
1
This document is copyright (C) Stanford Computer Science, Lisa Yan, and Nick Troccoli, licensed under Creative Commons Attribution 2.5 License. All rights reserved.

Based on slides created by Marty Stepp, Cynthia Lee, Chris Gregg, Jerry Cain, Lisa Yan and others.

CS107, Lecture 8
C Generics – Void *

2

CS107 Topic 4: How can we
use our knowledge of

memory and data
representation to write

code that works with any
data type?

3

CS107 Topic 4
How can we use our knowledge of memory and data representation to write
code that works with any data type?

Why is answering this question important?
• Writing code that works with any data type lets us write more generic,

reusable code while understanding potential pitfalls (today)
• Allows us to learn how to pass functions as parameters, a core concept in

many languages (next time)

assign4: implement your own version of the ls command, a function to generically
find and insert elements into a sorted array, and a program using that function to sort
the lines in a file like the sort command.

4

Learning Goals
• Learn how to write C code that works with any data type.
• Learn about how to use void * and avoid potential pitfalls.
• Learn about the potential harm from vulnerabilities, challenges to proper

disclosure of vulnerabilities, and how we weigh competing interests

5

Lecture Plan
• Use-after-free vulnerabilities, disclosure and partiality
• Overview: Generics
• Generic Swap
• Generics Pitfalls
• Generic Array Swap

cp -r /afs/ir/class/cs107/lecture-code/lect8 .

6

Lecture Plan
• Use-after-free vulnerabilities, disclosure and partiality
• Overview: Generics
• Generic Swap
• Generics Pitfalls
• Generic Array Swap

cp -r /afs/ir/class/cs107/lecture-code/lect8 .

7

Heap allocation interface: A summary
void *malloc(size_t size);
void *calloc(size_t nmemb, size_t size);
void *realloc(void *ptr, size_t size);
char *strdup(char *s);
void free(void *ptr);

8

Engineering principles: stack vs heap
Stack (“local variables”)

• Fast
Fast to allocate/deallocate; okay to oversize

• Convenient.
Automatic allocation/ deallocation;
declare/initialize in one step

• Reasonable type safety
Thanks to the compiler

⚠ Not especially plentiful
Total stack size fixed, default 8MB

⚠ Somewhat inflexible
Cannot add/resize at runtime, scope
dictated by control flow in/out of functions

Heap (dynamic memory)

9

Engineering principles: stack vs heap
Stack (“local variables”)

• Fast
Fast to allocate/deallocate; okay to oversize

• Convenient.
Automatic allocation/ deallocation;
declare/initialize in one step

• Reasonable type safety
Thanks to the compiler

⚠ Not especially plentiful
Total stack size fixed, default 8MB

⚠ Somewhat inflexible
Cannot add/resize at runtime, scope
dictated by control flow in/out of functions

Heap (dynamic memory)
• Plentiful.

Can provide more memory on demand!

• Very flexible.
Runtime decisions about how much/when to
allocate, can resize easily with realloc

• Scope under programmer control
Can precisely determine lifetime

⚠ Lots of opportunity for error
Low type safety, forget to allocate/free
before done, allocate wrong size, etc.,
Memory leaks (much less critical)

10

Use-After-Free
“Use-After-Free” is a bug where you continue to use heap memory after you
have freed it.

This is possible because free() doesn’t change the pointer passed in, it just frees
the memory it points to.

char *bytes = malloc(4);
char *ptr = bytes;
…
free(bytes);
…
strncpy(ptr, argv[1], 3); ❌ Memory at this address was

already freed, but now we are
using it!

We freed bytes but did not
set ptr to NULL

11

Use-After-Free
• What happens when we have a use-after-free bug? Undefined Behavior / a

memory error!
• Maybe the memory still has its original contents?
• Maybe the memory is used to store some other heap data now?

• Use-after-free is not just a functionality issue; it can cause a range of
unintended behavior, including accessing/modifying memory you shouldn’t be
able to access

It’s our job as programmers to find and fix use-after-free and other bugs not
just for the functional correctness of our programs, but to protect people who
use and interact with our code.

12

Use-After-Free Examples
• Use-after-free in Chrome (2020)
• Google’s attempts to reduce Chrome use-after-free vulnerabilities (2021)
• Use-after-free in iOS (2020)

https://securitylab.github.com/research/CVE-2020-6449-exploit-chrome-uaf/
https://security.googleblog.com/2021/09/an-update-on-memory-safety-in-chrome.html
https://googleprojectzero.github.io/0days-in-the-wild/0day-RCAs/2019/CVE-2019-7286.html

13

What should someone do if they
find a vulnerability? How can we

incentivize responsible disclosure?

14

Disclosure
Various roles in this process: users (those at risk), makers (e.g., software
company), security researchers (who found the vulnerability), bad actors (who
wish to exploit the issue to harm users), etc.
• Users want to be protected with secure software
• Makers want to make their software secure and not have it exploited – they

probably want to have time to fix vulnerabilities before they are made public
• Security researchers want their issues to be fixed and be rewarded for finding

them
• Bad actors want to learn about vulnerabilities before they are patched

15

Full Disclosure
One approach is to make vulnerabilities public as soon as they are found.
Vulnerabilities unknown to the software maker before release are called “zero-
day vulnerabilities” because they “have 0 days to fix the problem”.
• puts pressure on the maker to fix it quickly
• discloses the vulnerability to the public as soon as it’s found
• Leaves users vulnerable until the maker releases a patch

Few people now endorse this approach due to its drawbacks.

16

Responsible Disclosure
Another approach is to privately alert the software maker to the vulnerability
to fix it in a reasonable amount of time before publicizing the vulnerability.
This is called “responsible disclosure”:
• Contacts the makers of the software
• Informs them about the vulnerability
• Negotiates a reasonable timeline for a patch or fix
• Considers a deadline extension if necessary

…. *time passes while the developers fix the bug* ….
• Works with the developers to add the vulnerability to CVE Details

https://www.cvedetails.com/ , from which it is added to the National
Vulnerability Database https://nvd.nist.gov/

https://www.cvedetails.com/
https://nvd.nist.gov/

17

Responsible Disclosure
Responsible disclosure is the most common approach, and it is recommended
by the ACM code of ethics:

Responsible disclosure is the approach more consistent with the ACM Code of Ethics. By
keeping the existence of the vulnerability secret for a longer amount of time, it reduces the
chance of harm to others (Principle 1.2). It also supports more robust patching (Principles 2.1,
2.9, and 3.6), as the company can take more time to develop the patch and confirm that it will
not induce unintended consequences. Full disclosure puts individuals at risk of harm sooner,
and those harms may be irreversible and onerous (contravening Principles 1.2 and 3.1). As
such, full disclosure should the exception and should only be used when attempts at
responsible disclosure have failed. Furthermore, the individual committing to the full
disclosure needs to consider carefully the risks that they are imposing on others and be willing
to accept the moral and possibly legal consequences (Principles 2.3 and 2.5).

18

Vulnerability Commercialization
Various entities may want to financially reward people for finding and reporting
vulnerabilities:
• Software makers want to know about vulnerabilities in their software
• Other entities want to know about unpatched vulnerabilities to exploit them

19

Bug Bounty Programs
Many companies now offer “Bug Bounties,” or rewards for responsible
disclosure.

