CS107 Lecture 2
Bits and Bytes; Integer Representations

reading:
Bryant & O’Hallaron, Ch. 2.2-2.3
CS107 Topic 1: How can a computer represent integer numbers?
How can a computer represent integer numbers?

Why is answering this question important?
• Helps us understand the limitations of computer arithmetic (today)
• Shows us how to more efficiently perform arithmetic (next time)
• Shows us how we can encode data more compactly and efficiently (next time)

assign1: implement 3 programs that manipulate binary representations to (1) work around the limitations of arithmetic with addition, (2) simulate an evolving colony of cells, and (3) print Unicode text to the terminal.
Learning Goals

• Learn about the binary and hexadecimal number systems and how to convert between number systems
• Understand how positive and negative numbers are represented in binary
• Learn about overflow, why it occurs, and its impacts
Demo: Unexpected Behavior

cp -r /afs/ir/class/cs107/lecture-code/lect2 .
Lecture Plan

• Bits and Bytes 6
• Hexadecimal 24
• Integer Representations 32
• Unsigned Integers 38
• Signed Integers 42
• Overflow 67
• Casting and Combining Types 81
Lecture Plan

• Bits and Bytes 6
• Hexadecimal 24
• Integer Representations 32
• Unsigned Integers 38
• Signed Integers 42
• Overflow 67
• Casting and Combining Types 81
Bits

Computers are built around the idea of two states: “on” and “off”. Transistors represent this in hardware, and bits represent this in software!
• We can combine bits, like with base-10 numbers, to represent more data. \(8 \text{ bits} = 1 \text{ byte} \).

• Computer memory is just a large array of bytes! It is byte-addressable; you can’t address (store location of) a bit; only a byte.

• Computers still fundamentally operate on bits; we have just gotten more creative about how to represent different data as bits!
 • Images
 • Audio
 • Video
 • Text
 • And more…
Base 10

5 9 3 4

Digits 0-9 (0 to base-1)
Base 10

5 9 3 4

= 5*1000 + 9*100 + 3*10 + 4*1
Base 10

5 9 3 4

10^3 10^2 10^1 10^0
Base 2

2^x: \[\begin{array}{c} 3 \\ 2 \\ 1 \\ 0 \end{array}\]

Digits 0-1 (0 to base-1)
Base 2

1 0 1 1

2^3 2^2 2^1 2^0
Base 2

1011

eights fours twos ones

= 1*8 + 0*4 + 1*2 + 1*1 = 11_{10}

Most significant bit (MSB) Least significant bit (LSB)
Question: What is 6 in base 2?

• Strategy:
 • What is the largest power of 2 ≤ 6? \(2^2 = 4\)
 • Now, what is the largest power of 2 ≤ 6 – 2^2? \(2^1 = 2\)
 • \(6 – 2^2 – 2^1 = 0!\)

\[
\begin{array}{cccc}
2^3 & 2^2 & 2^1 & 2^0 \\
0 & 1 & 1 & 0 \\
\end{array}
\]

\[
= 0 \times 8 + 1 \times 4 + 1 \times 2 + 0 \times 1 = 6
\]
Practice: Base 2 to Base 10

What is the base-2 value 1010 in base-10?

a) 20
b) 101
c) 10
d) 5
e) Other
Practice: Base 10 to Base 2

What is the base-10 value 14 in base 2?

a) 1111
b) 1110
c) 1010
d) Other
Byte Values

What is the minimum and maximum base-10 value a single byte (8 bits) can store?
minimum = 0 **maximum = 255**

- **Strategy 1:** \(1 \times 2^7 + 1 \times 2^6 + 1 \times 2^5 + 1 \times 2^4 + 1 \times 2^3 + 1 \times 2^2 + 1 \times 2^1 + 1 \times 2^0 = 255 \)
- **Strategy 2:** \(2^8 - 1 = 255 \)
Multiplying by Base

$1450 \times 10 = 14500$

$1100_2 \times 2 = 11000_2$

Key Idea: inserting 0 at the end multiplies by the base!
Dividing by Base

1450 \div 10 = 145

1100_2 \div 2 = 110

Key Idea: removing 0 at the end divides by the base!
<table>
<thead>
<tr>
<th>Topic</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bits and Bytes</td>
<td>6</td>
</tr>
<tr>
<td>Hexadecimal</td>
<td>24</td>
</tr>
<tr>
<td>Integer Representations</td>
<td>32</td>
</tr>
<tr>
<td>Unsigned Integers</td>
<td>38</td>
</tr>
<tr>
<td>Signed Integers</td>
<td>42</td>
</tr>
<tr>
<td>Overflow</td>
<td>67</td>
</tr>
<tr>
<td>Casting and Combining Types</td>
<td>81</td>
</tr>
</tbody>
</table>
Hexadecimal

When working with bits, oftentimes we have large numbers with 32 or 64 bits.
• Instead, we’ll represent bits in *base-16 instead*; this is called *hexadecimal*.

![Hexadecimal numbers](image)
Hexadecimal

• When working with bits, oftentimes we have large numbers with 32 or 64 bits.
• Instead, we’ll represent bits in *base-16 instead*; this is called **hexadecimal**.

Each is a base-16 digit!
Hexadecimal

Hexadecimal is *base-16*, so we need digits for 1-15. How do we do this?

