#### **CS107 Lecture 2** Bits and Bytes; Integer Representations

reading: Bryant & O'Hallaron, Ch. 2.2-2.3

This document is copyright (C) Stanford Computer Science, Lisa Yan, and Nick Troccoli, licensed under Creative Commons Attribution 2.5 License. All rights reserved. Based on slides created by Cynthia Lee, Chris Gregg, Jerry Cain and others.

### <u>CS107 Topic 1</u>: How can a computer represent integer numbers?

### **CS107 Topic 1**

#### How can a computer represent integer numbers?

Why is answering this question important?

- Helps us understand the limitations of computer arithmetic (today)
- Shows us how to more efficiently perform arithmetic (next time)
- Shows us how we can encode data more compactly and efficiently (next time)

**assign1:** implement 3 programs that manipulate binary representations to (1) work around the limitations of arithmetic with addition, (2) simulate an evolving colony of cells, and (3) print Unicode text to the terminal.

### **Learning Goals**

- Learn about the binary and hexadecimal number systems and how to convert between number systems
- Understand how positive and negative numbers are represented in binary
- Learn about overflow, why it occurs, and its impacts

### Demo: Unexpected Behavior



cp -r /afs/ir/class/cs107/lecture-code/lect2 .

### **Lecture Plan**

- Bits and Bytes
- Hexadecimal
- Integer Representations
- Unsigned Integers
- Signed Integers
- Overflow

### **Lecture Plan**

- Bits and Bytes
- Hexadecimal
- Integer Representations
- Unsigned Integers
- Signed Integers
- Overflow





### **Bits**

Computers are built around the idea of two states: "on" and "off". Transistors represent this in hardware, and bits represent this in software!



### **One Bit At A Time**

- We can combine bits, like with base-10 numbers, to represent more data. 8
   bits = 1 byte.
- Computer memory is just a large array of bytes! It is *byte-addressable*; you can't address (store location of) a bit; only a byte.
- Computers still fundamentally operate on bits; we have just gotten more creative about how to represent different data as bits!
  - Images
  - Audio
  - Video
  - Text
  - And more...

### 5934

Digits 0-9 (0 to base-1)



= 5\*1000 + 9\*100 + 3\*10 + 4\*1

#### 

## 5 9 3 4 10^X: 3 2 1 0



### **1 0 1 1 2**<sup>x</sup>: 3 2 1 0

Digits 0-1 (0 to base-1)



# 1 0 1 1 2<sup>3</sup> 2<sup>2</sup> 2<sup>1</sup> 2<sup>0</sup>





$$=$$
 **1**\*8 + **0**\*4 + **1**\*2 + **1**\*1 = 11<sub>10</sub>

### Base 10 to Base 2

**Question:** What is 6 in base 2?

- Strategy:
  - What is the largest power of  $2 \le 6$ ?  $2^2=4$
  - Now, what is the largest power of  $2 \le 6 2^2$ ? **2^1=2**
  - $6 2^2 2^1 = 0!$

### **Practice: Base 2 to Base 10**

What is the base-2 value 1010 in base-10?

- a) 20
- b) 101
- c) 10
- d) 5
- e) Other

### **Practice: Base 10 to Base 2**

What is the base-10 value 14 in base 2?

- a) 1111
- b) 1110
- c) 1010
- d) Other

### **Byte Values**

What is the minimum and maximum base-10 value a single byte (8 bits) can store? **minimum = 0 maximum = 255** 

## 1111111 2x: 7 6 5 4 3 2 1 0

- Strategy 1:  $1^{*}2^{7} + 1^{*}2^{6} + 1^{*}2^{5} + 1^{*}2^{4} + 1^{*}2^{3} + 1^{*}2^{2} + 1^{*}2^{1} + 1^{*}2^{0} = 255$
- **Strategy 2:** 2<sup>8</sup> − 1 = 255

### Multiplying by Base

### $1450 \times 10 = 1450$ $1100_2 \times 2 = 1100$

*Key Idea*: inserting 0 at the end multiplies by the base!

### **Dividing by Base**

### 1450 / 10 = 145 $1100_2 / 2 = 110$

*Key Idea*: removing 0 at the end divides by the base!

### **Lecture Plan**

- Bits and Bytes
- Hexadecimal
- Integer Representations
- Unsigned Integers
- Signed Integers
- Overflow

When working with bits, oftentimes we have large numbers with 32 or 64 bits.

• Instead, we'll represent bits in *base-16 instead;* this is called **hexadecimal**.