Good Version of a bug bounty process:
• Responsible disclosure process is followed
• Company is buying information & time to fix the bug
Bad version of a bug bounty process:
• Company does not fix the bug or notify the public.
• Not knowing what vulnerabilities exist makes it harder for users to calibrate

trust
• Company is effectively buying silence

20

Who do you think is one of
the largest discoverers and

purchasers of 0-day
vulnerabilities?

The US Federal Government.

21

Vulnerabilities Equities Process
• The US Fed. Gov. follows a “Vulnerabilities Equities Process” (VEP) to

determine which vulnerabilities to responsibly disclose and which to keep
secret and use for espionage or intelligence gathering.
• VEP claimed in 2017 that 90% of vulnerabilities are disclosed, but it is not clear

what the impact or scope of the un-disclosed 10% of vulnerabilities are.
• More reading here and here

https://obamawhitehouse.archives.gov/blog/2014/04/28/heartbleed-understanding-when-we-disclose-cyber-vulnerabilities
https://www.wired.com/story/vulnerability-equity-process-charter-transparency-concerns/?utm_source=WIR_REG_GATE

22

Concerns with VEP
• Lack of transparency: little oversight for whether “bias towards responsible

disclosure” is upheld
• Harm of omission: withholding the opportunity to fix the vulnerability means

that another actor could use it
• Risk of stockpiling: Other people could hack into their database and use them,

as in the “Shadowbrokers” attack which led to serious ransomware attacks on
hospitals and transportation systems
• Intended use: NSA’s intended use of vulnerabilities may be concerning, as in

PRISM surveillance program.

23

How do we weigh competing
stakeholder interests here, such as

country vs. individual?

24

Partiality
Partiality holds that it is acceptable to give preferential treatment to some
people based on our relationships to them or shared group membership
with them.
Impartiality, involves “acting from a position that acknowledges that all
persons are ... equally entitled to fundamental conditions of well-being
and respect.”

25

Partiality

self family friends state world

26

Partiality: preference
towards own family, friends,

and state is morally
acceptable or even required

Partial Cosmpolitanism:
limited preference towards

own state acceptable

Universal Care: preference
towards family acceptable

but not towards state

Impartial Benevolence:
same moral responsibilities

towards all people

Degrees of Partiality

27

Case Study: EternalBlue

2012-2017: NSA
secretly stores the
EternalBlue Microsoft
vulnerability and uses
it to spy on both US
and non-US citizens.

early 2017:
EternalBlue stolen by
hacker group the
ShadowBrokers. NSA
discloses EternalBlue
to Microsoft.

March 14, 2017:
Microsoft releases a
patch for the
vulnerability.

May 12, 2017:
EternalBlue is the basis
of the WannaCry and
other ransomware
attacks, leading to
downtime in critical
hospital and city
systems and over $1
billion of damages.

28

Microsoft’s Argument
“[T]his attack provides yet another example of why the stockpiling of
vulnerabilities by governments is such a problem. ...
We need governments to consider the damage to civilians that comes from
hoarding these vulnerabilities and the use of these exploits.
This is one reason we called in February for a new “Digital Geneva Convention”
to govern these issues, including a new requirement for governments to report
vulnerabilities to vendors, rather than stockpile, sell, or exploit them.
And it’s why we’ve pledged our support for defending every customer
everywhere in the face of cyberattacks, regardless of their nationality.”

Full post here

https://blogs.microsoft.com/on-the-issues/2017/05/14/need-urgent-collective-action-keep-people-safe-online-lessons-last-weeks-cyberattack/

29

Critical Questions
• Do we have special obligations to our own country and to protect our people?

If so, what would this mean?
• If intentionally exploiting a vulnerability is wrong when done by a private

citizen, is it equally wrong when done by the government?
• Should I be loyal to my country, a citizen of the world, or both?
• When should I give preference to my family members and when should I strive

to treat all equally?

What you choose matters – the moral obligations you take on constitute who
you are.

33

Partiality: preference
towards own family, friends,

and state is morally
acceptable or even required

Partial Cosmpolitanism:
limited preference towards

own state acceptable

Universal Care: preference
towards family acceptable

but not towards state

Impartial Benevolence:
same moral responsibilities

towards all people

Revisiting EternalBlue

MicrosoftFederal Government

34

Partiality Takeaways
• Understanding partiality helps us understand how we balance cases of

competing interests and where we may personally fall on this spectrum.
• In order to evaluate situations, it’s critical to understand the good and the bad

that may come of it (e.g. EternalBlue). Better understanding privacy and
privacy concerns is critical to this! (more later)

35

Lecture Plan
• Use-after-free vulnerabilities, disclosure and partiality
• Overview: Generics
• Generic Swap
• Generics Pitfalls
• Generic Array Swap

cp -r /afs/ir/class/cs107/lecture-code/lect8 .

36

Generics
• We always strive to write code that is as general-purpose as possible.
• Generic code reduces code duplication and means you can make

improvements and fix bugs in one place rather than many.
• Generics is used throughout C for functions to sort any array, search any array,

free arbitrary memory, and more.
• How can we write generic code in C?

37

Lecture Plan
• Use-after-free vulnerabilities, disclosure and partiality
• Overview: Generics
• Generic Swap
• Generics Pitfalls
• Generic Array Swap

cp -r /afs/ir/class/cs107/lecture-code/lect8 .

38

You’re asked to write a function that swaps two numbers.

void swap_int(int *a, int *b) {
int temp = *a;
*a = *b;
*b = temp;

}

int main(int argc, char *argv[]) {
int x = 2;
int y = 5;
swap_int(&x, &y);
// want x = 5, y = 2
printf("x = %d, y = %d\n", x, y);
return 0;

}

Swap

39

You’re asked to write a function that swaps two numbers.

void swap_int(int *a, int *b) {
int temp = *a;
*a = *b;
*b = temp;

}

int main(int argc, char *argv[]) {
int x = 2;
int y = 5;
swap_int(&x, &y);
// want x = 5, y = 2
printf("x = %d, y = %d\n", x, y);
return 0;

}

Swap
Stack

Address Value
…

0xff14 2
0xff10 5

…

x
main()

y

40

You’re asked to write a function that swaps two numbers.

void swap_int(int *a, int *b) {
int temp = *a;
*a = *b;
*b = temp;

}

int main(int argc, char *argv[]) {
int x = 2;
int y = 5;
swap_int(&x, &y);
// want x = 5, y = 2
printf("x = %d, y = %d\n", x, y);
return 0;

}

Swap
Stack

Address Value
…

0xff14 2
0xff10 5

…

0xf18 0xff10
0xf10 0xff14

…

x

b

main()

swap_int()

y

a

41

You’re asked to write a function that swaps two numbers.

void swap_int(int *a, int *b) {
int temp = *a;
*a = *b;
*b = temp;

}

int main(int argc, char *argv[]) {
int x = 2;
int y = 5;
swap_int(&x, &y);
// want x = 5, y = 2
printf("x = %d, y = %d\n", x, y);
return 0;

}

Swap
Stack

Address Value
…

0xff14 2
0xff10 5

…

0xf18 0xff10
0xf10 0xff14
0xf0c 2

…

x

b

main()

swap_int()

y

a
temp

42

You’re asked to write a function that swaps two numbers.