0 1 2 3 4 5 6 7 8 9 a b c d e f
10 11 12 13 14 15
<table>
<thead>
<tr>
<th>Hex digit</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decimal value</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>Binary value</td>
<td>0000</td>
<td>0001</td>
<td>0010</td>
<td>0011</td>
<td>0100</td>
<td>0101</td>
<td>0110</td>
<td>0111</td>
</tr>
<tr>
<td>Hex digit</td>
<td>8</td>
<td>9</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td>F</td>
</tr>
<tr>
<td>Decimal value</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
</tr>
<tr>
<td>Binary value</td>
<td>1000</td>
<td>1001</td>
<td>1010</td>
<td>1011</td>
<td>1100</td>
<td>1101</td>
<td>1110</td>
<td>1111</td>
</tr>
</tbody>
</table>
Hexadecimal

• We distinguish hexadecimal numbers by prefixing them with `0x`, and binary numbers with `0b`.
• E.g. `0xf5` is `0b11110101`
Practice: Hexadecimal to Binary

What is 0x173A in binary?

<table>
<thead>
<tr>
<th>Hexadecimal</th>
<th>1</th>
<th>7</th>
<th>3</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Binary</td>
<td>0001</td>
<td>0111</td>
<td>0011</td>
<td>1010</td>
</tr>
</tbody>
</table>
What is $\texttt{0b111001010}$ in hexadecimal? (*Hint: start from the right*)

<table>
<thead>
<tr>
<th>Binary</th>
<th>11</th>
<th>1100</th>
<th>1010</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hexadecimal</td>
<td>3</td>
<td>C</td>
<td>A</td>
</tr>
</tbody>
</table>
Hexadecimal: It’s funky but concise

- Let’s take a byte (8 bits):

 165 Base-10: Human-readable, but cannot easily interpret on/off bits

 0b10100101 Base-2: Yes, computers use this, but not human-readable

 0xa5 Base-16: Easy to convert to Base-2, More “portable” as a human-readable format (fun fact: a half-byte is called a nibble or nybble)
<table>
<thead>
<tr>
<th>Topic</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bits and Bytes</td>
<td>6</td>
</tr>
<tr>
<td>Hexadecimal</td>
<td>24</td>
</tr>
<tr>
<td>Integer Representations</td>
<td>32</td>
</tr>
<tr>
<td>Unsigned Integers</td>
<td>38</td>
</tr>
<tr>
<td>Signed Integers</td>
<td>42</td>
</tr>
<tr>
<td>Overflow</td>
<td>67</td>
</tr>
<tr>
<td>Casting and Combining Types</td>
<td>81</td>
</tr>
</tbody>
</table>
Number Representations

- **Unsigned Integers**: positive and 0 integers. (e.g. 0, 1, 2, ... 99999...)
- **Signed Integers**: negative, positive and 0 integers. (e.g. ...-2, -1, 0, 1,... 9999...)

- **Floating Point Numbers**: real numbers. (e.g. 0.1, -12.2, 1.5\times10^{12})
Number Representations

• **Unsigned Integers**: positive and 0 integers. (e.g. 0, 1, 2, ... 99999...)

• **Signed Integers**: negative, positive and 0 integers. (e.g. ...-2, -1, 0, 1,... 9999...)

• **Floating Point Numbers**: real numbers. (e.g. 0.1, -12.2, 1.5\times10^{12})

Look up IEEE floating point if you’re interested!
Number Representations

<table>
<thead>
<tr>
<th>C Declaration</th>
<th>Size (Bytes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>int</td>
<td>4</td>
</tr>
<tr>
<td>double</td>
<td>8</td>
</tr>
<tr>
<td>float</td>
<td>4</td>
</tr>
<tr>
<td>char</td>
<td>1</td>
</tr>
<tr>
<td>char *</td>
<td>8</td>
</tr>
<tr>
<td>short</td>
<td>2</td>
</tr>
<tr>
<td>long</td>
<td>8</td>
</tr>
<tr>
<td>C Declaration</td>
<td>Size (Bytes)</td>
</tr>
<tr>
<td>---------------</td>
<td>--------------</td>
</tr>
<tr>
<td>int</td>
<td>4</td>
</tr>
<tr>
<td>double</td>
<td>8</td>
</tr>
<tr>
<td>float</td>
<td>4</td>
</tr>
<tr>
<td>char</td>
<td>1</td>
</tr>
<tr>
<td>char *</td>
<td>4</td>
</tr>
<tr>
<td>short</td>
<td>2</td>
</tr>
<tr>
<td>long</td>
<td>4</td>
</tr>
</tbody>
</table>
Transitioning To Larger Datatypes

- **Early 2000s**: most computers were 32-bit. This means that pointers were 4 bytes (32 bits).
- 32-bit pointers store a memory address from 0 to $2^{32}-1$, equaling 2^{32} bytes of addressable memory. This equals **4 Gigabytes**, meaning that 32-bit computers could have at most **4GB** of memory (RAM)!
- Because of this, computers transitioned to 64-bit. This means that datatypes were enlarged; pointers in programs were now **64 bits**.
- 64-bit pointers store a memory address from 0 to $2^{64}-1$, equaling 2^{64} bytes of addressable memory. This equals **16 Exabytes**, meaning that 64-bit computers could have at most $1024 \times 1024 \times 1024 \times 16$ GB of memory (RAM)!
Lecture Plan

- Bits and Bytes 6
- Hexadecimal 24
- Integer Representations 32
- **Unsigned Integers** 38
- Signed Integers 42
- Overflow 67
- Casting and Combining Types 81
Unsigned Integers

• An **unsigned** integer is 0 or a positive integer (no negatives).