- When working with bits, oftentimes we have large numbers with 32 or 64 bits.
- Instead, we'll represent bits in *base-16 instead;* this is called **hexadecimal**.



Each is a base-16 digit!

Hexadecimal is *base-16*, so we need digits for 1-15. How do we do this?

### 0 1 2 3 4 5 6 7 8 9 a b c d e f 10 11 12 13 14 15

| Hex digit     | 0    | 1    | 2    | 3    | 4    | 5    | 6    | 7    |
|---------------|------|------|------|------|------|------|------|------|
| Decimal value | 0    | 1    | 2    | 3    | 4    | 5    | 6    | 7    |
| Binary value  | 0000 | 0001 | 0010 | 0011 | 0100 | 0101 | 0110 | 0111 |
|               |      |      |      |      |      |      |      |      |
| Hex digit     | 8    | 9    | Α    | В    | С    | D    | Е    | F    |
| Decimal value | 8    | 9    | 10   | 11   | 12   | 13   | 14   | 15   |
| Binary value  | 1000 | 1001 | 1010 | 1011 | 1100 | 1101 | 1110 | 1111 |

- We distinguish hexadecimal numbers by prefixing them with **0x**, and binary numbers with **0b**.
- E.g. **0xf5** is **0b11110101**



### **Practice: Hexadecimal to Binary**

What is **0x173A** in binary?

### Hexadecimal173ABinary0001011100111010

### **Practice: Hexadecimal to Binary**

What is **0b1111001010** in hexadecimal? (*Hint: start from the right*)

| Binary      | 11 | 1100 | 1010 |
|-------------|----|------|------|
| Hexadecimal | 3  | С    | Α    |

### Hexadecimal: It's funky but concise

• Let's take a byte (8 bits):

Base-10: Human-readable, but cannot easily interpret on/off bits

### 0b10100101

Base-2: Yes, computers use this, but not human-readable

0xa5

165

Base-16: Easy to convert to Base-2, More "portable" as a human-readable format (fun fact: a half-byte is called a nibble or nybble)

### **Lecture Plan**

- Bits and Bytes
- Hexadecimal
- Integer Representations
- Unsigned Integers
- Signed Integers
- Overflow

### **Number Representations**

- Unsigned Integers: positive and 0 integers. (e.g. 0, 1, 2, ... 99999...
- Signed Integers: negative, positive and 0 integers. (e.g. ...-2, -1, 0, 1,... 9999...)
- Floating Point Numbers: real numbers. (e,g. 0.1, -12.2, 1.5x10<sup>12</sup>)

### **Number Representations**

- Unsigned Integers: positive and 0 integers. (e.g. 0, 1, 2, ... 99999...
- Signed Integers: negative, positive and 0 integers. (e.g. ...-2, -1, 0, 1,... 9999...)
- Floating Point Numbers: real numbers. (e,g. 0.1, -12.2, 1.5x10<sup>12</sup>)
   Look up IEEE floating point if you're interested!

### **Number Representations**

| <b>C</b> Declaration | Size (Bytes) |
|----------------------|--------------|
| int                  | 4            |
| double               | 8            |
| float                | 4            |
| char                 | 1            |
| char *               | 8            |
| short                | 2            |
| long                 | 8            |

### In The Days Of Yore...

| <b>C</b> Declaration | Size (Bytes) |
|----------------------|--------------|
| int                  | 4            |
| double               | 8            |
| float                | 4            |
| char                 | 1            |
| char *               | 4            |
| short                | 2            |
| long                 | 4            |

### **Transitioning To Larger Datatypes**



- Early 2000s: most computers were 32-bit. This means that pointers were 4 bytes (32 bits).
- 32-bit pointers store a memory address from 0 to 2<sup>32</sup>-1, equaling 2<sup>32</sup> bytes of addressable memory. This equals 4 Gigabytes, meaning that 32-bit computers could have at most 4GB of memory (RAM)!
- Because of this, computers transitioned to **64-bit**. This means that datatypes were enlarged; pointers in programs were now **64 bits**.
- 64-bit pointers store a memory address from 0 to 2<sup>64</sup>-1, equaling 2<sup>64</sup> bytes of addressable memory. This equals 16 Exabytes, meaning that 64-bit computers could have at most 1024\*1024\*1024\*16 GB of memory (RAM)!