void swap_int(int *a, int *b) {
int temp = *a;
*a = *b;
*b = temp;

}

int main(int argc, char *argv[]) {
int x = 2;
int y = 5;
swap_int(&x, &y);
// want x = 5, y = 2
printf("x = %d, y = %d\n", x, y);
return 0;

}

Swap
Stack

Address Value
…

0xff14 5
0xff10 5

…

0xf18 0xff10
0xf10 0xff14
0xf0c 2

…

x

b

main()

swap_int()

y

a
temp

43

You’re asked to write a function that swaps two numbers.

void swap_int(int *a, int *b) {
int temp = *a;
*a = *b;
*b = temp;

}

int main(int argc, char *argv[]) {
int x = 2;
int y = 5;
swap_int(&x, &y);
// want x = 5, y = 2
printf("x = %d, y = %d\n", x, y);
return 0;

}

Swap
Stack

Address Value
…

0xff14 5
0xff10 2

…

0xf18 0xff10
0xf10 0xff14
0xf0c 2

…

x

b

main()

swap_int()

y

a
temp

44

You’re asked to write a function that swaps two numbers.

void swap_int(int *a, int *b) {
int temp = *a;
*a = *b;
*b = temp;

}

int main(int argc, char *argv[]) {
int x = 2;
int y = 5;
swap_int(&x, &y);
// want x = 5, y = 2
printf("x = %d, y = %d\n", x, y);
return 0;

}

Swap
Stack

Address Value
…

0xff14 5
0xff10 2

…

x
main()

y

45

You’re asked to write a function that swaps two numbers.

void swap_int(int *a, int *b) {
int temp = *a;
*a = *b;
*b = temp;

}

int main(int argc, char *argv[]) {
int x = 2;
int y = 5;
swap_int(&x, &y);
// want x = 5, y = 2
printf("x = %d, y = %d\n", x, y);
return 0;

}

Swap
Stack

Address Value
…

0xff14 5
0xff10 2

…

x
main()

y

46

You’re asked to write a function that swaps two numbers.

void swap_int(int *a, int *b) {
int temp = *a;
*a = *b;
*b = temp;

}

int main(int argc, char *argv[]) {
int x = 2;
int y = 5;
swap_int(&x, &y);
// want x = 5, y = 2
printf("x = %d, y = %d\n", x, y);
return 0;

}

Swap
Stack

Address Value
…

0xff14 5
0xff10 2

…

x
main()

y

47

“Oh, when I said ’numbers’
I meant shorts, not ints.”

😑

48

void swap_short(short *a, short *b) {
short temp = *a;
*a = *b;
*b = temp;

}

int main(int argc, char *argv[]) {
short x = 2;
short y = 5;
swap_short(&x, &y);
// want x = 5, y = 2
printf("x = %d, y = %d\n", x, y);
return 0;

}

Swap

49

void swap_short(short *a, short *b) {
short temp = *a;
*a = *b;
*b = temp;

}

int main(int argc, char *argv[]) {
short x = 2;
short y = 5;
swap_short(&x, &y);
// want x = 5, y = 2
printf("x = %d, y = %d\n", x, y);
return 0;

}

Swap
Stack

Address Value
…

0xff12 2
0xff10 5

…

0xf18 0xff10
0xf10 0xff12
0xf0e 2

…

x

b

main()

swap_short()

y

a
temp

50

“You know what, I goofed.
We’re going to use strings.
Could you write something

to swap those?”

😤

51

void swap_string(char **a, char **b) {
char *temp = *a;
*a = *b;
*b = temp;

}

int main(int argc, char *argv[]) {
char *x = "2";
char *y = "5";
swap_string(&x, &y);
// want x = 5, y = 2
printf("x = %s, y = %s\n", x, y);
return 0;

}

Swap

52

void swap_string(char **a, char **b) {
char *temp = *a;
*a = *b;
*b = temp;

}

int main(int argc, char *argv[]) {
char *x = "2";
char *y = "5";
swap_string(&x, &y);
// want x = 5, y = 2
printf("x = %s, y = %s\n", x, y);
return 0;

}

Swap

Address Value
…

0xff18 0xc
0xff10 0xe

…

0xf '\0'
0xe '5'
0xd '\0'
0xc '2'

…

x
main()

y

DATA SEGMENT

53

void swap_string(char **a, char **b) {
char *temp = *a;
*a = *b;
*b = temp;

}

int main(int argc, char *argv[]) {
char *x = "2";
char *y = "5";
swap_string(&x, &y);
// want x = 5, y = 2
printf("x = %s, y = %s\n", x, y);
return 0;

}

Swap

Address Value
…

0xff18 0xc
0xff10 0xe

…

0xf18 0xff10
0xf10 0xff18

…

0xf '\0'
0xe '5'
0xd '\0'
0xc '2'

…

x

b

main()

swap_string()

y

a

DATA SEGMENT

54

void swap_string(char **a, char **b) {
char *temp = *a;
*a = *b;
*b = temp;

}

int main(int argc, char *argv[]) {
char *x = "2";
char *y = "5";
swap_string(&x, &y);
// want x = 5, y = 2
printf("x = %s, y = %s\n", x, y);
return 0;

}

Swap

Address Value
…

0xff18 0xc
0xff10 0xe

…

0xf18 0xff10
0xf10 0xff18
0xf08 0xc

…

0xf '\0'
0xe '5'
0xd '\0'
0xc '2'

…

x

b

main()

swap_string()

y

a
temp

DATA SEGMENT

55

void swap_string(char **a, char **b) {
char *temp = *a;
*a = *b;
*b = temp;

}

int main(int argc, char *argv[]) {
char *x = "2";
char *y = "5";
swap_string(&x, &y);
// want x = 5, y = 2
printf("x = %s, y = %s\n", x, y);
return 0;

}

Swap

Address Value
…

0xff18 0xe
0xff10 0xe

…

0xf18 0xff10
0xf10 0xff18
0xf08 0xc

…

0xf '\0'
0xe '5'
0xd '\0'
0xc '2'

…

x

b

main()

swap_string()

y

a
temp

DATA SEGMENT

56

void swap_string(char **a, char **b) {
char *temp = *a;
*a = *b;
*b = temp;

}

int main(int argc, char *argv[]) {
char *x = "2";
char *y = "5";
swap_string(&x, &y);
// want x = 5, y = 2
printf("x = %s, y = %s\n", x, y);
return 0;

}

Swap

Address Value
…

0xff18 0xe
0xff10 0xc

…

0xf18 0xff10
0xf10 0xff18
0xf08 0xc

…

0xf '\0'
0xe '5'
0xd '\0'
0xc '2'

…

x

b

main()

swap_string()

y

a
temp

DATA SEGMENT

57

void swap_string(char **a, char **b) {
char *temp = *a;
*a = *b;
*b = temp;

}

int main(int argc, char *argv[]) {
char *x = "2";
char *y = "5";
swap_string(&x, &y);
// want x = 5, y = 2
printf("x = %s, y = %s\n", x, y);
return 0;

}

Swap

Address Value
…

0xff18 0xe
0xff10 0xc

…

0xf '\0'
0xe '5'
0xd '\0'
0xc '2'

