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This document contains the questions and solutions to the CS107 Final given in Winter 
2018 by instructor Chris Gregg. This was a 3-hour exam. 
 
 
Problem 1 (Void * generics) (24 points) (suggested time: 30 minutes)  
Given a sorted void *array of elements, the remove_duplicates function will 
remove all duplicates in the array, returning the new size of the array. Your function 
should modify the array in-place (e.g., to remove a duplicate, move the rest of the array 
backwards over it):  
 
int remove_duplicates(void *arr, size_t nelems, 
                      int width, int (*cmp)(void *, void *)); 
 
For example, given the following code, and assuming a correct int comparison 
function:  
 
int iarr[] = {1, 1, 1, 2, 2, 3, 3, 3, 4, 7, 8, 8}; 
int newsz = remove_duplicates(iarr,12,4,cmp_int); 
 
newsz holds the value 6 and the first six elements of iarr are:  
 
{1, 2, 3, 4, 7, 8} 
 
 
(a) Write the generic remove_duplicates function: 
 
int remove_duplicates(void *arr, size_t nelems, int width, int 
(*cmp)(void *, void *)); 
 
 
(b) Write a comparison function on longs that will work for remove_duplicates:  
 
int cmp_long(void *p, void *q);  
 
 
(c) Fill in the four blanks in main that will produce the following output when run from 
the command line:  
 
$ ./remove_dup 1 1 1 2 2 3 3 3 4 7 8 8 
1,1,1,2,2,3,3,3,4,7,8,8 
1,2,3,4,7,8 
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// function declaration for function written in 1b. 
int cmp_long(void *p, void *q); 
 
int main(int argc, char **argv) { 
    int nelems = argc-1; 
    long arr[nelems]; 
 
    for (int i=0; i < nelems; i++) { 
        arr[i] = atol(argv[i+1]); 
        printf("%ld",arr[i]); 
        printf("%s",i == nelems-1 ? "\n" : ","); 
    } 
 
    int newsz = remove_duplicates(__BLANK 1__ , __BLANK 2__ , 
                                  __BLANK 3__ , __BLANK 4__); 
 
    for (int i=0; i < newsz; i++) { 
        printf("%ld",arr[i]); 
        printf("%s",i == newsz-1 ? "\n" : ","); 
    }  
    return 0; 
}  
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Problem 2 (Floats) (17 points) (suggested time: 20 minutes)  
 
A normalized IEEE 32-bit float is stored as the following bit pattern:  
 
                  N EEEEEEEE SSSSSSSSSSSSSSSSSSSSSSS 
  
where N is the sign bit (1 if negative), E is the 8-bit exponent (with a bias of 127), and 
S is the 23-bit significand, with an implicit leading “1”. Note: binary 10000000 equals 
128 in decimal.  
 
(a) Two's complement integers and IEEE floating point numbers each have their own 
design, with different tradeoffs. Name one benefit and one drawback of the IEEE 
floating point standard vs. two's complement integers. For each, include the specific 
design aspect of IEEE floating point that results in that benefit or drawback. 
 
 
(b) Given the following 32-bit float binary, what is the corresponding (simplified) 
decimal number that it represents?  
 
                  0 01111110 10000000000000000000000 
 
 
(c) How can you tell if a 32-bit float is normalized, denormalized, or exceptional by 
looking at the binary representation?  
 
 
(d) What does the following code print?  
 
void print_equality(float x, float y) { 
    printf("%s\n", x == y ? "true" : "false"); 
} 
 
int main(int argc, char **argv) { 
    float a = 0.5; 
    float b = 1.0; 
    float c = 2.0; 
    float d = 1 << 31; 
    float inf = +INFINITY; // floating point +inf 
 
    print_equality(a + b, 1.5); 
    print_equality(b - c + c, c + b - c); 
    print_equality(d * d, inf); 
    print_equality(d - c + c, c + d - c); 
    print_equality(d + c - d, d - d + c); 
 
    return 0;  
}  
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Problem 3 (Assembly) (24 points) (suggested time: 35 minutes)  
 
(a) Given the following assembly code, re-construct the C code that produced it.  
 