• We have already discussed converting between decimal and binary, which is a nice 1:1 relationship. Examples:

 - \(0b0001 = 1\)
 - \(0b0101 = 5\)
 - \(0b1011 = 11\)
 - \(0b1111 = 15\)

• The range of an unsigned number is \(0 \rightarrow 2^w - 1\), where \(w\) is the number of bits. E.g. a 32-bit integer can represent 0 to \(2^{32} - 1\) (4,294,967,295).
Unsigned Integers

4-bit unsigned integer representation

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111
A **signed** integer is a negative, 0, or positive integer. How can we represent both negative *and* positive numbers in binary?
Lecture Plan

- Bits and Bytes 6
- Hexadecimal 24
- Integer Representations 32
- Unsigned Integers 38
- **Signed Integers** 42
- Overflow 67
- Casting and Combining Types 81
Signed Integers

A **signed** integer is a negative integer, 0, or a positive integer.

- *Problem:* How can we represent negative *and* positive numbers in binary?

Idea: let’s reserve the most significant bit to store the sign.
Sign Magnitude Representation

0110

positive 6

1011

negative 3
Sign Magnitude Representation

0000

positive 0

1000

negative 0
Sign Magnitude Representation

<table>
<thead>
<tr>
<th>Binary</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 000</td>
<td>-0</td>
</tr>
<tr>
<td>1 001</td>
<td>-1</td>
</tr>
<tr>
<td>1 010</td>
<td>-2</td>
</tr>
<tr>
<td>1 011</td>
<td>-3</td>
</tr>
<tr>
<td>1 100</td>
<td>-4</td>
</tr>
<tr>
<td>1 101</td>
<td>-5</td>
</tr>
<tr>
<td>1 110</td>
<td>-6</td>
</tr>
<tr>
<td>1 111</td>
<td>-7</td>
</tr>
<tr>
<td>0 000</td>
<td>0</td>
</tr>
<tr>
<td>0 001</td>
<td>1</td>
</tr>
<tr>
<td>0 010</td>
<td>2</td>
</tr>
<tr>
<td>0 011</td>
<td>3</td>
</tr>
<tr>
<td>0 100</td>
<td>4</td>
</tr>
<tr>
<td>0 101</td>
<td>5</td>
</tr>
<tr>
<td>0 110</td>
<td>6</td>
</tr>
<tr>
<td>0 111</td>
<td>7</td>
</tr>
</tbody>
</table>

We’ve only represented 15 of our 16 available numbers!
Sign Magnitude Representation

- **Pro:** easy to represent, and easy to convert to/from decimal.
- **Con:** +0 is not intuitive
- **Con:** we lose a bit that could be used to store more numbers
- **Con:** arithmetic is tricky: we need to find the sign, then maybe subtract (borrow and carry, etc.), then maybe change the sign. This complicates the hardware support for something as fundamental as addition.

Can we do better?
• Ideally, binary addition would just work regardless of whether the number is positive or negative.

$\begin{array}{c}
0101 \\
+ \text{???} \\
\hline
0000
\end{array}$
A Better Idea

• Ideally, binary addition would *just work regardless* of whether the number is positive or negative.

\[
\begin{align*}
0101 \\
+1011 \\
\hline
0000
\end{align*}
\]
• Ideally, binary addition would *just work regardless* of whether the number is positive or negative.
• Ideally, binary addition would *just work regardless* of whether the number is positive or negative.

\[
\begin{array}{c}
\text{0011} \\
+ \text{1101} \\
\hline
\text{0000}
\end{array}
\]
• Ideally, binary addition would *just work regardless* of whether the number is positive or negative.
A Better Idea

• Ideally, binary addition would *just work regardless* of whether the number is positive or negative.

```
0000  
+0000  
-----  
00000  
```
A Better Idea

<table>
<thead>
<tr>
<th>Decimal</th>
<th>Positive</th>
<th>Negative</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0000</td>
<td>0000</td>
</tr>
<tr>
<td>1</td>
<td>0001</td>
<td>1111</td>
</tr>
<tr>
<td>2</td>
<td>0010</td>
<td>1110</td>
</tr>
<tr>
<td>3</td>
<td>0011</td>
<td>1101</td>
</tr>
<tr>
<td>4</td>
<td>0100</td>
<td>1100</td>
</tr>
<tr>
<td>5</td>
<td>0101</td>
<td>1011</td>
</tr>
<tr>
<td>6</td>
<td>0110</td>
<td>1010</td>
</tr>
<tr>
<td>7</td>
<td>0111</td>
<td>1001</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Decimal</th>
<th>Positive</th>
<th>Negative</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>1000</td>
<td>1000</td>
</tr>
<tr>
<td>9</td>
<td>1001 (same as -7!)</td>
<td>NA</td>
</tr>
<tr>
<td>10</td>
<td>1010 (same as -6!)</td>
<td>NA</td>
</tr>
<tr>
<td>11</td>
<td>1011 (same as -5!)</td>
<td>NA</td>
</tr>
<tr>
<td>12</td>
<td>1100 (same as -4!)</td>
<td>NA</td>
</tr>
<tr>
<td>13</td>
<td>1101 (same as -3!)</td>
<td>NA</td>
</tr>
<tr>
<td>14</td>
<td>1110 (same as -2!)</td>
<td>NA</td>
</tr>
<tr>
<td>15</td>
<td>1111 (same as -1!)</td>
<td>NA</td>
</tr>
</tbody>
</table>
There Seems Like a Pattern Here…

\[
\begin{align*}
0101 + 1011 &= 0000 \\
0011 + 1101 &= 0000 \\
0000 + 0000 &= 0000
\end{align*}
\]

The negative number is the positive number inverted, plus one!
A binary number plus its inverse is all 1s.