### **Lecture Plan**

- Bits and Bytes
- Hexadecimal
- Integer Representations
- Unsigned Integers
- Signed Integers
- Overflow

### **Unsigned Integers**

- An **unsigned** integer is 0 or a positive integer (no negatives).
- We have already discussed converting between decimal and binary, which is a nice 1:1 relationship. Examples:

0b0001 = 1

- 0b0101 = 5
- 0b1011 = 11

0b1111 = 15

The range of an unsigned number is 0 → 2<sup>w</sup> - 1, where w is the number of bits.
 E.g. a 32-bit integer can represent 0 to 2<sup>32</sup> - 1 (4,294,967,295).

### **Unsigned Integers**



### **From Unsigned to Signed**

A **signed** integer is a negative, 0, or positive integer. How can we represent both negative *and* positive numbers in binary?

### **Lecture Plan**

- Bits and Bytes
- Hexadecimal
- Integer Representations
- Unsigned Integers
- Signed Integers
- Overflow

### **Signed Integers**

A **signed** integer is a negative integer, 0, or a positive integer.

• *Problem:* How can we represent negative *and* positive numbers in binary?

### **Idea**: let's reserve the *most* significant bit to store the sign.



0000

positive 0





- $1\ 000 = -0$   $0\ 000 = 0$
- $1\ 001 = -1$   $0\ 001 = 1$
- 1 010 = -2 0 010 = 2
- 1 011 = -3 0 011 = 3
- 1 100 = -4 0 100 = 4
- 1 101 = -5 0 101 = 5
- 1 110 = -6 0 110 = 6
- 1 111 = -7 0 111 = 7

We've only represented 15 of our 16 available numbers!

- Pro: easy to represent, and easy to convert to/from decimal.
- Con: +-0 is not intuitive
- Con: we lose a bit that could be used to store more numbers
- **Con:** arithmetic is tricky: we need to find the sign, then maybe subtract (borrow and carry, etc.), then maybe change the sign. This complicates the hardware support for something as fundamental as addition.



• Ideally, binary addition would *just work* **regardless** of whether the number is positive or negative.



• Ideally, binary addition would *just work* **regardless** of whether the number is positive or negative.

## $\begin{array}{r} 0101 \\ +1011 \\ \hline 0000 \\ \end{array}$

• Ideally, binary addition would *just work* **regardless** of whether the number is positive or negative.



• Ideally, binary addition would *just work* **regardless** of whether the number is positive or negative.

 $\begin{array}{c} 0011 \\ +1101 \\ \hline 0000 \end{array}$ 

• Ideally, binary addition would *just work* **regardless** of whether the number is positive or negative.



• Ideally, binary addition would *just work* **regardless** of whether the number is positive or negative.

## $\begin{array}{c} 0000\\ +0000\\ 0000\\ \hline 0000 \end{array}$

| Decimal | Positive | Negative |
|---------|----------|----------|
| 0       | 0000     | 0000     |
| 1       | 0001     | 1111     |
| 2       | 0010     | 1110     |
| 3       | 0011     | 1101     |
| 4       | 0100     | 1100     |
| 5       | 0101     | 1011     |
| 6       | 0110     | 1010     |
| 7       | 0111     | 1001     |

| Decimal | Positive           | Negative |
|---------|--------------------|----------|
| 8       | 1000               | 1000     |
| 9       | 1001 (same as -7!) | NA       |
| 10      | 1010 (same as -6!) | NA       |
| 11      | 1011 (same as -5!) | NA       |
| 12      | 1100 (same as -4!) | NA       |
| 13      | 1101 (same as -3!) | NA       |
| 14      | 1110 (same as -2!) | NA       |
| 15      | 1111 (same as -1!) | NA       |

#### **There Seems Like a Pattern Here...**

# $\begin{array}{ccccccc} 0101 & 0011 & 0000 \\ +1011 & +1101 & +0000 \\ \hline 0000 & 0000 & 0000 \end{array}$

The negative number is the positive number inverted, plus one!

#### **There Seems Like a Pattern Here...**

A binary number plus its inverse is all 1s.

Add 1 to this to carry over all 1s and get 0!

 $\begin{array}{c} 0101 \\ +1010 \\ \hline 1111 \end{array}$ 

 $\begin{array}{c} 1111 \\ +0001 \\ \hline 00000 \end{array}$ 

### **Another Trick**

To find the negative equivalent of a number, work right-to-left and write down all digits *through* when you reach a 1. Then, invert the rest of the digits.

### 100100 +??????? 0000000

### **Another Trick**

To find the negative equivalent of a number, work right-to-left and write down all digits *through* when you reach a 1. Then, invert the rest of the digits.

### 100100 +??100 000000

### **Another Trick**

To find the negative equivalent of a number, work right-to-left and write down all digits *through* when you reach a 1. Then, invert the rest of the digits.

