# CS107 Lecture 2 Bits and Bytes; Integer Representations 

reading:
Bryant \& O'Hallaron, Ch. 2.2-2.3

## CS107 Topic 1: How can a computer represent integer numbers?

## CS107 Topic 1

## How can a computer represent integer numbers?

Why is answering this question important?

- Helps us understand the limitations of computer arithmetic (today)
- Shows us how to more efficiently perform arithmetic (next time)
- Shows us how we can encode data more compactly and efficiently (next time)
assign1: implement 3 programs that manipulate binary representations to (1) work around the limitations of arithmetic with addition, (2) simulate an evolving colony of cells, and (3) print Unicode text to the terminal.


## Learning Goals

- Learn about the binary and hexadecimal number systems and how to convert between number systems
- Understand how positive and negative numbers are represented in binary
- Learn about overflow, why it occurs, and its impacts


## Demo: Unexpected Behavior



## Lecture Plan

- Bits and Bytes
- Hexadecimal
- Integer Representations
- Unsigned Integers
- Signed Integers
- Overflow


## Lecture Plan

## - Bits and Bytes

- Hexadecimal
- Integer Representations
- Unsigned Integers
- Signed Integers
- Overflow

$$
0
$$

1

## Bits

Computers are built around the idea of two states: "on" and "off". Transistors represent this in hardware, and bits represent this in software!


## One Bit At A Time

- We can combine bits, like with base-10 numbers, to represent more data. 8 bits = 1 byte.
- Computer memory is just a large array of bytes! It is byte-addressable; you can't address (store location of) a bit; only a byte.
- Computers still fundamentally operate on bits; we have just gotten more creative about how to represent different data as bits!
- Images
- Audio
- Video
- Text
- And more...


## Base 10

# 5934 

Digits 0-9 (0 to base-1)

## Base 10



## Base 10

$\underset{\substack{4 \\ 10^{3}}}{5} \underset{\substack{4 \\ 10^{2}}}{9} \underset{\substack{4 \\ 10^{1}}}{\mathbf{3}} \underset{\substack{1 \\ 10}}{4}$

## Base 10

## 5934 <br> 10x: 31210

## Base 2



Digits 0-1 (0 to base-1)

## Base 2

$\begin{array}{llll}1 & 0 & 1 & 1 \\ x^{2} & 2 & 1\end{array}$

## Base 2

$$
\begin{gathered}
\text { Most significant bit (MSB) } \\
=1 * 8+0 * 4+1 * 2+1 * 1=11_{10}
\end{gathered}
$$

## Base 10 to Base 2

## Question: What is 6 in base 2?

## - Strategy:

- What is the largest power of $2 \leq 6$ ? $\quad \mathbf{2}^{\mathbf{2}}=\mathbf{4}$
- Now, what is the largest power of $2 \leq 6-2^{2}$ ? $\quad \mathbf{2}^{\mathbf{1}}=\mathbf{2}$
- $6-2^{2}-2^{1}=0$ !



## Practice: Base 2 to Base 10

What is the base-2 value 1010 in base-10?
a) 20
b) 101
c) 10
d) 5
e) Other

## Practice: Base 10 to Base 2

What is the base-10 value 14 in base 2 ?
a) 1111
b) 1110
c) 1010
d) Other

## Byte Values

What is the minimum and maximum base-10 value a single byte ( 8 bits) can store? minimum $=\mathbf{0}$ maximum $=\mathbf{2 5 5}$


- Strategy 1: $1^{*} 2^{7}+1^{*} 2^{6}+1^{*} 2^{5}+1^{*} 2^{4}+1^{*} 2^{3}+1^{*} 2^{2}+1^{*} 2^{1}+1^{*} 2^{0}=255$
- Strategy 2: $2^{8}-1=255$


## Multiplying by Base

# $1450 \times 10=1450 \underline{0}$ <br> $1100_{2} \times 2=1100 \underline{0}$ 

Key Idea: inserting 0 at the end multiplies by the base!

## Dividing by Base

# $1450 / 10=145$ $1100_{2} / 2=110$ 

Key Idea: removing 0 at the end divides by the base!

