password that will allow access to the
user.
// file: create_password.c

int main(int argc, char *argv[])
{
 const char *filename = argc > 1 ? argv[1] : "password.txt";
 FILE *fp = fopen(filename, "w");
 if (!fp) error(1, errno, "%s", argv[1]);

 char bytes[] = {'c','s','1','0','7',0,
 }; // edit bytes as desired

 fwrite(bytes, 1, sizeof(bytes), fp);
 fclose(fp);
 printf("Wrote password to file '%s'.\n", filename);
 return 0;
}

Runtime Stack Example Problem
Change the bytes in the create_password.c program to build a
program that will create a password that will allow access to the
user.
// file: create_password.c

int main(int argc, char *argv[])
{
 const char *filename = argc > 1 ? argv[1] : "password.txt";
 FILE *fp = fopen(filename, "w");
 if (!fp) error(1, errno, "%s", argv[1]);

 char bytes[] = char bytes[] = {'a',0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
 'a',0,
 }; // edit bytes as desired

 fwrite(bytes, 1, sizeof(bytes), fp);
 fclose(fp);
 printf("Wrote password to file '%s'.\n", filename);
 return 0;
}

Heap

•You should review your implicit and explicit heap allocator solutions
•You should expect to write some code for a similar but somewhat unique heap
allocator problem
•See the practice final exams for examples of the types of questions we might ask

Possible topics from before the midterm

void * arrays and generic functions
function pointers

bits/bytes

Future CS Classes?
CS107 prepares you for:

•CS111
•File systems
•Multiprocessing and threading, deadlock, race conditions

•CS112: Operating Systems

•CS144: Networking

•CS149: Parallel Computing

•CS143: Compilers (kind of)

Why is X coded in C?
https://sqlite.org/whyc.html

https://www.quora.com/Why-is-Linux-kernel-written-in-C-and-not-C++-given-
that-C++-is-more-flexible-and-one-can-write-C-code-in-C++-as-well

https://news.ycombinator.com/item?id=2405387

https://stackoverflow.com/questions/580292/what-languages-are-windows-
mac-os-x-and-linux-written-in

More programs than you think are written in C -- hopefully you now understand
why!

https://sqlite.org/whyc.html
https://www.quora.com/Why-is-Linux-kernel-written-in-C-and-not-C++-given-that-C++-is-more-flexible-and-one-can-write-C-code-in-C++-as-well
https://www.quora.com/Why-is-Linux-kernel-written-in-C-and-not-C++-given-that-C++-is-more-flexible-and-one-can-write-C-code-in-C++-as-well
https://news.ycombinator.com/item?id=2405387
https://stackoverflow.com/questions/580292/what-languages-are-windows-mac-os-x-and-linux-written-in
https://stackoverflow.com/questions/580292/what-languages-are-windows-mac-os-x-and-linux-written-in

Finally
You have learned a ton of information
this quarter! (including the ability to
understand low-level humor)

You are better programmers, and you
now know what is going on "under the
hood" of your programs.

Be proud of your accomplishments, and
know that you are now part of the "took
CS107" club!

Congratulations!