# $\begin{array}{c} 100100\\ + 011100\\ \hline 000000 \end{array}$



- In two's complement, we represent a positive number as itself, and its negative equivalent as the two's complement of itself.
- The **two's complement** of a number is the binary digits inverted, plus 1.
- This works to convert from positive to negative, and back from negative to positive!



### **History: Two's complement**

- The binary representation was first proposed by John von Neumann in *First Draft of a Report on the EDVAC* (1945)
  - That same year, he also invented the merge sort algorithm
- Many early computers used sign-magnitude or one's complement

+7 0b0000 0111
-7 0b1111 1000
8-bit ope's complement

8-bit one's complement

 The System/360, developed by IBM in 1964, was widely popular (had 1024KB memory) and established two's complement as the dominant binary representation of integers





System/360 (1964)

- Con: more difficult to represent, and difficult to convert to/from decimal and between positive and negative.
- **Pro:** only 1 representation for 0!
- **Pro:** all bits are used to represent as many numbers as possible
- **Pro:** the most significant bit still indicates the sign of a number.
- Pro: addition works for any combination of positive and negative!



Adding two numbers is just...adding! There is no special case needed for negatives. E.g. what is 2 + -5?

### 0010 2 +1011 -5 1101 -3

Subtracting two numbers is just performing the two's complement on one of them and then adding. E.g. 4 - 5 = -1.



### **Practice: Two's Complement**

What are the negative or positive equivalents of the numbers below?

- a) -4 (1100)
- b) 7 (0111)
- c) 3 (0011)



### **Break Time!**

### To think about during the break:

How can what we've learned so far about integer representations help us understand the behavior of the airline program from the start of lecture?

### **Lecture Plan**

- Bits and Bytes
- Hexadecimal
- Integer Representations
- Unsigned Integers
- Signed Integers
- Overflow

### Overflow

If you exceed the **maximum** value of your bit representation, you wrap around or overflow back to the **smallest** bit representation.

0b1111 + 0b1 = 0b00000b1111 + 0b10 = 0b0001

If you go below the **minimum** value of your bit representation, you wrap around or overflow back to the **largest** bit representation.

0b0000 - 0b1 = 0b1111

0b0000 - 0b10 = 0b1110

### **Min and Max Integer Values**

| Туре           | Size<br>(Bytes) | Minimum              | Maximum              |
|----------------|-----------------|----------------------|----------------------|
| char           | 1′              | -128                 | 127                  |
| unsigned char  | 1               | 0                    | 255                  |
|                |                 |                      |                      |
| short          | 2               | -32768               | 32767                |
| unsigned short | 2               | 0                    | 65535                |
|                |                 |                      |                      |
| int            | 4               | -2147483648          | 2147483647           |
| unsigned int   | 4               | 0                    | 4294967295           |
|                |                 |                      |                      |
| long           | 8               | -9223372036854775808 | 9223372036854775807  |
| unsigned long  | 8               | 0                    | 18446744073709551615 |

#### **Min and Max Integer Values**

In C, there are various constants that represent these minimum and maximum values: INT\_MIN, INT\_MAX, UINT\_MAX, LONG\_MIN, LONG\_MAX, ...

#### Overflow



# Overflow

# At which points can overflow occur for signed and unsigned int? (assume binary values shown are all 32 bits)

- A. Signed and unsigned can both overflow at points X and Y
- B. Signed can overflow only at X, unsigned only at Y
- C. Signed can overflow only at Y, unsigned only at X
- D. Signed can overflow at X and Y, unsigned only at X
- E. Other





#### **Unsigned Integers**



76

#### **Signed Numbers**



#### **Overflow In Practice: PSY**

| PSY - GANGNAM STYLE (강남스타일) M/V |                              |
|---------------------------------|------------------------------|
| officialpsy 🖾                   |                              |
| Subscribe 7,600,830             | -2142584554                  |
| Add to < Share *** More         | <b>1,139,933 ●</b> 1,139,933 |
|                                 |                              |

**YouTube:** "We never thought a video would be watched in numbers greater than a 32-bit integer (=2,147,483,647 views), but that was before we met PSY. "Gangnam Style" has been viewed so many times we had to upgrade to a 64-bit integer (9,223,372,036,854,775,808)!" [link]

"We saw this coming a couple months ago and updated our systems to prepare for it" [link]

### **Overflow In Practice: Timestamps**

Many systems store timestamps as **the number of seconds since Jan. 1, 1970** in a **signed 32-bit integer**.