Add 1 to this to carry over all 1s and get 0!

\[
\begin{array}{c}
0101 \\
+1010 \\
\hline
1111
\end{array}
\quad
\begin{array}{c}
1111 \\
+0001 \\
\hline
0000
\end{array}
\]
Another Trick

To find the negative equivalent of a number, work right-to-left and write down all digits *through* when you reach a 1. Then, invert the rest of the digits.

\[100100 + ??????? = 0000000\]
Another Trick

To find the negative equivalent of a number, work right-to-left and write down all digits *through* when you reach a 1. Then, invert the rest of the digits.

\[
\begin{array}{c}
100100 \\
+ \cdots 100 \\
\hline
0000000
\end{array}
\]
Another Trick

To find the negative equivalent of a number, work right-to-left and write down all digits *through* when you reach a 1. Then, invert the rest of the digits.

\[
\begin{align*}
100100 &+ 011100 \\
000000
\end{align*}
\]
Two’s Complement

4-bit two's complement signed integer representation
In two’s complement, we represent a positive number as itself, and its negative equivalent as the two’s complement of itself.

The two’s complement of a number is the binary digits inverted, plus 1.

This works to convert from positive to negative, and back from negative to positive!
History: Two’s complement

• The binary representation was first proposed by John von Neumann in *First Draft of a Report on the EDVAC* (1945)
 • That same year, he also invented the merge sort algorithm

• Many early computers used sign-magnitude or one’s complement
 +7 0b0000 0111
 -7 0b1111 1000
 8-bit one’s complement

• The System/360, developed by IBM in 1964, was widely popular (had 1024KB memory) and established two’s complement as the dominant binary representation of integers
Two’s Complement

• **Con:** more difficult to represent, and difficult to convert to/from decimal and between positive and negative.

• **Pro:** only 1 representation for 0!

• **Pro:** all bits are used to represent as many numbers as possible

• **Pro:** the most significant bit still indicates the sign of a number.

• **Pro:** addition works for any combination of positive and negative!
Adding two numbers is just...adding! There is no special case needed for negatives. E.g. what is $2 + -5$?

$$
\begin{array}{c}
0010 \\
+1011 \\
\hline
1101
\end{array}
$$

$2 + -5 = -3$
Subtracting two numbers is just performing the two’s complement on one of them and then adding. E.g. $4 - 5 = -1.$
Practice: Two’s Complement

What are the negative or positive equivalents of the numbers below?

a) -4 (1100)
b) 7 (0111)
c) 3 (0011)
Break Time!

To think about during the break:

How can what we’ve learned so far about integer representations help us understand the behavior of the airline program from the start of lecture?
Lecture Plan

- Bits and Bytes 6
- Hexadecimal 24
- Integer Representations 32
- Unsigned Integers 38
- Signed Integers 42
- **Overflow** 67
- Casting and Combining Types 81
Overflow

If you exceed the **maximum** value of your bit representation, you **wrap around** or **overflow** back to the **smallest** bit representation.

\[
\begin{array}{c}
0b1111 + 0b1 = 0b0000 \\
0b1111 + 0b10 = 0b0001
\end{array}
\]

If you go below the **minimum** value of your bit representation, you **wrap around** or **overflow** back to the **largest** bit representation.

\[
\begin{array}{c}
0b0000 - 0b1 = 0b1111 \\
0b0000 - 0b10 = 0b1110
\end{array}
\]
Min and Max Integer Values

<table>
<thead>
<tr>
<th>Type</th>
<th>Size (Bytes)</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>char</td>
<td>1</td>
<td>-128</td>
<td>127</td>
</tr>
<tr>
<td>unsigned char</td>
<td>1</td>
<td>0</td>
<td>255</td>
</tr>
<tr>
<td>short</td>
<td>2</td>
<td>-32768</td>
<td>32767</td>
</tr>
<tr>
<td>unsigned short</td>
<td>2</td>
<td>0</td>
<td>65535</td>
</tr>
<tr>
<td>int</td>
<td>4</td>
<td>-2147483648</td>
<td>2147483647</td>
</tr>
<tr>
<td>unsigned int</td>
<td>4</td>
<td>0</td>
<td>4294967295</td>
</tr>
<tr>
<td>long</td>
<td>8</td>
<td>-9223372036854775808</td>
<td>9223372036854775807</td>
</tr>
<tr>
<td>unsigned long</td>
<td>8</td>
<td>0</td>
<td>18446744073709551615</td>
</tr>
</tbody>
</table>
In C, there are various constants that represent these minimum and maximum values: `INT_MIN`, `INT_MAX`, `UINT_MAX`, `LONG_MIN`, `LONG_MAX`, `ULONG_MAX`, ...
Overflow

At which points can overflow occur for signed and unsigned int? (assume binary values shown are all 32 bits)

A. Signed and unsigned can both overflow at points X and Y
B. Signed can overflow only at X, unsigned only at Y
C. Signed can overflow only at Y, unsigned only at X
D. Signed can overflow at X and Y, unsigned only at X
E. Other

Key Idea: Overflow means discontinuity
Unsigned Integers

\[\approx +4 \text{billion} \]

Discontinuity means overflow possible here

Increasing positive numbers
Signed Numbers

Discontinuity means overflow possible here

Increasing positive numbers

Increasing negative numbers becoming less negative (i.e. increasing)

≈-2billion ≈+2billion
Overflow In Practice: PSY

YouTube: “We never thought a video would be watched in numbers greater than a 32-bit integer (=2,147,483,647 views), but that was before we met PSY. "Gangnam Style" has been viewed so many times we had to upgrade to a 64-bit integer (9,223,372,036,854,775,808)!” [link]

“We saw this coming a couple months ago and updated our systems to prepare for it” [link]
Many systems store timestamps as **the number of seconds since Jan. 1, 1970** in a signed **32-bit integer**.