## Lecture Plan

- Bits and Bytes
- Hexadecimal
- Integer Representations
- Unsigned Integers
- Signed Integers
- Overflow


## Hexadecimal

When working with bits, oftentimes we have large numbers with 32 or 64 bits.

- Instead, we'll represent bits in base-16 instead; this is called hexadecimal.



## Hexadecimal

- When working with bits, oftentimes we have large numbers with 32 or 64 bits.
- Instead, we'll represent bits in base-16 instead; this is called hexadecimal.


0-15


0-15


0-15

Each is a base-16 digit!

## Hexadecimal

Hexadecimal is base-16, so we need digits for 1-15. How do we do this?

## Hexadecimal

| Hex digit | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Decimal value | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| Binary value | 0000 | 0001 | 0010 | 0011 | 0100 | 0101 | 0110 | 0111 |
|  |  |  |  |  |  |  |  |  |
| Hex digit | 8 | 9 | A | B | C | D | E | F |
| Decimal value | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
| Binary value | 1000 | 1001 | 1010 | 1011 | 1100 | 1101 | 1110 | 1111 |

## Hexadecimal

- We distinguish hexadecimal numbers by prefixing them with $\mathbf{0 x}$, and binary numbers with 0b.
- E.g. 0xf5 is 0b11110101



## Practice: Hexadecimal to Binary

What is 0x173A in binary?

## Hexadecimal Binary <br> 0001011100111010

## Practice: Hexadecimal to Binary

What is 0b1111001010 in hexadecimal? (Hint: start from the right)

## Binary 1111001010 Hexadecimal <br> 3 <br> A

## Hexadecimal: It's funky but concise

- Let's take a byte (8 bits):

$$
165 \text { Base-10: Human-readable, }
$$

## 0b10100101

Base-2: Yes, computers use this, but not human-readable

$$
\begin{array}{ll}
\text { Oxa5 } & \begin{array}{l}
\text { Base-16: Easy to convert to Base-2, } \\
\\
\\
\\
\text { (fore "portable" as a human-readable format: a half-byte is called a nibble or nybble) }
\end{array}
\end{array}
$$

## Lecture Plan

- Bits and Bytes
- Hexadecimal
- Integer Representations
- Unsigned Integers
- Signed Integers
- Overflow


## Number Representations

- Unsigned Integers: positive and 0 integers. (e.g. 0, 1, 2, ... 99999...
- Signed Integers: negative, positive and 0 integers. (e.g. ...-2, -1, 0, 1,... 9999...)
- Floating Point Numbers: real numbers. (e,g. 0.1, $-12.2,1.5 \times 10^{12}$ )


## Number Representations

- Unsigned Integers: positive and 0 integers. (e.g. 0, 1, 2, ... 99999...
- Signed Integers: negative, positive and 0 integers. (e.g. ...-2, -1, 0, 1,... 9999...)
- Floating Point Numbers: real numbers. (e,g. 0.1, $-12.2,1.5 \times 10^{12}$ )
$\longrightarrow$ Look up IEEE floating point if you're interested!


## Number Representations

| C Declaration | Size (Bytes) |
| :--- | :--- |
| int | 4 |
| double | 8 |
| float | 4 |
| char | 1 |
| char | 8 |
| short | 2 |
| long | 8 |

## In The Days Of Yore...

| C Declaration | Size (Bytes) |
| :--- | :--- |
| int | 4 |
| double | 8 |
| float | 4 |
| char | 1 |
| char * | 4 |
| short | 2 |
| long | 4 |

## Transitioning To Larger Datatypes



- Early 2000s: most computers were 32-bit. This means that pointers were 4 bytes ( 32 bits).
- 32-bit pointers store a memory address from 0 to $2^{32}-1$, equaling $2^{32}$ bytes of addressable memory. This equals 4 Gigabytes, meaning that 32-bit computers could have at most 4GB of memory (RAM)!
- Because of this, computers transitioned to 64-bit. This means that datatypes were enlarged; pointers in programs were now 64 bits.
- 64-bit pointers store a memory address from 0 to $2^{64}-1$, equaling $2^{64}$ bytes of addressable memory. This equals 16 Exabytes, meaning that 64-bit computers could have at most $1024 * 1024 * 1024 * 16$ GB of memory (RAM)!