• **Problem:** the latest timestamp that can be represented this way is 3:14:07 UTC on Jan. 13 2038!

# **Overflow In Practice: Gandhi**

- In the game "Civilization", each civilization leader had an "aggression" rating. Gandhi was meant to be peaceful, and had a score of 1.
- If you adopted "democracy", all players' aggression reduced by 2. Gandhi's went from 1 to **255**!
- Gandhi then became a big fan of nuclear weapons.



https://kotaku.com/why-gandhi-is-such-an-asshole-in-civilization-1653818245

### **Overflow in Practice:**

- Pacman Level 256
- Make sure to reboot Boeing Dreamliners every 248 days
- Comair/Delta airline had to <u>cancel thousands of flights</u> days before Christmas
- <u>Reported vulnerability CVE-2019-3857</u> in libssh2 may allow a hacker to remotely execute code
- Donkey Kong Kill Screen

# Demo Revisited: Unexpected Behavior



airline.c

#### Recap

- Bits and Bytes
- Hexadecimal
- Integer Representations
- Unsigned Integers
- Signed Integers
- Overflow

Lecture 2 takeaway: computers represent everything in binary. We must determine how to represent our data (e.g., base-10 numbers) in a binary format so a computer can manipulate it. There may be limitations to these representations! (overflow)

**Next time:** How can we manipulate individual bits and bytes?

# **Extra Practice**

#### **Practice: Two's Complement**

Fill in the below table:

|    | char    | x =    |      | char y  | = -x;  | negative. |   |
|----|---------|--------|------|---------|--------|-----------|---|
|    | decimal | binar  | ^у   | decimal | binary |           |   |
| 1. |         | 0b1111 | 1100 |         |        |           |   |
| 2. |         | 0b0001 | 1000 |         |        |           |   |
| 3. |         | 0b0010 | 0100 |         |        |           |   |
| 4. |         | 0b1101 | 1111 |         |        |           | 1 |

It's easier to compute base-10 for positive numbers, so use two's complement first if negative.

#### **Practice: Two's Complement**

Fill in the below table:

|    | char    | x =;        | chai    | <b>^ y</b> = -x | ;    | complement first if negative. |
|----|---------|-------------|---------|-----------------|------|-------------------------------|
|    | decimal | binary      | decimal | binar           | У    |                               |
| 1. | -4      | 0b1111 1100 | 4       | 0b0000          | 0100 |                               |
| 2. |         | 0b0001 1000 |         |                 |      |                               |
| 3. |         | 0b0010 0100 |         |                 |      |                               |
| 4. |         | 0b1101 1111 |         |                 |      |                               |

It's easier to compute

numbers, so use two's

base-10 for positive

#### **Practice: Two's Complement**

Fill in the below table:

|    | char    | X =;        | char    | $\mathbf{y} = -\mathbf{x};$ |
|----|---------|-------------|---------|-----------------------------|
|    | decimal | binary      | decimal | binary                      |
| 1. | -4      | 0b1111 1100 | 4       | 0b0000 0100                 |
| 2. | 24      | 0b0001 1000 | -24     | 0b1110 1000                 |
| 3. | 36      | 0b0010 0100 | -36     | 0b1101 1100                 |
| 4. | -33     | 0b1101 1111 | 33      | 0b0010 0001                 |

It's easier to compute base-10 for positive numbers, so use two's complement first if negative.

#### **Signed vs. Unsigned Integers**



#### **Underspecified question**

What is the following base-2 number in base-10?

## 0b1101



#### **Underspecified question**

What is the following base-2 number in base-10?

# 0b1101

| If 4-bit signed:              | -3 |
|-------------------------------|----|
| If 4-bit unsigned:            | 13 |
| If >4-bit signed or unsigned: | 13 |

You need to know the type to determine the number! (Note by default, numeric constants in C are signed ints)



### Overflow



### **Overflow**



### **Limits and Comparisons**





#### **Limits and Comparisons**

| <ol> <li>What is the</li> </ol> |      | Largest unsigned?                   | Largest signed?              | Smallest signed?                  |  |
|---------------------------------|------|-------------------------------------|------------------------------|-----------------------------------|--|
|                                 | char | $2^8 - 1 = 255$                     | $2^7 - 1 = 127$              | $-2^7 = -128$                     |  |
|                                 | int  | 2 <sup>32</sup> - 1 =<br>4294967296 | $2^{31} - 1 =$<br>2147483647 | -2 <sup>31</sup> =<br>-2147483648 |  |

These are available as UCHAR\_MAX, INT\_MIN, INT\_MAX, etc. in the <limits.h> header.