
1
This document is copyright (C) Stanford Computer Science and Jerry Cain, licensed under Creative Commons Attribution 2.5 License. All rights reserved.

Based on slides created by Cynthia Lee, Nick Troccoli, Chris Gregg, Lisa Yan and others.

CS107, Lecture 2
Unix, C, Bits and Bytes, Integer Representations

Reading: Bryant & O’Hallaron, Ch. 2.2-23 (skim)
Ed Discussion: https://edstem.org/us/courses/28214/discussion/1842418

https://edstem.org/us/courses/28214/discussion/1842418

2

The C Language
C was created around 1970 to make writing Unix and Unix tools easier.
• Part of the C/C++/Java family of languages (C is by far the oldest of the three)
• Design principles:

• Small, simple abstractions layered over hardware
• Minimalist, WYSIWYG
• Prioritizes efficiency and simplicity over safety, high-level abstractions

3

C vs. C++ and Java
They all share:
• Syntax
• Basic data types
• Arithmetic, relational, and logical

operators

C limitations:
• No advanced features like operator

overloading, default arguments, pass
by reference, classes, etc.
• No elaborate libraries (graphics,

networking, etc.) – small language
means less to learn J
• Forgiving compiler and virtually no

runtime checks — lack of runtime
support means carelessly written
code can be easily exploited

4

Programming Language Philosophies
C is procedural and imperative: you implement functions, rather than define
classes and invoke methods on objects. C is small, fast and efficient.

C++ is procedural, with objects: you write functions, define new variable types
as classes, and invoke methods on objects.

Python is procedural, but dynamically typed: you still write functions and
invoke methods on objects, but type checking occurs during runtime.

Java is truly object-oriented: nearly everything is an object, and everything you
write conforms to the object-oriented paradigm.

5

Why C?
• Many tools (and even other languages, e.g., Python) are implemented using C.
• C is the language of choice for fast, highly efficient programs.
• C is popular for systems programming (operating systems, networking, etc.).
• C lets you examine and manipulate the underlying system.
• Modern alternatives to C as a systems programming language are emerging,

but they’re more complicated.

6

Programming Language Popularity

https://www.tiobe.com/tiobe-index/

https://www.tiobe.com/tiobe-index/

7

Our First C Program
/*
* hello.c
* This program prints a welcome message
* to the user.
*/
#include <stdio.h> // for printf

int main(int argc, char *argv[]) {
printf("Hello, world!\n");
return 0;

}

8

Our First C Program
/*
* hello.c
* This program prints a welcome message
* to the user.
*/
#include <stdio.h> // for printf

int main(int argc, char *argv[]) {
printf("Hello, world!\n");
return 0;

}
Program comments
You can write block or inline comments.

9

Our First C Program
/*
* hello.c
* This program prints a welcome message
* to the user.
*/
#include <stdio.h> // for printf

int main(int argc, char *argv[]) {
printf("Hello, world!\n");
return 0;

} Import statements
C libraries are written with angle brackets.
Local libraries have quotes:
#include "wordle-utils.h"

10

Our First C Program
/*
* hello.c
* This program prints a welcome message
* to the user.
*/
#include <stdio.h> // for printf

int main(int argc, char *argv[]) {
printf("Hello, world!\n");
return 0;

}

Main function – entry point for the program
Should always return an integer (0 = success)

11

Our First C Program
/*
* hello.c
* This program prints a welcome message
* to the user.
*/
#include <stdio.h> // for printf

int main(int argc, char *argv[]) {
printf("Hello, world!\n");
return 0;

}

Main parameters – main takes two parameters,
both relating to the command line arguments
used to execute the program.

argc is the number of arguments in argv
argv is an array of arguments (char * is C string)

12

Our First C Program
/*
* hello.c
* This program prints a welcome message
* to the user.
*/
#include <stdio.h> // for printf

int main(int argc, char *argv[]) {
printf("Hello, world!\n");
return 0;

}

printf – prints text to the screen

13

Console Output: printf
printf(text, arg1, arg2, arg3,...);

printf makes it easy to print out the values of variables or expressions.
If you include placeholders in your printed text, printf will replace each
placeholder in order with the values of the parameters passed after the text.