- **Problem:** the latest timestamp that can be represented this way is 3:14:07 UTC on Jan. 13 2038!
Overflow In Practice: Gandhi

• In the game “Civilization”, each civilization leader had an “aggression” rating. Gandhi was meant to be peaceful, and had a score of 1.

• If you adopted “democracy”, all players’ aggression reduced by 2. Gandhi’s went from 1 to 255!

• Gandhi then became a big fan of nuclear weapons.

https://kotaku.com/why-gandhi-is-such-an-asshole-in-civilization-1653818245
Overflow in Practice:

• Pacman Level 256
• Make sure to reboot Boeing Dreamliners every 248 days
• Comair/Delta airline had to cancel thousands of flights days before Christmas
• Reported vulnerability CVE-2019-3857 in libssh2 may allow a hacker to remotely execute code
• Donkey Kong Kill Screen
Demo Revisited: Unexpected Behavior

airline.c
Lecture Plan

• Bits and Bytes 6
• Hexadecimal 24
• Integer Representations 32
• Unsigned Integers 38
• Signed Integers 42
• Overflow 67
• Casting and Combining Types 81
There are 3 placeholders for 32-bit integers that we can use:
- \%d: signed 32-bit int
- \%u: unsigned 32-bit int
- \%x: hex 32-bit int

The placeholder—not the expression filling in the placeholder—dictates what gets printed!
What happens at the byte level when we cast between variable types? **The bytes remain the same!** This means they may be interpreted differently depending on the type.

```c
int v = -12345;
unsigned int uv = v;
printf("v = %d, uv = %u\n", v, uv);
```

This prints out: "v = -12345, uv = 4294954951". **Why?**

The bit representation for -12345 is `0b111111111111110011111100111`. If we treat this binary representation as a positive number, it’s **huge**!
Casting

You can cast something to another type by putting that type in parentheses in front of the value:

```
int v = -12345;
...(unsigned int)v...
```

You can also use the `U` suffix after a number literal to treat it as unsigned:

```
-12345U
```
Be **careful** when comparing signed and unsigned integers. **C will implicitly cast** the signed argument to unsigned, and then performs the operation assuming both numbers are non-negative.

<table>
<thead>
<tr>
<th>Expression</th>
<th>Comparison Type?</th>
<th>Evaluates To?</th>
<th>Mathematically correct?</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 == 0U</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Be careful when comparing signed and unsigned integers. C will implicitly cast the signed argument to unsigned, and then performs the operation assuming both numbers are non-negative.

<table>
<thead>
<tr>
<th>Expression</th>
<th>Comparison Type?</th>
<th>Evaluates To?</th>
<th>Mathematically correct?</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 == 0U</td>
<td>Unsigned</td>
<td>true</td>
<td>yes</td>
</tr>
</tbody>
</table>
Be careful when comparing signed and unsigned integers. C will implicitly cast the signed argument to unsigned, and then performs the operation assuming both numbers are non-negative.

<table>
<thead>
<tr>
<th>Expression</th>
<th>Comparison Type?</th>
<th>Evaluates To?</th>
<th>Mathematically correct?</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 == 0U</td>
<td>Unsigned</td>
<td>true</td>
<td>yes</td>
</tr>
<tr>
<td>-1 < 0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Be careful when comparing signed and unsigned integers. **C will implicitly cast** the signed argument to unsigned, and then performs the operation assuming both numbers are non-negative.

<table>
<thead>
<tr>
<th>Expression</th>
<th>Comparison Type?</th>
<th>Evaluates To?</th>
<th>Mathematically correct?</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 == 0U</td>
<td>Unsigned</td>
<td>true</td>
<td>yes</td>
</tr>
<tr>
<td>-1 < 0</td>
<td>Signed</td>
<td>true</td>
<td>yes</td>
</tr>
</tbody>
</table>
Be careful when comparing signed and unsigned integers. C will implicitly cast the signed argument to unsigned, and then performs the operation assuming both numbers are non-negative.

<table>
<thead>
<tr>
<th>Expression</th>
<th>Comparison Type?</th>
<th>Evaluates To?</th>
<th>Mathematically correct?</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 == 0U</td>
<td>Unsigned</td>
<td>true</td>
<td>yes</td>
</tr>
<tr>
<td>-1 < 0</td>
<td>Signed</td>
<td>true</td>
<td>yes</td>
</tr>
<tr>
<td>-1 < 0U</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Be careful when comparing signed and unsigned integers. C will implicitly cast the signed argument to unsigned, and then performs the operation assuming both numbers are non-negative.

<table>
<thead>
<tr>
<th>Expression</th>
<th>Comparison Type?</th>
<th>Evaluates To?</th>
<th>Mathematically correct?</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 == 0U</td>
<td>Unsigned</td>
<td>true</td>
<td>yes</td>
</tr>
<tr>
<td>-1 < 0</td>
<td>Signed</td>
<td>true</td>
<td>yes</td>
</tr>
<tr>
<td>-1 < 0U</td>
<td>Unsigned</td>
<td>false</td>
<td>No!</td>
</tr>
</tbody>
</table>
Comparisons Between Different Types

Be careful when comparing signed and unsigned integers. C will implicitly cast the signed argument to unsigned, and then performs the operation assuming both numbers are non-negative.