…

x
main()

y

DATA SEGMENT

58

void swap_string(char **a, char **b) {
char *temp = *a;
*a = *b;
*b = temp;

}

int main(int argc, char *argv[]) {
char *x = "2";
char *y = "5";
swap_string(&x, &y);
// want x = 5, y = 2
printf("x = %s, y = %s\n", x, y);
return 0;

}

Swap

Address Value
…

0xff18 0xe
0xff10 0xc

…

0xf '\0'
0xe '5'
0xd '\0'
0xc '2'

…

x
main()

y

DATA SEGMENT

59

void swap_string(char **a, char **b) {
char *temp = *a;
*a = *b;
*b = temp;

}

int main(int argc, char *argv[]) {
char *x = "2";
char *y = "5";
swap_string(&x, &y);
// want x = 5, y = 2
printf("x = %s, y = %s\n", x, y);
return 0;

}

Swap

Address Value
…

0xff18 0xe
0xff10 0xc

…

0xf '\0'
0xe '5'
0xd '\0'
0xc '2'

…

x
main()

y

DATA SEGMENT

60

“Awesome! Thanks.” We
also have 20 custom struct

types. Could you write
swap for those too?”

61

“Awesome! Thanks. We
also have 20 custom struct

types. Could you write
swap for those too?”

🤬

62

Generic Swap
What if we could write one function to swap two values of any single type?

void swap_int(int *a, int *b) { … }
void swap_float(float *a, float *b) { … }
void swap_size_t(size_t *a, size_t *b) { … }
void swap_double(double *a, double *b) { … }
void swap_string(char **a, char **b) { … }
void swap_mystruct(mystruct *a, mystruct *b) { … }
…

63

void swap_int(int *a, int *b) {
int temp = *a;
*a = *b;
*b = temp;

}

void swap_short(short *a, short *b) {
short temp = *a;
*a = *b;
*b = temp;

}

void swap_string(char **a, char **b) {
char *temp = *a;
*a = *b;
*b = temp;

}

Generic Swap

64

void swap_int(int *a, int *b) {
int temp = *a;
*a = *b;
*b = temp;

}

void swap_short(short *a, short *b) {
short temp = *a;
*a = *b;
*b = temp;

}

void swap_string(char **a, char **b) {
char *temp = *a;
*a = *b;
*b = temp;

}

Generic Swap
All 3:
• Take pointers to values to

swap
• Create temporary storage to

store one of the values
• Move data at b into where a

points
• Move data in temporary

storage into where b points

65

void swap(pointer to data1, pointer to data2) {
store a copy of data1 in temporary storage
copy data2 to location of data1
copy data in temporary storage to location of data2

}

Generic Swap

66

void swap(pointer to data1, pointer to data2) {
store a copy of data1 in temporary storage
copy data2 to location of data1
copy data in temporary storage to location of data2

}

4 bytes

2 bytes

8 bytes

Problem: each type may need a different size temp!

Generic Swap

int temp = *data1ptr;

short temp = *data1ptr;

char *temp = *data1ptr;

67

void swap(pointer to data1, pointer to data2) {
store a copy of data1 in temporary storage
copy data2 to location of data1
copy data in temporary storage to location of data2

}

4 bytes

2 bytes

8 bytes

Problem: each type needs to copy a different amount of data!

Generic Swap

*data1Ptr = *data2ptr;

*data1Ptr = *data2ptr;

*data1Ptr = *data2ptr;

68

void swap(pointer to data1, pointer to data2) {
store a copy of data1 in temporary storage
copy data2 to location of data1
copy data in temporary storage to location of data2

}

4 bytes

2 bytes

8 bytes

Problem: each type needs to copy a different amount of data!

Generic Swap

*data2ptr = temp;

*data2ptr = temp;

*data2ptr = temp;

69

C knows the size of temp,
and knows how many bytes

to copy, because of the
variable types.

70

Is there a way to make a
version that doesn’t care
about the variable types?

71

void swap(pointer to data1, pointer to data2) {
store a copy of data1 in temporary storage
copy data2 to location of data1
copy data in temporary storage to location of data2

}

Generic Swap

72

void swap(pointer to data1, pointer to data2) {
store a copy of data1 in temporary storage
copy data2 to location of data1
copy data in temporary storage to location of data2

}

Generic Swap

73

void swap(void *data1ptr, void *data2ptr) {
store a copy of data1 in temporary storage
copy data2 to location of data1
copy data in temporary storage to location of data2

}

Generic Swap

74

void swap(void *data1ptr, void *data2ptr) {
// store a copy of data1 in temporary storage
// copy data2 to location of data1
// copy data in temporary storage to location of data2

}

Generic Swap

75

void swap(void *data1ptr, void *data2ptr) {
// store a copy of data1 in temporary storage
// copy data2 to location of data1
// copy data in temporary storage to location of data2

}

Generic Swap

If we don’t know the data type, we don’t know
how many bytes it is. Let’s take that as another
parameter.

76

void swap(void *data1ptr, void *data2ptr, size_t nbytes) {
// store a copy of data1 in temporary storage
// copy data2 to location of data1
// copy data in temporary storage to location of data2

}

Generic Swap

If we don’t know the data type, we don’t know
how many bytes it is. Let’s take that as another
parameter.

77

void swap(void *data1ptr, void *data2ptr, size_t nbytes) {
// store a copy of data1 in temporary storage
// copy data2 to location of data1
// copy data in temporary storage to location of data2

}

Generic Swap

Let’s start by making space to store the temporary
value. How can we make nbytes of temp space?

78

void swap(void *data1ptr, void *data2ptr, size_t nbytes) {
void temp; ???
// store a copy of data1 in temporary storage
// copy data2 to location of data1
// copy data in temporary storage to location of data2

}

Generic Swap

Let’s start by making space to store the temporary
value. How can we make nbytes of temp space?

79

void swap(void *data1ptr, void *data2ptr, size_t nbytes) {
char temp[nbytes];
// store a copy of data1 in temporary storage
// copy data2 to location of data1
// copy data in temporary storage to location of data2

}

Generic Swap

temp is nbytes of memory,
since each char is 1 byte!

80

void swap(void *data1ptr, void *data2ptr, size_t nbytes) {
char temp[nbytes];
// store a copy of data1 in temporary storage
// copy data2 to location of data1
// copy data in temporary storage to location of data2

}

Generic Swap

Now, how can we copy in what
data1ptr points to into temp?

81

void swap(void *data1ptr, void *data2ptr, size_t nbytes) {
char temp[nbytes];
// store a copy of data1 in temporary storage
temp = *data1ptr; ???
// copy data2 to location of data1
// copy data in temporary storage to location of data2

}

Generic Swap

Now, how can we copy in what
data1ptr points to into temp?

82

void swap(void *data1ptr, void *data2ptr, size_t nbytes) {
char temp[nbytes];
// store a copy of data1 in temporary storage
temp = *data1ptr; ???
// copy data2 to location of data1
// copy data in temporary storage to location of data2

}

Generic Swap

We can’t dereference a void * (or set an array
equal to something). C doesn’t know what it
points to! Therefore, it doesn’t know how many
bytes there it should be looking at.