0x400566 <+0>:   test   %rsi,%rsi 
0x400569 <+3>:   je     0x400599 <mystery+51> 
0x40056b <+5>:   push   %rbp 
0x40056c <+6>:   push   %rbx 
0x40056d <+7>:   sub    $0x8,%rsp 
0x400571 <+11>:  mov    %rsi,%rbx 
0x400574 <+14>:  mov    %rdi,%rbp 
0x400577 <+17>:  shr    %rsi 
0x40057a <+20>:  callq  0x400566 <mystery> 
0x40057f <+25>:  mov    -0x8(%rbp,%rbx,8),%rsi 
0x400584 <+30>:  mov    $0x400694,%edi 
0x400589 <+35>:  mov    $0x0,%eax 
0x40058e <+40>:  callq  0x400430 <printf@plt> 
0x400593 <+45>:  add    $0x8,%rsp 
0x400597 <+49>:  pop    %rbx 
0x400598 <+50>:  pop    %rbp 
0x400599 <+51>:  repz retq 
 
void mystery(long *arr, size_t count) { 
     
    if (___________________________) {  // line 1 
         
        ______________________________; // line 2 
 
        printf("%lu\n", _____________); // line 3 
     
    } 
} 
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(b) Given the following assembly code, re-construct the C code that produced it. Tip: 
the assembly looks long, but all of the pushing and popping are necessary due to the 
nature of the function; make sure you note where all of the arguments are moved to at 
the beginning of the assembly function.  
 
0x40052f <+0>:   push   %r15 
0x400531 <+2>:   push   %r14 
0x400533 <+4>:   push   %r13 
0x400535 <+6>:   push   %r12 
0x400537 <+8>:   push   %rbp 
0x400538 <+9>:   push   %rbx 
0x400539 <+10>:  sub    $0x18,%rsp 
0x40053d <+14>:  mov    %rdi,%r13 
0x400540 <+17>:  mov    %rsi,%r14 
0x400543 <+20>:  mov    %edx,0xc(%rsp) 
0x400547 <+24>:  mov    %rcx,%r15 
0x40054a <+27>:  mov    %rdi,%r12 
0x40054d <+30>:  mov    $0x1,%ebp 
0x400552 <+35>:  jmp    0x400574 <mystery+69> 
0x400554 <+37>:  movslq 0xc(%rsp),%rbx 
0x400559 <+42>:  imul   %rbp,%rbx 
0x40055d <+46>:  add    %r13,%rbx 
0x400560 <+49>:  mov    %rbx,%rsi 
0x400563 <+52>:  mov    %r12,%rdi 
0x400566 <+55>:  callq  *%r15 
0x400569 <+58>:  test   %eax,%eax 
0x40056b <+60>:  jns    0x400570 <mystery+65> 
0x40056d <+62>:  mov    %rbx,%r12 
0x400570 <+65>:  add    $0x1,%rbp 
0x400574 <+69>:  cmp    %r14,%rbp 
0x400577 <+72>:  jb     0x400554 <mystery+37> 
0x400579 <+74>:  mov    %r12,%rax 
0x40057c <+77>:  add    $0x18,%rsp 
0x400580 <+81>:  pop    %rbx 
0x400581 <+82>:  pop    %rbp 
0x400582 <+83>:  pop    %r12 
0x400584 <+85>:  pop    %r13 
0x400586 <+87>:  pop    %r14 
0x400588 <+89>:  pop    %r15 
0x40058a <+91>:  retq 
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void *mystery(void *arr, size_t nelems, int width,     
              int(*cmp)(void *, void *)) { 
     
    void *x = _________________; // line 1 
 
    for (____________________) { // line 2 
 
        void *y = _____________; // line 3 
 
        if (_________________) { // line 4 
 
            ___________________; // line 5 
         
        } 
    } 
 
    return ____________________; // line 6 
}  
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Problem 4 (Runtime Stack) (20 points) (suggested time: 30 minutes)  
 
Now that you have made it through CS 107, you have been offered $100,000,000 to 
figure out how to break into the CIA computer system. You promptly dispense with 
your ethics and your patriotism, and you accept the job.  
 
You are given the following C code. You can run the code on your local computer, but 
you don’t have access to the get_realpw function, so you make that function up 
yourself for your testing. However, you do know that the password only changes once 
a day. Tomorrow you need to tell a spy inside the CIA how to run the program and 
break in. The spy can run the program multiple times, but not in gdb.  
 
After looking at the code, you decide to look up the four string library functions, 
because you don’t recall exactly what they do (see exam reference sheet for 
prototypes). 
 