## Lecture Plan

- Bits and Bytes
- Hexadecimal
- Integer Representations
- Unsigned Integers
- Signed Integers
- Overflow


## Unsigned Integers

- An unsigned integer is 0 or a positive integer (no negatives).
- We have already discussed converting between decimal and binary, which is a nice 1:1 relationship. Examples:

$$
\begin{aligned}
& 0 \mathrm{~b} 0001=1 \\
& 0 \mathrm{~b} 0101=5 \\
& 0 \mathrm{~b} 1011=11 \\
& 0 \mathrm{~b} 1111=15
\end{aligned}
$$

- The range of an unsigned number is $0 \rightarrow 2^{w}-1$, where $w$ is the number of bits. E.g. a 32 -bit integer can represent 0 to $2^{32}-1(4,294,967,295)$.


## Unsigned Integers



## From Unsigned to Signed

A signed integer is a negative, 0 , or positive integer. How can we represent both negative and positive numbers in binary?

## Lecture Plan

- Bits and Bytes
- Hexadecimal
- Integer Representations
- Unsigned Integers
- Signed Integers
- Overflow


## Signed Integers

A signed integer is a negative integer, 0 , or a positive integer.

- Problem: How can we represent negative and positive numbers in binary?


## Idea: let's reserve the most significant bit to store the sign.

## Sign Magnitude Representation



## Sign Magnitude Representation



## Sign Magnitude Representation

$$
\begin{array}{ll}
1000=-0 & 0000=0 \\
1001=-1 & 0001=1 \\
1010=-2 & 0010=2 \\
1011=-3 & 0011=3 \\
1100=-4 & 0100=4 \\
1101=-5 & 0101=5 \\
1110=-6 & 0110=6 \\
1111=-7 & 0111=7
\end{array}
$$

We've only represented 15 of our 16 available numbers!

## Sign Magnitude Representation

- Pro: easy to represent, and easy to convert to/from decimal.
- Con: +-0 is not intuitive
- Con: we lose a bit that could be used to store more numbers
- Con: arithmetic is tricky: we need to find the sign, then maybe subtract (borrow and carry, etc.), then maybe change the sign. This complicates the hardware support for something as fundamental as addition.


## Can we do better?

## A Better Idea

- Ideally, binary addition would just work regardless of whether the number is positive or negative.



## A Better Idea

- Ideally, binary addition would just work regardless of whether the number is positive or negative.


## 0101 +1011 0000

## A Better Idea

- Ideally, binary addition would just work regardless of whether the number is positive or negative.



## A Better Idea

- Ideally, binary addition would just work regardless of whether the number is positive or negative.


## 0011 +1101 0000

## A Better Idea

- Ideally, binary addition would just work regardless of whether the number is positive or negative.


## 0000 $\frac{+? ? ? ?}{0000}$

## A Better Idea

- Ideally, binary addition would just work regardless of whether the number is positive or negative.


## 0000 +0000 0000

## A Better Idea

| Decimal | Positive | Negative |
| :---: | :---: | :---: |
| 0 | 0000 | 0000 |
| 1 | 0001 | 1111 |
| 2 | 0010 | 1110 |
| 3 | 0011 | 1101 |
| 4 | 0100 | 1100 |
| 5 | 0101 | 1011 |
| 6 | 0110 | 1010 |
| 7 | 0111 | 1001 |


| Decimal | Positive | Negative |
| :---: | :---: | :---: |
| 8 | 1000 | 1000 |
| 9 | 1001 (same as $-7!$ ) | NA |
| 10 | 1010 (same as $-6!$ ) | NA |
| 11 | 1011 (same as $-5!$ ) | NA |
| 12 | 1100 (same as $-4!$ ) | NA |
| 13 | 1101 (same as $-3!$ ) | NA |
| 14 | 1110 (same as $-2!$ ) | NA |
| 15 | 1111 (same as $-1!$ ) | NA |

## There Seems Like a Pattern Here...

## 0101 $+\quad+1011$ <br> 

The negative number is the positive number inverted, plus one!

## There Seems Like a Pattern Here...

A binary number plus its inverse is all 1 s .

Add 1 to this to carry over all 1s and get 0!