83

memcpy
memcpy is a function that copies a specified amount of bytes at one address to
another address.

void *memcpy(void *dest, const void *src, size_t n);

It copies the next n bytes that src points to to the location contained in dest. (It
also returns dest). It does not support regions of memory that overlap.

int x = 5;
int y = 4;
memcpy(&x, &y, sizeof(x)); // like x = y

memcpy must take pointers to the bytes to work with to
know where they live and where they should be copied to.

84

memmove
memmove is the same as memcpy, but supports overlapping regions of
memory. (Unlike its name implies, it still “copies”).

void *memmove(void *dest, const void *src, size_t n);

It copies the next n bytes that src points to to the location contained in dest. (It
also returns dest).

85

memmove
When might memmove be useful?

1 2 3 4 5 6 7

4 5 6 7 5 6 7

86

void swap(void *data1ptr, void *data2ptr, size_t nbytes) {
char temp[nbytes];
// store a copy of data1 in temporary storage
temp = *data1ptr; ???
// copy data2 to location of data1
// copy data in temporary storage to location of data2

}

Generic Swap

We can’t dereference a void *. C doesn’t know
what it points to! Therefore, it doesn’t know how
many bytes there it should be looking at.

87

void swap(void *data1ptr, void *data2ptr, size_t nbytes) {
char temp[nbytes];
// store a copy of data1 in temporary storage
temp = *data1ptr; ???
// copy data2 to location of data1
// copy data in temporary storage to location of data2

}

Generic Swap

How can memcpy or memmove help us here? (Assume data to be swapped
is not overlapping).
void *memcpy(void *dest, const void *src, size_t n);

void *memmove(void *dest, const void *src, size_t n);

88

void swap(void *data1ptr, void *data2ptr, size_t nbytes) {
char temp[nbytes];
// store a copy of data1 in temporary storage
memcpy(temp, data1ptr, nbytes);
// copy data2 to location of data1
// copy data in temporary storage to location of data2

}

Generic Swap

89

void swap(void *data1ptr, void *data2ptr, size_t nbytes) {
char temp[nbytes];
// store a copy of data1 in temporary storage
memcpy(temp, data1ptr, nbytes);
// copy data2 to location of data1
// copy data in temporary storage to location of data2

}

Generic Swap

We can copy the bytes ourselves into temp! This
is equivalent to temp = *data1ptr in non-generic
versions, but this works for any type of any size.

90

void swap(void *data1ptr, void *data2ptr, size_t nbytes) {
char temp[nbytes];
// store a copy of data1 in temporary storage
memcpy(temp, data1ptr, nbytes);
// copy data2 to location of data1
// copy data in temporary storage to location of data2

}

Generic Swap

How can we copy data2 to the location of data1?

91

void swap(void *data1ptr, void *data2ptr, size_t nbytes) {
char temp[nbytes];
// store a copy of data1 in temporary storage
memcpy(temp, data1ptr, nbytes);
// copy data2 to location of data1
*data1ptr = *data2ptr; ???
// copy data in temporary storage to location of data2

}

Generic Swap

How can we copy data2 to the location of data1?

92

void swap(void *data1ptr, void *data2ptr, size_t nbytes) {
char temp[nbytes];
// store a copy of data1 in temporary storage
memcpy(temp, data1ptr, nbytes);
// copy data2 to location of data1
memcpy(data1ptr, data2ptr, nbytes);
// copy data in temporary storage to location of data2

}

Generic Swap

How can we copy data2 to the location of data1?
memcpy!

93

void swap(void *data1ptr, void *data2ptr, size_t nbytes) {
char temp[nbytes];
// store a copy of data1 in temporary storage
memcpy(temp, data1ptr, nbytes);
// copy data2 to location of data1
memcpy(data1ptr, data2ptr, nbytes);
// copy data in temporary storage to location of data2

}

Generic Swap

How can we copy temp’s data to the location of
data2?

94

void swap(void *data1ptr, void *data2ptr, size_t nbytes) {
char temp[nbytes];
// store a copy of data1 in temporary storage
memcpy(temp, data1ptr, nbytes);
// copy data2 to location of data1
memcpy(data1ptr, data2ptr, nbytes);
// copy data in temporary storage to location of data2
memcpy(data2ptr, temp, nbytes);

}

Generic Swap

How can we copy temp’s data to the location of
data2? memcpy!

95

void swap(void *data1ptr, void *data2ptr, size_t nbytes) {
char temp[nbytes];
// store a copy of data1 in temporary storage
memcpy(temp, data1ptr, nbytes);
// copy data2 to location of data1
memcpy(data1ptr, data2ptr, nbytes);
// copy data in temporary storage to location of data2
memcpy(data2ptr, temp, nbytes);

}

Generic Swap

int x = 2;
int y = 5;
swap(&x, &y, sizeof(x));

96

void swap(void *data1ptr, void *data2ptr, size_t nbytes) {
char temp[nbytes];
// store a copy of data1 in temporary storage
memcpy(temp, data1ptr, nbytes);
// copy data2 to location of data1
memcpy(data1ptr, data2ptr, nbytes);
// copy data in temporary storage to location of data2
memcpy(data2ptr, temp, nbytes);

}

Generic Swap

short x = 2;
short y = 5;
swap(&x, &y, sizeof(x));

97

void swap(void *data1ptr, void *data2ptr, size_t nbytes) {
char temp[nbytes];
// store a copy of data1 in temporary storage
memcpy(temp, data1ptr, nbytes);
// copy data2 to location of data1
memcpy(data1ptr, data2ptr, nbytes);
// copy data in temporary storage to location of data2
memcpy(data2ptr, temp, nbytes);

}

Generic Swap

char *x = "2";
char *y = "5";
swap(&x, &y, sizeof(x));

98

void swap(void *data1ptr, void *data2ptr, size_t nbytes) {
char temp[nbytes];
// store a copy of data1 in temporary storage
memcpy(temp, data1ptr, nbytes);
// copy data2 to location of data1
memcpy(data1ptr, data2ptr, nbytes);
// copy data in temporary storage to location of data2
memcpy(data2ptr, temp, nbytes);

}

Generic Swap

mystruct x = {…};
mystruct y = {…};
swap(&x, &y, sizeof(x));

99

C Generics
• We can use void * and memcpy to handle memory as generic bytes.
• If we are given where the data of importance is, and how big it is, we can

handle it!

void swap(void *data1ptr, void *data2ptr, size_t nbytes) {
char temp[nbytes];
memcpy(temp, data1ptr, nbytes);
memcpy(data1ptr, data2ptr, nbytes);
memcpy(data2ptr, temp, nbytes);

}

100

void *, memcpy, memmove
From a design standpoint, why does memcpy take void *s as parameters?

int x = 2;
int y = 3;
memcpy(&x, &y, sizeof(x)); // copy 3 into x

// why not this?
memcpy(x, y);

1. The first parameter must be a pointer so memcpy knows where to copy to.
2. The second parameter could be a non-pointer. But then there must be a
version of memcpy for every possible type we would like to copy!

memcpy_i(void *, int); memcpy_c(void *, char); memcpy_d(void *, double);

101

Lecture Plan
• Overview: Generics
• Generic Swap
• Generics Pitfalls
• Generic Array Swap

cp -r /afs/ir/class/cs107/lecture-code/lect8 .

102

Void * Pitfalls
• void *s are powerful, but dangerous - C cannot do as much checking!
• E.g. with int, C would never let you swap half of an int. With void *s, this can

happen! (How? Let’s find out!)