 1 // file: cia_login.c 
 2 #include<stdio.h> 
 3 #include<stdlib.h> 
 4 #include<string.h> 
 5 
 6 void get_realpw(char *pw) { // function made up by you  
 7     strcpy(pw,"dummy password"); 
 8 } 
 9 
10 void authenticate(char *userpw) 
11 { 
12     char realpw[16]; 
13     char userpwcopy[16]; 
14     get_realpw(realpw); 
15     strncpy(userpwcopy,userpw,16); 
16 
17     if (strcmp(userpwcopy,realpw) == 0) { 
18         printf("Welcome to CIAnet!\n"); 
19     } else { 
20         printf("Your password, %s, is 
incorrect.\n",userpwcopy); 
21     } 
22 } 
23 
24 int main(int argc, char **argv) 
25 { 
26     char userpw[1024]; 
27     printf("Password?\n"); 
28     fgets(userpw,1024,stdin); 
29     // remove trailing newline 
30     userpw[strlen(userpw)-1] = 0; 
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31     authenticate(userpw); 
32     return 0; 
33 } 
 
You run gdb on the binary file after you compile it. Here is the text of the gdb session: 
 
$ gdb cia_login 
The target architecture is assumed to be i386:x86-64 
Reading symbols from cia_login...done. 
(gdb) break 22 
Breakpoint 1 at 0x40073a: file cia_login.c, line 22. 
(gdb) run 
Starting program: cia_login 
Password? 
abcdefg 
Your password, abcdefg, is incorrect. 
 
Breakpoint 1, authenticate (userpw=userpw@entry=0x7fffffffe580 
"abcdefg") at cia_login.c:22 
22 } 
(gdb) p realpw 
$1 = "dummy password\000" 
(gdb) p userpw 
$2 = 0x7fffffffe580 "abcdefg" 
(gdb) p userpwcopy 
$3 = "abcdefg\000\000\000\000\000\000\000\000" 
(gdb) p &realpw 
$4 = (char (*)[16]) 0x7fffffffe560 
(gdb) p &userpw 
Address requested for identifier "userpw" which is in register 
$rbx  
(gdb) p/x $rbx 
$7 = 0x7fffffffe580 
(gdb) p &userpwcopy 
$5 = (char (*)[16]) 0x7fffffffe550 
(gdb) x/64bx &userpwcopy 
0x7fffffffe550: 0x61 0x62 0x63 0x64 0x65 0x66 0x67 0x00  
0x7fffffffe558: 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00  
0x7fffffffe560: 0x64 0x75 0x6d 0x6d 0x79 0x20 0x70 0x61  
0x7fffffffe568: 0x73 0x73 0x77 0x6f 0x72 0x64 0x00 0x00  
0x7fffffffe570: 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00  
0x7fffffffe578: 0x7f 0x07 0x40 0x00 0x00 0x00 0x00 0x00  
0x7fffffffe580: 0x61 0x62 0x63 0x64 0x65 0x66 0x67 0x00  
0x7fffffffe588: 0x00 0x0d 0xa1 0xf7 0xff 0x7f 0x00 0x00 
 
Once you reach this point, you know how to break into the CIA computer!  
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(a) Write your note to the spy about how to break into the CIA computer:  
 
 
(b) Write a note to your boss explaining how and why your exploit works.  
 
 
(c) Give a 1-line fix (or modification) that will make the CIA program more secure.  
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Problem 5 (Heap Allocator) (36 points) (suggested time: 50 minutes)  
 
Consider a heap allocator implementation designed as follows:  

• All blocks must be aligned on 4-byte boundaries, and the max request size is 
INT_MAX.    

• The minimum payload size is 4 bytes, and payloads are always given multiples 
of 4 bytes (e.g., a malloc of 10 bytes would be given a payload of 12 bytes).    

• Each block has a 20-byte header: 4 bytes (int) payload size, a “next” pointer 
(pointer to the   header of the next block in the free list or NULL for last element 
of the list), and a “previous” pointer (pointer to the header of the previous block 
in the free list or NULL for first element in the list), where the pointers are for use 
in a doubly-linked free list (these pointers are always present in the header— not 
payload—but are simply not used if the block is allocated).    

• Each block has a 4-byte footer, which is like a header but goes immediately 
after the payload instead of before it: 4 bytes (int) payload size.    

• Because block sizes must be multiples of 4 bytes, the rightmost (least 
significant) two bits of the payload size in the header and footer are not really 
needed (they would always be zero). So we use the least significant bit to 
indicate allocated or free (1=allocated, 0=free). The next bit is only used for 
allocated blocks (must be 0 for free blocks), and it indicates whether this block 
has been the subject of a call to realloc after its malloc (1=has been reallocated, 
otherwise 0). Therefore, to find the actual payload size of an allocated block, 
these two bits must be zeroed out. Note: both the header and footer have 
allocated and realloc bits.   