## 1111 <br> $+0001$ 0000

## Another Trick

To find the negative equivalent of a number, work right-to-left and write down all digits through when you reach a 1 . Then, invert the rest of the digits.

> | 100100 |
| :--- |
| $+\begin{array}{l}\text { ??????? }\end{array}$ |
| 00000 |

## Another Trick

To find the negative equivalent of a number, work right-to-left and write down all digits through when you reach a 1 . Then, invert the rest of the digits.

> 100100 $++? ? 100$ $+\quad+00000$

## Another Trick

To find the negative equivalent of a number, work right-to-left and write down all digits through when you reach a 1 . Then, invert the rest of the digits.

## 100100 +011100 000000

## Two's Complement



## Two's Complement

- In two's complement, we represent a positive number as itself, and its negative equivalent as the two's complement of itself.
- The two's complement of a number is the binary digits inverted, plus 1.
- This works to convert from positive to negative, and back from negative to positive!



## History: Two's complement

- The binary representation was first proposed by John von Neumann in First Draft of a Report on the EDVAC (1945)
- That same year, he also invented the merge sort algorithm
- Many early computers used sign-magnitude or one's complement

$$
\begin{array}{lll}
+7 & 0 b 0000 & 0111 \\
-7 & \text { 0b1111 } & 1000 \\
8 \text {-bit one's complement }
\end{array}
$$

- The System/360, developed by IBM in 1964, was widely popular (had 1024KB memory) and established two's complement as the dominant binary representation of integers


EDSAC (1949)


System/360 (1964)

## Two's Complement

- Con: more difficult to represent, and difficult to convert to/from decimal and between positive and negative.
- Pro: only 1 representation for 0 !
- Pro: all bits are used to represent as many numbers as possible
- Pro: the most significant bit still indicates the sign of a number.
- Pro: addition works for any combination of positive and negative!



## Two's Complement

Adding two numbers is just...adding! There is no special case needed for negatives. E.g. what is $2+-5$ ?

$$
\begin{array}{rr}
0010 & 2 \\
+1011 & -5 \\
\hline 1101 & -3
\end{array}
$$

## Two's Complement

Subtracting two numbers is just performing the two's complement on one of them and then adding. E.g. $4-5=-1$.


## Practice: Two's Complement

What are the negative or positive equivalents of the numbers below?
a) -4 (1100)
b) 7 (0111)
c) 3 (0011)


## Break Time!

## To think about during the break:

How can what we've learned so far about integer representations help us understand the behavior of the airline program from the start of lecture?

## Lecture Plan

- Bits and Bytes
- Hexadecimal
- Integer Representations
- Unsigned Integers
- Signed Integers
- Overflow


## Overflow

If you exceed the maximum value of your bit representation, you wrap around or overflow back to the smallest bit representation.
$0 b 1111+0 b 1=0 b 0000$
$0 b 1111+0 b 10=0 b 0001$

If you go below the minimum value of your bit representation, you wrap around or overflow back to the largest bit representation.
$0 b 0000-0 b 1=0 b 1111$
0b0000 - 0b10 = 0b1110

## Min and Max Integer Values



| int | 4 | -2147483648 | 2147483647 |
| :--- | :--- | :--- | :--- |
| unsigned int | 4 | 0 | 4294967295 |


| long | 8 | -9223372036854775808 | 9223372036854775807 |
| :--- | :--- | :--- | :--- |
| unsigned long | 8 | 0 | 18446744073709551615 |

## Min and Max Integer Values

In C, there are various constants that represent these minimum and maximum values: INT_MIN, INT_MAX, UINT_MAX, LONG_MIN, LONG_MAX, ULONG_MA $\bar{X}$, ...

## Overflow



## Overflow

## At which points can overflow occur for

 signed and unsigned int? (assume binary values shown are all 32 bits)A. Signed and unsigned can both overflow at points $X$ and $Y$
B. Signed can overflow only at $X$, unsigned only at $Y$
C. Signed can overflow only at Y , unsigned only at X
D. Signed can overflow at $X$ and $Y$, unsigned only at X
E. Other


Key Idea: Overflow means discontinuity

## Unsigned Integers



## Signed Numbers



## Overflow In Practice: PSY

## PSY - GANGNAM STYLE (강남스타일) M/V

YouTube: "We never thought a video would be watched in numbers greater than a 32-bit integer ( $=2,147,483,647$ views), but that was before we met PSY. "Gangnam Style" has been viewed so many times we had to upgrade to a 64-bit integer (9,223,372,036,854,775,808)!" [link]
"We saw this coming a couple months ago and updated our systems to prepare for it" [link]

## Overflow In Practice: Timestamps

Many systems store timestamps as the number of seconds since Jan. 1, 1970 in a signed 32-bit integer.