<table>
<thead>
<tr>
<th>Expression</th>
<th>Comparison Type?</th>
<th>Evaluates To?</th>
<th>Mathematically correct?</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 == 0U</td>
<td>Unsigned</td>
<td>true</td>
<td>yes</td>
</tr>
<tr>
<td>−1 < 0</td>
<td>Signed</td>
<td>true</td>
<td>yes</td>
</tr>
<tr>
<td>−1 < 0U</td>
<td>Unsigned</td>
<td>false</td>
<td>No!</td>
</tr>
<tr>
<td>2147483647 > −2147483648</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Be careful when comparing signed and unsigned integers. C will implicitly cast the signed argument to unsigned, and then performs the operation assuming both numbers are non-negative.

<table>
<thead>
<tr>
<th>Expression</th>
<th>Comparison Type?</th>
<th>Evaluates To?</th>
<th>Mathematically correct?</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 == 0U</td>
<td>Unsigned</td>
<td>true</td>
<td>yes</td>
</tr>
<tr>
<td>-1 < 0</td>
<td>Signed</td>
<td>true</td>
<td>yes</td>
</tr>
<tr>
<td>-1 < 0U</td>
<td>Unsigned</td>
<td>false</td>
<td>No!</td>
</tr>
<tr>
<td>2147483647 > -2147483648</td>
<td>Signed</td>
<td>true</td>
<td>yes</td>
</tr>
</tbody>
</table>
Comparisons Between Different Types

Be careful when comparing signed and unsigned integers. C will implicitly cast the signed argument to unsigned, and then performs the operation assuming both numbers are non-negative.

<table>
<thead>
<tr>
<th>Expression</th>
<th>Comparison Type?</th>
<th>Evaluates To?</th>
<th>Mathematically correct?</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 == 0U</td>
<td>Unsigned</td>
<td>true</td>
<td>yes</td>
</tr>
<tr>
<td>−1 < 0</td>
<td>Signed</td>
<td>true</td>
<td>yes</td>
</tr>
<tr>
<td>−1 < 0U</td>
<td>Unsigned</td>
<td>false</td>
<td>No!</td>
</tr>
<tr>
<td>2147483647 > −2147483648</td>
<td>Signed</td>
<td>true</td>
<td>yes</td>
</tr>
<tr>
<td>2147483647U > −2147483648</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Comparisons Between Different Types

Be careful when comparing signed and unsigned integers. C will implicitly cast the signed argument to unsigned, and then performs the operation assuming both numbers are non-negative.

<table>
<thead>
<tr>
<th>Expression</th>
<th>Comparison Type?</th>
<th>Evaluates To?</th>
<th>Mathematically correct?</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 == 0U</td>
<td>Unsigned</td>
<td>true</td>
<td>yes</td>
</tr>
<tr>
<td>-1 < 0</td>
<td>Signed</td>
<td>true</td>
<td>yes</td>
</tr>
<tr>
<td>-1 < 0U</td>
<td>Unsigned</td>
<td>false</td>
<td>No!</td>
</tr>
<tr>
<td>2147483647 > -2147483648</td>
<td>Signed</td>
<td>true</td>
<td>yes</td>
</tr>
<tr>
<td>2147483647U > -2147483648</td>
<td>Unsigned</td>
<td>false</td>
<td>No!</td>
</tr>
</tbody>
</table>
Be careful when comparing signed and unsigned integers. C will implicitly cast the signed argument to unsigned, and then performs the operation assuming both numbers are non-negative.

<table>
<thead>
<tr>
<th>Expression</th>
<th>Comparison Type?</th>
<th>Evaluates To?</th>
<th>Mathematically correct?</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 == 0U</td>
<td>Unsigned</td>
<td>true</td>
<td>yes</td>
</tr>
<tr>
<td>-1 < 0</td>
<td>Signed</td>
<td>true</td>
<td>yes</td>
</tr>
<tr>
<td>-1 < 0U</td>
<td>Unsigned</td>
<td>false</td>
<td>No!</td>
</tr>
<tr>
<td>2147483647 > -2147483648</td>
<td>Signed</td>
<td>true</td>
<td>yes</td>
</tr>
<tr>
<td>2147483647U > -2147483648</td>
<td>Unsigned</td>
<td>false</td>
<td>No!</td>
</tr>
<tr>
<td>-1 > -2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(unsigned)-1 > -2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Be careful when comparing signed and unsigned integers. C will implicitly cast the signed argument to unsigned, and then performs the operation assuming both numbers are non-negative.

<table>
<thead>
<tr>
<th>Expression</th>
<th>Comparison Type?</th>
<th>Evaluates To?</th>
<th>Mathematically correct?</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 == 0U</td>
<td>Unsigned</td>
<td>true</td>
<td>yes</td>
</tr>
<tr>
<td>-1 < 0</td>
<td>Signed</td>
<td>true</td>
<td>yes</td>
</tr>
<tr>
<td>-1 < 0U</td>
<td>Unsigned</td>
<td>false</td>
<td>No!</td>
</tr>
<tr>
<td>2147483647 > -2147483648</td>
<td>Signed</td>
<td>true</td>
<td>yes</td>
</tr>
<tr>
<td>2147483647U > -2147483648</td>
<td>Unsigned</td>
<td>false</td>
<td>No!</td>
</tr>
<tr>
<td>-1 > -2</td>
<td>Signed</td>
<td>true</td>
<td>yes</td>
</tr>
<tr>
<td>(unsigned)-1 > -2</td>
<td>Unsigned</td>
<td>true</td>
<td>yes</td>
</tr>
</tbody>
</table>
Comparisons Between Different Types

