CS107 Lecture 3

Bits and Bytes, Integer Representations, Overflow

Reading: Bryant & O’Hallaron, Ch. 2.2-2.3 (skim)
Ed Discussion: https://edstem.org/us/courses/28214/discussion/1842423

This document is copyright (C) Stanford Computer Science and Jerry Cain, licensed under Creative Commons Attribution 2.5 License. All rights reserved.
Based on slides created by Cynthia Lee, Lisa Yan, Nick Troccoli, Chris Gregg, and others.

https://edstem.org/us/courses/28214/discussion/1842423

If you exceed the maximum value of your bit representation, you wrap around
or overflow back to the smallest bit representation.

©b1111 + Obl = ©boOOO
©b1111 + Oble = 0boOO1

If you go below the minimum value of your bit representation, you wrap around
or overflow (or rather, underflow) back to the largest bit representation.

©boooo - 0bl = 0bl1ll1l
©boooO - 0blo = 0bll1le

Min and Max Integer Values

Type

Minimum

Maximum

char

-128 (SCHAR MIN)

127 (SCHAR_MAX)

unsigned char

short

0

-32768 (SHRT_MIN)

255 (UCHAR MAX)

32767 (SHRT_MAX)

unsigned short

int

0

-2147483648 (INT MIN)

65535 (USHRT_ MAX)

2147483647 (INT MAX)

unsigned int

long

0

-9223372036854775808 (LONG_MIN)

4294967295 (UINT MAX)

9223372036854775807 (LONG_MAX)

unsigned long

18446744073709551615 (ULONG_MAX)

+1

R

111...111 000...000 +1
111...110 001 «——

000...010
000...011

111...101
111...100

100...010 011...101
100...001 011...110
100...000 011...111
N

+1

At which points can overflow occur for

signed and unsigned INt? (assume binary values
shown are all 32 bits)

A. Signed and unsigned can both overflow
at points Xand Y

B. Signed can overflow only at X, unsigned
onlyatY

igned can overflow only at Y, unsigned
only at X

D. Signed can overflow at X and Y,
unsigned only at X

E. Other

Key Idea: Overflow means discontinuity

111...111 000...000
111...110 000...001
111...101 000...010

111...100 000...011

100...010 011...101
100...001 011...110
100...000 011...111

Unsigned Integers

111...111 000...000
111...110 000...001
111...101 000...010

111...100 000...011

Discontinuity
means overflow
possible here

S1oquinu 3AnISod buisealou

More increasing positive numbers

100...010 011...101
100...001 011...1
100...000 011...111

Signed Numbers

-1 0

111...111 000...000

1171...110
111...101

111...100

100. __lnnll'!'!

Negative numbers becoming less negative

(i.e. increasing)

Discontinuity
means overflow
= Baossible herg

o 011...111
o z+2 ¢
dillion

000...001
000...010

000...011

SIequinu SAISod Buiseasou|

011...101
011...110

Overflow In Practice: PSY

PSY - GANGNAM STYLE (2H:t AER2) MV

=

officialpsy

g OB Subscrve -2142584554

+ < r |‘ ,'

YouTube: "We never thought a video would be watched in numbers
greater than a 32-bit integer (up to 2,147,483,647 views), but that was
before we met PSY. 'Gangnam Style' has been viewed so many times we
had to upgrade to a 64-bit integer (9,223,372,036,854,775,808)!" [link]

"We saw this coming a couple months ago and updated our systems to
prepare for it" [link]

https://www.bbc.com/news/world-asia-30288542
https://www.theverge.com/2014/12/3/7325819/gangnam-style-broke-youtube-view-counter

Overflow In Practice: Timestamps

Many systems store timestamps as the number of seconds since Jan. 1, 1970 in
a signed 32-bit integer.

* Problem: the latest timestamp that can be represented this way is 3:14:07 UTC
on Jan. 13 2038!