103

Demo: Void *s Gone Wrong

swap.c

104

Void *Pitfalls
• Void * has more room for error because it manipulates arbitrary bytes without

knowing what they represent. This can result in some strange memory
Frankensteins!

http://i.ytimg.com/vi/10gPoYjq3EA/hqdefault.jpg

105

Lecture Plan
• Use-after-free vulnerabilities, disclosure and partiality
• Overview: Generics
• Generic Swap
• Generics Pitfalls
• Generic Array Swap

cp -r /afs/ir/class/cs107/lecture-code/lect8 .

106

Swap Ends
You’re asked to write a function that swaps the first and last elements in an
array of numbers.

void swap_ends_int(int *arr, size_t nelems) {
int tmp = arr[0];
arr[0] = arr[nelems – 1];
arr[nelems – 1] = tmp;

}

int main(int argc, char *argv[]) {
int nums[] = {5, 2, 3, 4, 1};
size_t nelems = sizeof(nums) / sizeof(nums[0]);
swap_ends_int(nums, nelems);
// want nums[0] = 1, nums[4] = 5
printf("nums[0] = %d, nums[4] = %d\n", nums[0], nums[4]);
return 0;

}

Wait – we just wrote a generic
swap function. Let’s use that!

107

Swap Ends
You’re asked to write a function that swaps the first and last elements in an
array of numbers.

void swap_ends_int(int *arr, size_t nelems) {
swap(arr, arr + nelems – 1, sizeof(*arr));

}

int main(int argc, char *argv[]) {
int nums[] = {5, 2, 3, 4, 1};
size_t nelems = sizeof(nums) / sizeof(nums[0]);
swap_ends_int(nums, nelems);
// want nums[0] = 1, nums[4] = 5
printf("nums[0] = %d, nums[4] = %d\n", nums[0], nums[4]);
return 0;

}

Wait – we just wrote a generic
swap function. Let’s use that!

108

Swap Ends
Let’s write out what some other versions would look like (just in case).

void swap_ends_int(int *arr, size_t nelems) {
swap(arr, arr + nelems – 1, sizeof(*arr));

}

void swap_ends_short(short *arr, size_t nelems) {
swap(arr, arr + nelems – 1, sizeof(*arr));

}

void swap_ends_string(char **arr, size_t nelems) {
swap(arr, arr + nelems – 1, sizeof(*arr));

}

void swap_ends_float(float *arr, size_t nelems) {
swap(arr, arr + nelems – 1, sizeof(*arr));

}

The code seems to be the
same regardless of the type!

109

Swap Ends
Let’s write a version of swap_ends that works for any type of array.

void swap_ends(void *arr, size_t nelems) {
swap(arr, arr + nelems – 1, sizeof(*arr));

}

Is this generic? Does this work?

Unfortunately not. Firs,t we no longer know the
element size. Second, pointer arithmetic depends
on the type of data being pointed to. With a void *,
we lose that information!

110

Swap Ends
Let’s write a version of swap_ends that works for any type of array.

void swap_ends(void *arr, size_t nelems) {
swap(arr, arr + nelems – 1, sizeof(*arr));

}

Is this generic? Does this work?

Unfortunately not. First, we no longer know the
element size. Second, pointer arithmetic depends
on the type of data being pointed to. With a void *,
we lose that information!

111

Swap Ends
Let’s write a version of swap_ends that works for any type of array.

void swap_ends(void *arr, size_t nelems) {
swap(arr, arr + nelems – 1, sizeof(*arr));

}

We need to know the element size, so
let’s add a parameter.

112

Swap Ends
Let’s write a version of swap_ends that works for any type of array.

void swap_ends(void *arr, size_t nelems, size_t elem_bytes) {
swap(arr, arr + nelems – 1, elem_bytes);

}

We need to know the element size, so
let’s add a parameter.

113

Pointer Arithmetic
arr + nelems – 1

Let’s say nelems = 4. How many bytes beyond arr is this?

If it’s an array of…
Int?

114

Pointer Arithmetic
arr + nelems – 1

Let’s say nelems = 4. How many bytes beyond arr is this?

If it’s an array of…
Int: adds 3 places to arr, and 3 * sizeof(int) = 12 bytes

115

Pointer Arithmetic
arr + nelems – 1

Let’s say nelems = 4. How many bytes beyond arr is this?

If it’s an array of…
Int: adds 3 places to arr, and 3 * sizeof(int) = 12 bytes
Short?

116

Pointer Arithmetic
arr + nelems – 1

Let’s say nelems = 4. How many bytes beyond arr is this?

If it’s an array of…
Int: adds 3 places to arr, and 3 * sizeof(int) = 12 bytes
Short: adds 3 places to arr, and 3 * sizeof(short) = 6 bytes

117

Pointer Arithmetic
arr + nelems – 1

Let’s say nelems = 4. How many bytes beyond arr is this?

If it’s an array of…
Int: adds 3 places to arr, and 3 * sizeof(int) = 12 bytes
Short: adds 3 places to arr, and 3 * sizeof(short) = 6 bytes
Char *: adds 3 places to arr, and 3 * sizeof(char *) = 24 bytes

In each case, we need to know the element size to do the arithmetic.

118

Swap Ends
Let’s write a version of swap_ends that works for any type of array.

void swap_ends(void *arr, size_t nelems, size_t elem_bytes) {
swap(arr, arr + nelems – 1, elem_bytes);

}

How many bytes past arr should we go to
get to the last element?

(nelems – 1) * elem_bytes

119

Swap Ends
Let’s write a version of swap_ends that works for any type of array.

void swap_ends(void *arr, size_t nelems, size_t elem_bytes) {
swap(arr, arr + (nelems – 1) * elem_bytes, elem_bytes);

}

How many bytes past arr should we go to
get to the last element?

(nelems – 1) * elem_bytes

120

Swap Ends
Let’s write a version of swap_ends that works for any type of array.

void swap_ends(void *arr, size_t nelems, size_t elem_bytes) {
swap(arr, arr + (nelems – 1) * elem_bytes, elem_bytes);

}

But C still can’t do arithmetic with a
void*. We need to tell it to not worry
about it, and just add bytes. How can we
do this?

121

Swap Ends
Let’s write a version of swap_ends that works for any type of array.

void swap_ends(void *arr, size_t nelems, size_t elem_bytes) {
swap(arr, (char *)arr + (nelems – 1) * elem_bytes, elem_bytes);

}

But C still can’t do arithmetic with a
void*. We need to tell it to not worry
about it, and just add bytes. How can we
do this?

char * pointers already add bytes!