Which many of the following statements are true? (assume that variables are set to values that place them in the spots shown)

- $s_3 > u_3$
- $u_2 > u_4$
- $s_2 > s_4$
- $s_1 > s_2$
- $u_1 > u_2$
- $s_1 > u_3$
Which many of the following statements are true? (assume that variables are set to values that place them in the spots shown)

s3 > u3 - true
u2 > u4
s2 > s4
s1 > s2
u1 > u2
s1 > u3
Which many of the following statements are true? (assume that variables are set to values that place them in the spots shown)

s3 > u3 - true
u2 > u4 - true
s2 > s4
s1 > s2
u1 > u2
s1 > u3
Which many of the following statements are true? *(assume that variables are set to values that place them in the spots shown)*

- $s_3 > u_3$ - true
- $u_2 > u_4$ - true
- $s_2 > s_4$ - false
- $s_1 > s_2$
- $u_1 > u_2$
- $s_1 > u_3$
Which many of the following statements are true? *(assume that variables are set to values that place them in the spots shown)*

- $s_3 > u_3$ - true
- $u_2 > u_4$ - true
- $s_2 > s_4$ - false
- $s_1 > s_2$ - true
- $u_1 > u_2$
- $s_1 > u_3$
Which many of the following statements are true? *(assume that variables are set to values that place them in the spots shown)*

- $s_3 > u_3$ - true
- $u_2 > u_4$ - true
- $s_2 > s_4$ - false
- $s_1 > s_2$ - true
- $u_1 > u_2$ - true
- $s_1 > u_3$
Comparisons Between Different Types

Which many of the following statements are true? (assume that variables are set to values that place them in the spots shown)

- $s_3 > u_3$ - true
- $u_2 > u_4$ - true
- $s_2 > s_4$ - false
- $s_1 > s_2$ - true
- $u_1 > u_2$ - true
- $s_1 > u_3$ - true
Expanding Bit Representations

• Sometimes, we want to convert between two integers of different sizes (e.g. `short` to `int`, or `int` to `long`).

• We might not be able to convert from a bigger data type to a smaller data type, but we do want to always be able to convert from a smaller data type to a bigger data type.

• For unsigned values, we can add *leading zeros* to the representation (“zero extension”)

• For signed values, we can *repeat the sign of the value* for new digits (“sign extension”)

• Note: when doing `<`, `>`, `<=`, `>=` comparison between different size types, it will *promote to the larger type*.
unsigned short s = 4;
// short is a 16-bit format, so
 s = 0000 0000 0000 0100b

unsigned int i = s;
// conversion to 32-bit int, so i = 0000 0000 0000 0000 0000 0000 0000 0100b
Expanding Bit Representation

short s = 4;
// short is a 16-bit format, so
s = 0000 0000 0000 0100b

int i = s;
// conversion to 32-bit int, so
i = 0000 0000 0000 0000 0000 0000 0000 0100b

— or —

short s = -4;
// short is a 16-bit format, so
s = 1111 1111 1111 1100b

int i = s;
// conversion to 32-bit int, so
i = 1111 1111 1111 1100b
Truncating Bit Representation

If we want to **reduce** the bit size of a number, C **truncates** the representation and discards the *more significant bits*.

```c
int x = 53191;
short sx = x;
int y = sx;
```

What happens here? Let's look at the bits in x (a 32-bit int), 53191:

```
0000 0000 0000 0000 1100 1111 1100 0111
```

When we cast x to a short, it only has 16-bits, and C **truncates** the number:

```
1100 1111 1100 0111
```

This is -12345! And when we cast sx back an int, we sign-extend the number.

```
1111 1111 1111 1111 1100 1111 1100 0111 // still -12345
```
If we want to reduce the bit size of a number, C truncates the representation and discards the more significant bits.

What happens here? Let's look at the bits in x (a 32-bit int), -3:

```
1111 1111 1111 1111 1111 1111 1111 1101
```

When we cast x to a short, it only has 16-bits, and C truncates the number:

```
1111 1111 1111 1101
```

This is -3! **If the number does fit, it will convert fine.** y looks like this:

```
1111 1111 1111 1111 1111 1111 1111 1101  // still -3
```
If we want to **reduce** the bit size of a number, C *truncates* the representation and discards the *more significant bits*.

```c
unsigned int x = 128000;
unsigned short sx = x;
unsigned int y = sx;
```

What happens here? Let's look at the bits in `x` (a 32-bit unsigned int), 128000:

```
0000 0000 0000 0001 1111 0100 0000 0000
```

When we cast `x` to a short, it only has 16-bits, and C *truncates* the number:

```
1111 0100 0000 0000
```

This is 62464! **Unsigned numbers can lose info too.** Here is what `y` looks like:

```
0000 0000 0000 0000 1111 0100 0000 0000
// still 62464
```
The `sizeof` Operator

```
long sizeof(type);
```

// Example
long int_size_bytes = sizeof(int); // 4
long short_size_bytes = sizeof(short); // 2
long char_size_bytes = sizeof(char); // 1

`sizeof` takes a variable type (or a variable itself) as a parameter and returns the size of that type, in bytes.
Tools: A binary/hex calculator

Is there a program to quickly convert between hex, binary, and decimal?