%s (string) %d (integer) %f (double)

// Example
char *prefix = "CS";
int number = 107;
printf("You are in %s%d", prefix, number); // You are in CS107

14

Familiar Syntax
int x = 42 + 7 * -5; // variables, types
double pi = 3.14159;
char c = 'Q'; /* two comment styles */

for (int i = 0; i < 10; i++) { // for loops
if (i % 2 == 0) { // if statements

x += i;
}

}

while (x > 0 && c == 'Q' || DEBUG) { // while loops, logic, DEBUG global bool
x = x / 2;
if (x == 42) {

return 0;
}

}

binky(x, 107, c); // function call

15

Boolean Variables
To declare Booleans, (e.g. bool b = ____), you must include stdbool.h:

#include <stdio.h> // for printf
#include <stdbool.h> // for bool

int main(int argc, char *argv[]) {
bool test = argc > 2 && binky(argc) > 0;
if (test) {

printf("Hello, world!\n");
} else {

printf("Howdy, world!\n");
}
return 0;

}

16

Question Break

17

Writing, Debugging and Compiling
We will use:
• the emacs text editor to write our C programs
• the make tool to compile our C programs
• the gdb debugger to debug our programs
• the valgrind tools to debug memory errors and

measure program efficiency

Now

Next week

18

Working On C Programs
• ssh – remotely log in to Myth computers
• Emacs – text editor to write and edit C programs

• Use the mouse to position cursor, scroll, and highlight text
• CTRL-x CTRL-s to save, CTRL-x CTRL-c to quit

• make – compile program using provided Makefile
• ./myprogram – run executable program (optionally with arguments)
• make clean – remove executables and other compiler files
• Lecture code is accessible at /afs/ir/class/cs107/lecture-code/lect[N]

• Make your own copy: cp -r /afs/ir/class/cs107/lecture-code/lect[N] lect[N]
• See the website for even more commands, and a complete reference.

19

Demo: Compiling And
Running A C Program

Get up and running with our guide:
http://cs107.stanford.edu/resources/getting-started.html

http://cs107.stanford.edu/resources/getting-started.html

20

assign0

Assignment 0 (Intro to Unix and C) is due in a week from today on 10/5 at
11:59PM PDT.

There are 5 parts to the assignment, which is meant to get you comfortable
using the command line, and editing/compiling/running C programs:
• Navigate website to become familiar with common Unix commands
• Clone the assign0 starter project
• Answer several questions in readme.txt
• Compile a provided C program and modify it
• Submit the assignment

21

Question Break

22

CS107 Topic 1
How can a computer represent integer numbers?

Why is answering this question important?
• Helps us understand the limitations of computer arithmetic (today and Friday)
• Shows us how to more efficiently perform arithmetic (Friday and Monday)
• Shows us how we can encode data more compactly and efficiently (Monday)

assign1: implement 3 programs that manipulate binary representations to (1) work
around the limitations of arithmetic with addition, (2) simulate an evolving colony of
cells, and (3) print Unicode text to the terminal.

23

Learning Goals
• Learn about the binary and hexadecimal number systems and how to convert

between number systems
• Understand how positive and negative numbers are represented in binary
• Learn about overflow, why it occurs, and its impacts

24

Demo: Unexpected
Behavior

cp -r /afs/ir/class/cs107/lecture-code/lect2 .

25

Bits

26

Bits
Computers are built around the idea of two states: "on" and "off". Transistors
represent this in hardware, and bits represent this in software!

27

One Bit At A Time
• We can combine bits, as with base-10 numbers, to represent more data.

8 bits = 1 byte.
• Computer memory is just a large array of bytes. It is byte-addressable; you

can’t address a bit in isolation, only a full byte.
• Computers still fundamentally operate with bits; we have just gotten more

creative about how to represent data using bits!
• Images
• Audio
• Video
• Text
• And more…

28

Base 10

5 9 3 4
digits 0 – 9

(or rather, 0 through base – 1)

29

Base 10

5 9 3 4
onestens

hundreds

thousands

= 5 * 1000 + 9 * 100 + 3 * 10 + 4 * 1

30

Base 10

5 9 3 4
100101102103

31

Base 10

5 9 3 4
012310X:

32

Base 2

1 0 1 1
01232X:

digits 0 – 1
(or rather, 0 through base – 1)

33

Base 2

1 0 1 1
20212223

34

Base 2

1 0 1 1
onestwosfourseights

= 1 * 8 + 0 * 4 + 1 * 2 + 1 * 1 = 1110

Most significant bit (MSB) Least significant bit (LSB)

35

Base 10 to Base 2

_ _ _ _

Question: What is 6 in base 2?
• Strategy:

• What is the largest power of 2 ≤ 6?
• Now, what is the largest power of 2 ≤ 6 – 22?
• 6 – 22 – 21 = 0!