Overflow in Practice:

e Pacman Level 256

* Make sure to reboot Boeing Dreamliners every 248 days

» Comair/Delta airline had to cancel thousands of flights days before Christmas

* Reported vulnerability CVE-2019-3857 in libssh2 may allow a hacker to
remotely execute code

 Donkey Kong Kill Screen

10

https://pacman.fandom.com/wiki/Map_256_Glitch
https://www.engadget.com/2015/05/01/boeing-787-dreamliner-software-bug/
https://arstechnica.com/uncategorized/2004/12/4490-2/
https://nvd.nist.gov/vuln/detail/CVE-2019-3857
http://www.donhodges.com/how_high_can_you_get.htm

* Bits and Bytes

* Hexadecimal

* Integer Representations
* Unsigned Integers

* Signed Integers

* Overflow

Lecture 3 takeaway: computers
represent everything in binary.
We must determine how to
represent our numbers (e.g.,
base-10 numbers) in a binary
format so a computer can
manipulate them. Finite
representations come with
limitations.

Next Monday: How can we manipulate individual bits and bytes?

11

Extra Practice

Practice: Two’s Complement

Fill in the below table: It’s easier to compute

base-10 for positive
numbers, so use two’s
complement first if

char x = ; char y = -x; negative.
decimal binary decimal binary
1. ©b1111 1100
2. 0booo1l 1000
3. 0bo0010 0100
4, obl1101 1111

Practice: Two’s Complement

Fill in the below table:

It’s easier to compute
base-10 for positive
numbers, so use two’s
complement first if
negative.

char x = 5 char y = -Xx;
decimal binary decimal binary
1. -4 ©0bl111 1100 4 ©boooo 0100
2. 0booo1l 1000
3. 0bo0010 0100
4, obl1101 1111

Practice: Two’s Complement

Fill in the below table:

It’s easier to compute
base-10 for positive
numbers, so use two’s
complement first if
negative.

char x = 5 char y = -Xx;
decimal binary decimal binary
1. -4 ©b1l111 1100 4 0boooo 0100
2. 24 0booO1 1000 -24 0bl110 1000
3. 36 ©0bo010 0100 -36 ©bl101 1100
4, -33 ©blilel 1111 33 0boo10 0001

15

Signed vs. Unsigned Integers

1111 0000 0001

I
1110\ /" 0010
15 0 1

-3 h : 4 3
1101 14 ynsigneg 2 o011
13 37
-4 — 1100— 19 4—0100 1 4
11
5101 -

Underspecified question

What is the following base-2 number in 0
base-107? -
0000

@bll@l 1111 0001

I
1110\ /" 0010
15 0 1

-3 N . / 3
1101 14 ynsigneg 2 o011
13 37
-4 — 1100— 19 4—0100 1 4

N
1011

Underspecified question

What is the following base-2 number in

base-107?
©bl1101
If 4-bit signed: -3
If 4-bit unsigned: 13

If >4-bit signed or unsigned: 13

You need to know the type to determine the
number! (Note by default, numeric constants
in Care signed ints)

1111 0000 0001

I
1110\ /" 0010
15 0 1

-3 b : 4 3
1101 14 ynsigneg 2 o011
13 37
-4 — 1100— 19 4—0100 4

N
1011

-8 18

* What is happening here? Assume 4-bit numbers. 0

©bl1101 111 OO|OO 0001 5
+ @b@l@@ 1110 \15 0 1/ 0010
] N /
31101 14 ynsigneg 2~ o011 °
13 37
-4 1100— 12 4—0100+ 4

* What is happening here? Assume 4-bit numbers. 0 . St
-1 S
(0%
@bll@l -2 1111 9990 ooy 2
+ 0b0100 1110 Vg (I) /" 0010
_ N 1T
3 1101 14 ynsigneg 2 oot1 3
13 37
-4 1100—12 4 —0100 4
Signed Unsigned
5
3+4=1 13 + 4 = 1 >
No overflow Overflow

-8 20

Limits and Comparisons

1. Whatis
the... Largest unsigned? Largest signed? Smallest signed?

char

int

1. Whatis
the...

Limits and Comparisons

Largest unsigned? Largest signed? Smallest signed?
char| 28 - 1 = 255 27 -1 = 127 -27 = -128
int| 232 - 1 = 231 - 1 = -2% =
4294967296 2147483647 -2147483648

These are available as
UCHAR_MAYX, INT_MIN,
INT_MAX, etc. in the
<limits.h> header.

22