- Problem: the latest timestamp that can be represented this way is 3:14:07 UTC on Jan. 13 2038!


## Overflow In Practice: Gandhi

- In the game "Civilization", each civilization leader had an "aggression" rating. Gandhi was meant to be peaceful, and had a score of 1 .
- If you adopted "democracy", all players' aggression reduced by 2. Gandhi's went from 1 to 255!
- Gandhi then became a big fan of nuclear weapons.

https://kotaku.com/why-gandhi-is-such-an-asshole-in-civilization-1653818245


## Overflow in Practice:

- Pacman Level 256
- Make sure to reboot Boeing Dreamliners every 248 days
- Comair/Delta airline had to cancel thousands of flights days before Christmas
- Reported vulnerability CVE-2019-3857 in libssh2 may allow a hacker to remotely execute code
- Donkey Kong Kill Screen


## Demo Revisited: Unexpected Behavior



## Recap

- Bits and Bytes
- Hexadecimal
- Integer Representations
- Unsigned Integers
- Signed Integers
- Overflow

Lecture 2 takeaway: computers represent everything in binary. We must determine how to represent our data (e.g., base-10 numbers) in a binary format so a computer can manipulate it. There may be limitations to these representations! (overflow)

Next time: How can we manipulate individual bits and bytes?

## Extra Practice

## Practice: Two's Complement

Fill in the below table:


## It's easier to compute base-10 for positive numbers, so use two's complement first if negative.

## Practice: Two's Complement

Fill in the below table:


It's easier to compute base-10 for positive numbers, so use two's complement first if negative.

## Practice: Two's Complement

Fill in the below table:

|  | char <br> decimal | $x=\overline{\text { binary }} ;$ | $\begin{aligned} & \text { char } y=-x ; \\ & \text { decimal } \text { binary } \end{aligned}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1. | -4 | 0b1111 1100 | 4 | 0b0000 | 0100 |
| 2. | 24 | 0b0001 1000 | -24 | 0b1110 | 1000 |
| 3. | 36 | 0b0010 0100 | -36 | 0b1101 | 1100 |
| 4. | -33 | $0 b 11011111$ | 33 | 0b0010 | 0001 |

## Signed vs. Unsigned Integers



## Underspecified question

What is the following base-2 number in base-10?

## 0b1101



## Underspecified question

What is the following base-2 number in base-10?

## 0b1101

$$
\begin{array}{ll}
\text { If 4-bit signed: } & -3 \\
\text { If 4-bit unsigned: } & 13 \\
\text { If >4-bit signed or unsigned: } & 13
\end{array}
$$

You need to know the type to determine the number! (Note by default, numeric constants in C are signed ints)


## Overflow

- What is happening here? Assume 4-bit numbers.


## 0b1101 + 0b0100



## Overflow

- What is happening here? Assume 4-bit numbers.


## 0b1101 + 0b0100

Signed
$-3+4=1$
No overflow

Unsigned
$13+4=1$
Overflow

## Limits and Comparisons

1. What is the...

|  | Largest unsigned? $\quad$ Largest signed? $\quad$ Smallest signed? |  |
| :--- | :--- | :--- |
| char |  |  |
| int |  |  |

## Limits and Comparisons

1. What is the...

|  | Largest unsigned? | Largest signed? | Smallest signed? |
| :---: | :---: | :---: | :---: |
| char | $2^{8}-1=255$ | $2^{7}-1=127$ | $-2^{7}=-128$ |
| int | $2^{32}-1=$ | $2^{31}-1=$ | $-2^{31}=$ |
|  | 4294967296 | 2147483647 | -2147483648 |

These are available as UCHAR_MAX, INT_MIN, INT_MAX, etc. in the <limits.h> header.