20212223

10 1 0
= 0*8 + 1*4 + 1*2 + 0*1 = 6

22=4
21=2

36

Practice: Base 2 to Base 10
What is the base-2 value 1010 in base-10?
a) 20
b) 101
c) 10
d) 5
e) Other

37

Practice: Base 10 to Base 2
What is the base-10 value 14 in base 2?
a) 1111
b) 1110
c) 1010
d) Other

38

Byte Values
What are the minimum and maximum base-10 values a single byte (8 bits) can
represent?

minimum = 0 maximum = ?

11111111
2x: 7 6 5 4 3 2 1 0

• Strategy 1: 1 * 27 + 1 * 26 + 1 * 25 + 1 * 24 + 1 * 23+ 1 * 22 + 1 * 21 + 1 * 20 = 255
• Strategy 2: 28 – 1 = 255

255

39

Multiplying by Base

1450 x 10 = 14500
11002 x 2 = 11000

Key Idea: appending 0 to the end effectively multiplies by the base!

40

Dividing by Base

1450 / 10 = 145
11002 / 2 = 110

Key Idea: chomping off 0 from the end divides by the base!

41

Question Break

42

Hexadecimal
When working with bits, oftentimes we have large numbers with 32 or 64 bits.
• Instead, we’ll generally encode numbers in base-16, or hexadecimal, instead.

0110 1010 0011
0-150-150-15

43

Hexadecimal
When working with bits, oftentimes we have large numbers with 32 or 64 bits.
• Instead, we’ll generally encode numbers in base-16, or hexadecimal, instead.

0-150-150-15

Each quartet of bits can be rewritten as a single digit, in base-16!

44

Hexadecimal
Hexadecimal is base-16, so we need digits for 1-15. How?

0 1 2 3 4 5 6 7 8 9 a b c d e f
10 11 12 13 14 15

45

Hexadecimal
• If it’s not clear from context, we can explicitly identify numbers as hexadecimal

by prefixing them with 0x and identify numbers as binary by prefixing with 0b.
• e.g., 0xf5 is 0b11110101

0x f 5
1111 0101

46

Hexadecimal

Hex digit 0 1 2 3 4 5 6 7
Decimal value 0 1 2 3 4 5 6 7
Binary value 0000 0001 0010 0011 0100 0101 0110 0111

Hex digit 8 9 A B C D E F
Decimal value 8 9 10 11 12 13 14 15
Binary value 1000 1001 1010 1011 1100 1101 1110 1111

47

Practice: Hexadecimal to Binary
What is 0x173A in binary?

Hexadecimal 1 7 3 A
Binary 0001 0111 0011 1010

48

Practice: Hexadecimal to Binary
What is 0b1111001010 in hexadecimal? (Hint: start from the right)

Binary 11 1100 1010
Hexadecimal 3 C A

49

Hexadecimal: Quirky but concise
• Let’s take a single byte (8 bits):

0b10100101

165

0xa5

base-10: Human-readable,
but cannot easily interpret on/off bits

base-2: Yes, computers love this,
but most humans do not.

base-16: Easy to convert to base-2,
More easily digested format
(fun fact: a half-byte is called a nibble)

50

Number Representations
• Unsigned Integers: positive integers and 0. (e.g. 0, 1, 2, … 99999…)
• Signed Integers: negative, positive integers and 0. (e.g. …-2, -1, 0, 1,… 9999…)

• Floating Point Numbers: real numbers. (e,g. 0.1, -12.2, 1.5x1012)
Look up IEEE floating point if you’re interested!

51

Number Representations

C Declaration Size (Bytes)

int 4

double 8

float 4

char 1

char * 8

short 2

long 8

52

Back When Jerry Learned C

C Declaration Size (Bytes)

int 4

double 8

float 4

char 1

char * 4

short 2

long 4

53

Transitioning To Larger Data Types

• Early 2000s: most computers were 32-bit. This means that pointers were 4
bytes (32 bits).
• 32-bit pointers store a memory address from 0 to 232 - 1, equaling 232 bytes of

addressable memory. This equals 4 gigabytes, meaning that 32-bit computers
could address at most 4GB of memory!
• Because of this, most computers now are to 64-bit. This means that data

types were enlarged; pointers in programs were now 64 bits.
• 64-bit pointers can distinguish between addresses 0 to 264 - 1, equaling 264

bytes of addressable memory. This equals 16 exabytes, meaning that 64-bit
computers could address up to 16 * 1024 * 1024 * 1024 GB of memory!