• Yes. Next week, we will learn more about **gdb**, our debugger.
• gdb can print out variables/constants in any format: hex, decimal, unsigned...
Lecture 2 takeaway: computers represent everything in binary. We must determine how to represent our data (e.g., base-10 numbers) in a binary format so a computer can manipulate it. There may be limitations to these representations! (overflow)

Next time: How can we manipulate individual bits and bytes?
Extra Practice
Practice: Two’s Complement

Fill in the below table:

<table>
<thead>
<tr>
<th>char x = ____;</th>
<th>char y = -x;</th>
</tr>
</thead>
<tbody>
<tr>
<td>decimal</td>
<td>binary</td>
</tr>
<tr>
<td>1.</td>
<td>0b1111 1100</td>
</tr>
<tr>
<td>2.</td>
<td>0b0001 1000</td>
</tr>
<tr>
<td>3.</td>
<td>0b0010 0100</td>
</tr>
<tr>
<td>4.</td>
<td>0b1101 1111</td>
</tr>
</tbody>
</table>

It’s easier to compute base-10 for positive numbers, so use two’s complement first if negative.
Practice: Two’s Complement

Fill in the below table:

<table>
<thead>
<tr>
<th>char x = ____;</th>
<th>char y = -x;</th>
</tr>
</thead>
<tbody>
<tr>
<td>decimal</td>
<td>binary</td>
</tr>
<tr>
<td>1. -4</td>
<td>0b1111 1100</td>
</tr>
<tr>
<td>2.</td>
<td>0b0001 1000</td>
</tr>
<tr>
<td>3.</td>
<td>0b0010 0100</td>
</tr>
<tr>
<td>4.</td>
<td>0b1101 1111</td>
</tr>
</tbody>
</table>

It’s easier to compute base-10 for positive numbers, so use two’s complement first if negative.
Practice: Two’s Complement

Fill in the below table:

<table>
<thead>
<tr>
<th></th>
<th>char x = ____;</th>
<th>char y = -x;</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>decimal</td>
<td>binary</td>
</tr>
<tr>
<td>1.</td>
<td>-4</td>
<td>0b1111 1100</td>
</tr>
<tr>
<td>2.</td>
<td>24</td>
<td>0b0001 1000</td>
</tr>
<tr>
<td>3.</td>
<td>36</td>
<td>0b0010 0100</td>
</tr>
<tr>
<td>4.</td>
<td>-33</td>
<td>0b1101 1111</td>
</tr>
</tbody>
</table>

It’s easier to compute base-10 for positive numbers, so use two’s complement first if negative.
Hexadecimal and Truncation

For each initialization of x, what will be printed?

i. \(x = 130; \) \(\text{// } 0x82 \)

ii. \(x = -132; \) \(\text{// } 0xff7c \)

iii. \(x = 25; \) \(\text{// } 0x19 \)

```c
short x = ______;
char cx = x;
printf("%d", cx);
```
Hexadecimal and Truncation

For each initialization of x, what will be printed?

-126 i. x = 130; // 0x82

124 ii. x = -132; // 0xff7c

25 iii. x = 25; // 0x19

short x = ______;
char cx = x;
printf("%d", cx);
Signed vs. Unsigned Integers
What is the following base-2 number in base-10?

0b1101
What is the following base-2 number in base-10?

\[\text{0b1101} \]

- If 4-bit signed: \(-3\)
- If 4-bit unsigned: \(13\)
- If >4-bit signed or unsigned: \(13\)

You need to know the type to determine the number! (Note by default, numeric constants in C are signed ints)
Overflow

- What is happening here? Assume 4-bit numbers.

\[0b1101 + 0b0100 \]
Overflow

• What is happening here? Assume 4-bit numbers.

\[\text{Signed: } -3 + 4 = 1 \]
\[\text{No overflow} \]

\[\text{Unsigned: } 13 + 4 = 1 \]
\[\text{Overflow} \]
Limits and Comparisons

1. What is the...	Largest unsigned?	Largest signed?	Smallest signed?
char | |
int | |

2. Will the following char comparisons evaluate to true or false?
 i. $-7 < 4$
 ii. $-7 < 4U$
 iii. $(\text{char}) 130 > 4$
 iv. $(\text{char}) -132 > 2$
Limits and Comparisons

1. What is the...

<table>
<thead>
<tr>
<th></th>
<th>Largest unsigned?</th>
<th>Largest signed?</th>
<th>Smallest signed?</th>
</tr>
</thead>
<tbody>
<tr>
<td>char</td>
<td>$2^8 - 1 = 255$</td>
<td>$2^7 - 1 = 127$</td>
<td>$-2^7 = -128$</td>
</tr>
<tr>
<td>int</td>
<td>$2^{32} - 1 = 4294967296$</td>
<td>$2^{31} - 1 = 2147483647$</td>
<td>$-2^{31} = -2147483648$</td>
</tr>
</tbody>
</table>

These are available as UCHAR_MAX, INT_MIN, INT_MAX, etc. in the <limits.h> header.
2. Will the following char comparisons evaluate to true or false?

i. \(-7 < 4\) \hspace{1cm} \text{true} \hspace{1cm} \text{iii.} \ (\text{char})\ 130 > 4 \hspace{1cm} \text{false}

ii. \(-7 < 4U\) \hspace{1cm} \text{false} \hspace{1cm} \text{iv.} \ (\text{char})\ -132 > 2 \hspace{1cm} \text{true}

By default, numeric constants in C are signed ints, unless they are suffixed with u (unsigned) or L (long).