122

Swap Ends
You’re asked to write a function that swaps the first and last elements in an
array of numbers. Well, now it can swap for an array of anything!

void swap_ends(void *arr, size_t nelems, size_t elem_bytes) {
swap(arr, (char *)arr + (nelems – 1) * elem_bytes, elem_bytes);

}

123

Swap Ends
You’re asked to write a function that swaps the first and last elements in an
array of numbers. Well, now it can swap for an array of anything!

void swap_ends(void *arr, size_t nelems, size_t elem_bytes) {
swap(arr, (char *)arr + (nelems – 1) * elem_bytes, elem_bytes);

}

int nums[] = {5, 2, 3, 4, 1};
size_t nelems = sizeof(nums) / sizeof(nums[0]);
swap_ends(nums, nelems, sizeof(nums[0]));

124

Swap Ends
You’re asked to write a function that swaps the first and last elements in an
array of numbers. Well, now it can swap for an array of anything!

void swap_ends(void *arr, size_t nelems, size_t elem_bytes) {
swap(arr, (char *)arr + (nelems – 1) * elem_bytes, elem_bytes);

}

short nums[] = {5, 2, 3, 4, 1};
size_t nelems = sizeof(nums) / sizeof(nums[0]);
swap_ends(nums, nelems, sizeof(nums[0]));

125

Swap Ends
You’re asked to write a function that swaps the first and last elements in an
array of numbers. Well, now it can swap for an array of anything!

void swap_ends(void *arr, size_t nelems, size_t elem_bytes) {
swap(arr, (char *)arr + (nelems – 1) * elem_bytes, elem_bytes);

}

char *strs[] = {"Hi", "Hello", "Howdy"};
size_t nelems = sizeof(strs) / sizeof(strs[0]);
swap_ends(strs, nelems, sizeof(strs[0]));

126

Swap Ends
You’re asked to write a function that swaps the first and last elements in an
array of numbers. Well, now it can swap for an array of anything!

void swap_ends(void *arr, size_t nelems, size_t elem_bytes) {
swap(arr, (char *)arr + (nelems – 1) * elem_bytes, elem_bytes);

}

mystruct structs[] = …;
size_t nelems = …;
swap_ends(structs, nelems, sizeof(structs[0]));

127

Demo: Void *s Gone Wrong

swap_ends.c

128

Recap
• void * is a variable type that represents a generic pointer “to something”.
• We cannot perform pointer arithmetic with or dereference a void *.
• We can use memcpy or memmove to copy data from one memory location to

another.
• To do pointer arithmetic with a void *, we must first cast it to a char *.
• void * and generics are powerful but dangerous because of the lack of type

checking, so we must be extra careful when working with generic memory.

129

Recap
• Use-after-free vulnerabilities, disclosure and partiality
• Overview: Generics
• Generic Swap
• Generics Pitfalls
• Generic Array Swap

Next time: More Generics, and Function Pointers

Lecture 8 takeaway: Partiality helps us
better understand competing interests such
as with vulnerability disclosure. We can use
void *, memcpy and memmove to
manipulate data even if we don’t know its
type. We can cast void *s to perform
pointer arithmetic. void *s have no type
checking, so we must be vigilant!

130

Overflow Slides

131

Lecture Plan
• Use-after-free vulnerabilities, disclosure and partiality
• Overview: Generics
• Generic Swap
• Generics Pitfalls
• Generic Array Swap
• Generic Stack

cp -r /afs/ir/class/cs107/lecture-code/lect8 .

132

Stacks
• C generics are particularly powerful in helping us create generic data

structures.
• Let’s see how we might go about making a Stack in C.

133

Refresher: Stacks
• A Stack is a data structure representing a

stack of things.
• Objects can be pushed on top of or

popped from the top of the stack.
• Only the top of the stack can be accessed;

no other objects in the stack are visible.
• Main operations:

• push(value): add an element to the top of
the stack

• pop(): remove and return the top element in
the stack

• peek(): return (but do not remove) the top
element in the stack

stack

top 31
2

bottom 10

pop, peekpush

134

A stack is often implemented using a linked list internally.
• "bottom" = tail of linked list
• "top" = head of linked list (why not the other way around?)

Stack<int> s;
s.push(42);
s.push(-3);
s.push(17);

Problem: C is not object-oriented! We can’t call methods on variables.

17 -3 42

front

Refresher: Stacks

135

Demo: Int Stack

int_stack.c

136

What modifications are
necessary to make a

generic stack?

137

Stack Structs
typedef struct int_node {

struct int_node *next;
int data;

} int_node;

typedef struct int_stack {
int nelems;
int_node *top;

} int_stack;

How might we modify the Stack data
representation itself to be generic?

138

Stack Structs
typedef struct int_node {

struct int_node *next;
int data;

} int_node;

typedef struct int_stack {
int nelems;
int_node *top;

} int_stack;

Problem: each node can no longer store the
data itself, because it could be any size!

139

Generic Stack Structs
typedef struct int_node {

struct int_node *next;
void *data;

} int_node;

typedef struct stack {
int nelems;
int elem_size_bytes;
node *top;

} stack;
Solution: each node stores a pointer, which is
always 8 bytes, to the data somewhere else. We
must also store the data size in the Stack struct.

140

Stack Functions
• int_stack_create(): creates a new stack on the heap and returns a

pointer to it
• int_stack_push(int_stack *s, int data): pushes data onto the

stack
• int_stack_pop(int_stack *s): pops and returns topmost stack element

141

int_stack_create
int_stack *int_stack_create() {

int_stack *s = malloc(sizeof(int_stack));
s->nelems = 0;
s->top = NULL;
return s;

}
How might we modify this function to be
generic?

From previous slide:
typedef struct stack {

int nelems;
int elem_size_bytes;
node *top;

} stack;

142

Generic stack_create
stack *stack_create(int elem_size_bytes) {

stack *s = malloc(sizeof(stack));
s->nelems = 0;
s->top = NULL;
s->elem_size_bytes = elem_size_bytes;
return s;

}

143

int_stack_push
void int_stack_push(int_stack *s, int data) {

int_node *new_node = malloc(sizeof(int_node));
new_node->data = data;

new_node->next = s->top;
s->top = new_node;
s->nelems++;

}

How might we modify this function to be
generic?

From previous slide:
typedef struct stack {

int nelems;
int elem_size_bytes;
node *top;

} stack;

typedef struct node {
struct node *next;
void *data;

} node;

144

Generic stack_push
void int_stack_push(int_stack *s, int data) {

int_node *new_node = malloc(sizeof(int_node));
new_node->data = data;

new_node->next = s->top;
s->top = new_node;
s->nelems++;

}

Problem 1: we can no longer pass the data itself
as a parameter, because it could be any size!

145

Generic stack_push
void int_stack_push(int_stack *s, const void *data) {

int_node *new_node = malloc(sizeof(int_node));
new_node->data = data;

new_node->next = s->top;
s->top = new_node;
s->nelems++;

}

Solution 1: pass a pointer to the
data as a parameter instead.

146

Generic stack_push
void int_stack_push(int_stack *s, const void *data) {

int_node *new_node = malloc(sizeof(int_node));
new_node->data = data;

new_node->next = s->top;
s->top = new_node;
s->nelems++;

}
Problem 2: we cannot copy the existing data
pointer into new_node. The data structure must
manage its own copy that exists for its entire
lifetime. The provided copy may go away!

147

Generic stack_push
int main() {

stack *int_stack = stack_create(sizeof(int));
add_one(int_stack);
// now stack stores pointer to invalid memory for 7!

}

void add_one(stack *s) {
int num = 7;
stack_push(s, &num);

}

148

Generic stack_push
void stack_push(stack *s, const void *data) {

node *new_node = malloc(sizeof(node));
new_node->data = malloc(s->elem_size_bytes);
memcpy(new_node->data, data, s->elem_size_bytes);

new_node->next = s->top;
s->top = new_node;
s->nelems++;

}
Solution 2: make a heap-allocated copy
of the data that the node points to.