54

Unsigned Integers
• An unsigned integer is either 0 or some positive integer (no negatives).
• We have already discussed the conversion between decimal and binary.

Examples:
0b0001 = 1

0b0101 = 5
0b1011 = 11

0b1111 = 15
• The range of an unsigned number is 0 → 2w - 1, where w is the number of bits.

e.g., a 32-bit integer can represent 0 to 232 – 1 (4,294,967,295).

55

Unsigned Integers

56

Question Break

57

Signed Integers
A signed integer is a negative integer, 0, or a positive integer.
• Problem: How can we represent negative and positive numbers in binary?

Idea: let the most significant bit
represent sign and let the others

represent magnitude.

58

Sign Magnitude Representation: 4-bit

0110
positive 6

1011
negative 3

59

Sign Magnitude Representation: 4-bit

0000
positive 0

1000
negative 0

🤯

60

Sign Magnitude Representation: 4-bit

We’re only representing 15 different values via 16 different patterns.
#sadness

1 000 = -0
1 001 = -1
1 010 = -2
1 011 = -3
1 100 = -4
1 101 = -5
1 110 = -6
1 111 = -7

0 000 = 0
0 001 = 1
0 010 = 2
0 011 = 3
0 100 = 4
0 101 = 5
0 110 = 6
0 111 = 7

61

Sign Magnitude Representation
• Pro: easy to represent, and easy to convert to and from decimal.
• Con: +/-0 is 🤯
• Con: we lose a bit that could be used to represent more numbers
• Con: arithmetic is tricky: we need to find the sign, perhaps subtract (borrow

and carry, etc.), maybe change the sign, maybe not. This complicates the
hardware support for something as fundamental as addition.

Can we do better?

62

A Better Idea
Ideally, binary addition would work whether the numbers are positive or negative.

0101
????
0000
+

63

A Better Idea
Ideally, binary addition would work whether the numbers are positive or negative.

0101
1011
0000
+

64

A Better Idea
Ideally, binary addition would work whether the numbers are positive or negative.

0011
????
0000
+

65

A Better Idea
Ideally, binary addition would work whether the numbers are positive or negative.

0011
1101
0000
+

66

A Better Idea
Ideally, binary addition would work whether the numbers are positive or negative.

0000
????
0000
+

67

A Better Idea
Ideally, binary addition would work whether the numbers are positive or negative.

0000
0000
0000
+

68

There Seems To Be A Pattern

0101
1011
0000
+

0011
1101
0000
+

0000
0000
0000

+

The negative number is the positive number inverted, plus one!

69

There Seems To Be A Pattern

A binary number plus its inverse is all 1s. Add 1 to this to carry over all 1s and get 0!

0101
1010
1111
+

1111
0001
0000

+

70

Two’s Complement
• With two’s complement, we represent a

positive number as itself, and its
negative equivalent as the two’s
complement of itself.
• The two’s complement of a number is

the binary digits inverted, plus 1.
• This works to convert from positive to

negative, and back from negative to
positive!

71

History: Two’s complement
• Binary representation was first proposed by John von

Neumann in First Draft of a Report on the EDVAC
(1945).

• That same year, he also invented the merge sort algorithm

• Many early computers used
either sign-magnitude or
one’s complement.

• The System/360, developed by IBM in 1964, was
widely popular (it had 1024KB memory!) and
established two’s complement as the dominant
binary representation of integers.

EDSAC (1949)

System/360 (1964)

8-bit one’s complement

+7 0b0000 0111
-7 0b1111 1000

72

Two’s Complement
• Con: more difficult to represent, and

difficult to convert to and from decimal,
between positive and negative.
• Pro: only 1 representation for 0! 😍
• Pro: the most significant bit still indicates

the sign of a number.
• Pro: addition works for any combination

of positive and negative!

73

Two’s Complement
Adding two numbers is just that: adding! There is no special case needed for
negative numbers. e.g., what is 2 + -5?

0010
1011
1101
+

2

-5

-3

74

Two’s Complement
Subtracting two numbers is just performing the two’s complement on the
second of them and then adding instead of subtracting, e.g., 4 – 5 = -1.

0100
0101-

4

5
0100
1011
1111
+

4

-5

-1

75

Practice: Two’s Complement
What are the negative or positive equivalents of the numbers below?
a) -4 (1100)
b) 7 (0111)
c) 3 (0011)

76

Question Break