• There is a single explicit free list implemented as an unsorted linked list of free 
blocks.  

• To maintain alignment, the header of the first block in the heap segment starts 4 
bytes after the start of the heap segment. The entire heap after that is always 
part of one or more blocks   (initialization of heap segment starts with one giant 
free block that is split over time).    

• Example 1: An allocated block that was first malloced as 25 bytes, then 
subsequently realloced as 50 bytes would have an actual payload size of 52 
bytes (closest multiple of 4 greater than or equal to 50), and the header and 
footer would record the payload size as 55  (two rightmost bits set to 1). The 
header would include unused next/prev pointers.    

• Example 2: For a free block with an actual payload size of 16 bytes, the header 
and footer would record the payload size as 16 (two rightmost bits set to 0). The 
header would include  valid next/prev pointers.  
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Assume the following global typedefs, constants, and variables have already been set 
up:    
 
typedef struct headerT { 
   int payloadsz; // FOR THIS PROBLEM, you may assume that the memory 
   struct headerT *next; // layout for this struct is in the order  
   struct headerT *prev; // given here, with no padding. 
} headerT; 
 
#define MIN_SIZE 4 
int roundup(int size, int mult); // rounds size up to multiple of mult 
 
static void *heapStart; /* base address of entire heap segment */ 
static size_t heapSize; /* number of bytes in heap segment */ 
headerT *free_list;     /* front of the free list */ 
 
 
 (a) (4pts) Write a helper function that, given a pointer to a header or footer, reads and 
returns the actual payload size of that block, in bytes (i.e., returns the size with the two 
least significant bits zeroed out).  
 
int get_size(void *curr); 
 
 
(b) (4pts) Write a helper function to identify when a block is allocated. Given a pointer 
to a header or footer, return true if the block is allocated, otherwise return false.  
 
bool is_allocated(void *curr); 
 
 
(c) (4pts) Write a helper function to identify when a block has been reallocated since 
the time of its malloc. Given a pointer to a header or footer, return true if the block has 
been reallocated, otherwise return false. 
  
bool is_reallocated(void *curr); 
 
 
(d) (4pts) Write a helper function that, given a pointer to the header of a block, returns 
the address of the header of the block to its right in memory. If there is none (i.e., at the 
boundary of the heap), return NULL.  
 
headerT *right_block(headerT *curr); 
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(e) (10pts) Write a simple implementation of myfree given this design. Your myfree 
should do the following:  

• If ptr is outside the range of addresses of the heap, return without doing 
anything. Otherwise assume ptr points to a valid payload.  

• Check that the block is currently allocated (if not, return without doing anything).  
• Mark the header and footer values appropriately for a free block (don’t forget to 

set the realloc bit!)  
• Insert the block at the front of the free list.  
• This simple version does not attempt to do coalesce or other advanced features. 

   
void myfree(void *ptr); 
 
  
(f) (10pts) Write a simple implementation of myrealloc given this design. Your myrealloc 
should do the following:  

• Assume ptr points to a valid, allocated block’s payload. If the realloc size is 
less than   or equal to the current payload size, do nothing and return ptr. (you 
do not need to  change the value of the reallocated bit in this case)  

• If the block has previously been reallocated, proceed as if the request is for 
double the  actual request size, in anticipation that there may be future myrealloc 
calls that will   now be very fast so long as they fit within this preemptive 
doubling.  

• Perform the realloc by calling myfree and mymalloc (do not manually do any of 
the work for this). Be sure to copy the caller’s data for them. Even though you 
are the heap allocator, order these operations in a way that respects the usual 
convention that one  does not access freed memory.  

• Be sure that the allocated and reallocated flag bits are set appropriately to show 
this   was reallocated.  

• This simple version does not attempt to look for free blocks to the right to 
expand into, nor does coalesce or other advanced features.    

 
void *myrealloc(void *ptr, size_t size); 
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Problem 6 (gcc / make) (9 points) (suggested time: 10 minutes)  
 
(a) Name one type of optimization done by GCC, and what that optimization is. 
 
 
(b) When you compile a program using optimizations, oftentimes it becomes difficult to 
step through and debug using GDB. Why is this? 
 
 
(c) In the (seemingly nonsensical) code below, we use both strlen and sizeof, yet 
neither of them appear anywhere in the assembly. Why is this? What appears instead? 
 
char *str = "Hello, world!"; 
int offset = sizeof(char *); 
char buf[strlen(str) + 1]; 
strncpy(buf, str + offset, strlen(str) - offset); 
 