149

int_stack_pop
int int_stack_pop(int_stack *s) {

if (s->nelems == 0) {
error(1, 0, "Cannot pop from empty stack");

}
int_node *n = s->top;
int value = n->data;

s->top = n->next;

free(n);
s->nelems--;

return value;
}

How might we modify this function to be
generic?

From previous slide:
typedef struct stack {

int nelems;
int elem_size_bytes;
node *top;

} stack;

typedef struct node {
struct node *next;
void *data;

} node;

150

Generic stack_pop
int int_stack_pop(int_stack *s) {

if (s->nelems == 0) {
error(1, 0, "Cannot pop from empty stack");

}
int_node *n = s->top;
int value = n->data;

s->top = n->next;

free(n);
s->nelems--;

return value;
}

Problem: we can no longer return the
data itself, because it could be any size!

151

Generic stack_pop
void *int_stack_pop(int_stack *s) {

if (s->nelems == 0) {
error(1, 0, "Cannot pop from empty stack");

}
int_node *n = s->top;
void *value = n->data;

s->top = n->next;

free(n);
s->nelems--;

return value;
}

While it’s possible to return the heap
address of the element, this means the
client would be responsible for freeing it.
Ideally, the data structure should manage
its own memory here.

152

Generic stack_pop
void stack_pop(stack *s, void *addr) {

if (s->nelems == 0) {
error(1, 0, "Cannot pop from empty stack");

}
node *n = s->top;
memcpy(addr, n->data, s->elem_size_bytes);
s->top = n->next;

free(n->data);
free(n);
s->nelems--;

}
Solution: have the caller pass a memory
location as a parameter and copy the data
to that location.

153

Using Generic Stack
int_stack *intstack = int_stack_create();
for (int i = 0; i < TEST_STACK_SIZE; i++) {

int_stack_push(intstack, i);
}

We must now pass the address of an element to push
onto the stack, rather than the element itself.

154

Using Generic Stack
stack *intstack = stack_create(sizeof(int));
for (int i = 0; i < TEST_STACK_SIZE; i++) {

stack_push(intstack, &i);
}

We must now pass the address of an element to push
onto the stack, rather than the element itself.

155

Using Generic Stack
int_stack *intstack = int_stack_create();
int_stack_push(intstack, 7);

We must now pass the address of an element to push
onto the stack, rather than the element itself.

156

Using Generic Stack
stack *intstack = stack_create(sizeof(int));
int num = 7;
stack_push(intstack, &num);

We must now pass the address of an element to push
onto the stack, rather than the element itself.

157

Using Generic Stack
// Pop off all elements
while (intstack->nelems > 0) {

printf("%d\n", int_stack_pop(intstack));
}

We must now pass the address of where we would
like to store the popped element, rather than getting
it directly as a return value.

158

Using Generic Stack
// Pop off all elements
int popped_int;
while (intstack->nelems > 0) {

int_stack_pop(intstack, &popped_int);
printf("%d\n", popped_int);

}

We must now pass the address of where we would
like to store the popped element, rather than getting
it directly as a return value.

159

Demo: Generic Stack

generic_stack.c

160

Extra Practice

161

Generic stack_create
stack *stack_create(int elem_size_bytes) {

stack *s = malloc(sizeof(stack));
s->nelems = 0;
s->top = NULL;
s->elem_size_bytes = elem_size_bytes;
return s;

}

...

stack *numStack = stack_create(sizeof(int));

typedef struct stack {
int nelems;
int elem_size_bytes;
node *top;

} stack;

typedef struct node {
struct node *next;
void *data;

} node;

Stack Heap

162

Generic stack_push
void stack_push(stack *s, const void *data) {

node *new_node = malloc(sizeof(node));
new_node->data = malloc(s->elem_size_bytes);
memcpy(new_node->data,

data, s->elem_size_bytes);
new_node->next = s->top;
s->top = new_node;
s->nelems++;

}
...
int x = 2;
stack_push(numStack, &2);

typedef struct stack {
int nelems;
int elem_size_bytes;
node *top;

} stack;

typedef struct node {
struct node *next;
void *data;

} node;

Stack Heap

163

Generic stack_pop
void stack_pop(stack *s, void *addr) {

node *n = s->top;
memcpy(addr, n->data,

s->elem_size_bytes);
s->top = n->next;
free(n->data);
free(n);
s->nelems--;

}
...
int num;
stack_pop(numStack, &num);
printf("%d\n", num);
typedef struct stack {

int nelems;
int elem_size_bytes;
node *top;

} stack;

typedef struct node {
struct node *next;
void *data;

} node;

Stack Heap

164

Tips: C to English
• Translate C into English (function/variable declarations):

https://cdecl.org/
• Pointer arithmetic: (char *) cast means byte address.

What is the value of elt in the below (intentionally convoluted) code?

int arr[] = {1, 2, 3, 4};
void *ptr = arr;
int elt = *(int *)((char *) ptr + sizeof(int));

🤔
Code clarity: Consider breaking the last
line into two lines! (1) pointer
arithmetic, (2) int cast + dereference.

https://cdecl.org/

165

Exercise: Array Rotation
Exercise: You’re asked to provide an implementation for a function called
rotate with the following prototype:

void rotate(void *front, void *separator, void *end);

The expectation is that front is the base address of an array, end is the past-
the-end address of the array, and separator is the address of some element
in between. rotate moves all elements in between front and separator
to the end of the array, and all elements between separator and end move
to the front.

rotate.c

166

Exercise: Array Rotation

1 2 3 4 5 6 7 8 9 10

4 5 6 7 8 9 10 1 2 3

front separator end

int array[7] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
rotate(array, array + 3, array + 10);

Before:

After:

167

Exercise: Array Rotation
Exercise: Implement rotate to generate the provided output.

int main(int argc, char *argv[]) {
int array[10] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
print_int_array(array, 10); // intuit implementation J
rotate(array, array + 5, array + 10);
print_int_array(array, 10);
rotate(array, array + 1, array + 10);
print_int_array(array, 10);
rotate(array + 4, array + 5, array + 6);
print_int_array(array, 10);
return 0;

}

Output:
myth52:~/lect8$./rotate
Array: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
Array: 6, 7, 8, 9, 10, 1, 2, 3, 4, 5
Array: 7, 8, 9, 10, 1, 2, 3, 4, 5, 6
Array: 7, 8, 9, 10, 2, 1, 3, 4, 5, 6
myth52:~/lect8$

168

1 2 3 4 5 6 7 8 9 10

front separator end

4 5 6 7 8 9 10 8 9 10

front separator end

Before
rotate:

Before
last step:

1 2 3temp

The inner workings of rotate

169

Exercise: Array Rotation
Exercise: A properly implemented rotate will prompt the following program to
generate the provided output.
And here’s that properly implemented function!

void rotate(void *front, void *separator, void *end) {
int width = (char *)end - (char *)front;
int prefix_width = (char *)separator - (char *)front;
int suffix_width = width - prefix_width;

char temp[prefix_width];
memcpy(temp, front, prefix_width);
memmove(front, separator, suffix_width);
memcpy((char *)end - prefix_width, temp, prefix_width);

}

