CS107, Lecture 8
C String Wrap, Buffer Overflow, Security

Reading: K&R (1.9, 5.5, Appendix B3) or Essential C section 3
Ed Discussion: https://edstem.org/us/courses/28214/discussion/1937965

This document is copyright (C) Stanford Computer Science, licensed under Creative Commons Attribution 2.5 License. All rights reserved.
Based on slides created by Cynthia Lee, Chris Gregg, Nick Troccoli, Lisa Yan, Jerry Cain and others..

https://edstem.org/us/courses/28214/discussion/1937965

Recall: Buffer Overflows

We must make sure there is enough space in the destination to hold the entire
copy, including the null-terminating character.

char str2[6]; // not enough space!
strcpy(str2, "hello, world!"); // overwrites other memory!

Writing past memory bounds is called a "buffer overflow". It can allow for
security vulnerabilities!

Recall: Buffer Overflows

char strl[14];
strcpy(strl, "hello, world!");
char str2[6];

strcpy(str2, strl); // not enough space - overwrites other memory!

str-l Ihl lel lll lll lol l,l]] IWI IOI lr\l Ill ldl I!I I\@I

Str‘z Ihl lel lll Ill IOI I,I 1 1 IWI IOI lr\l Ill Idl I!I l\@l

Buffer Overflow Impacts

Buffer overflows can be serious, as they’re capable of introducing
unpredictabilities into a program. Examples include:

* accessing memory you shouldn’t be able to access

* modifying memory you shouldn’t be modifying

* changing the value of a value that is used later in the program

* changing the program to execute your instructions instead of its own

It’s our job as programmers to find and fix buffer overflows and other bugs not
just for the functional correctness of our programs, but to protect people who
use and interact with my code from surprises.

Buffer Overflow Impacts

* AOL instant messenger buffer overflow: allowed remote attackers to execute
code:

https://www.cvedetails.com/cve/CVE-2002-0362/

* Morris Worm: first internet worm to gain widespread attention; exploited
buffer overflow in Unix command called "finger":

https://en.wikipedia.org/wiki/Morris worm

https://www.cvedetails.com/cve/CVE-2002-0362/
https://en.wikipedia.org/wiki/Morris_worm

How can we identify buffer overflows?

There’s no single solution that works for everything. Finding and repairing
overflow vulnerabilities require a combination of software development
techniques:

* vigilance while programming (scrutinizing array reads and writes, pointer arithmetic)
carefully reading documentation

thoroughly testing to identify issues before shipping product

thoroughly documenting assumptions in your code

using software tools to methodically examine code for suspicious function calls

How can we identify buffer overflow?

MAN page for gets():
char *gets(char *s);

Never use gets(). Because it is impossible to tell
without knowing the data in advance how many characters
gets() will read, and because gets() will continue to
store characters past the end of the buffer, it is
extremely dangerous to use. It has been used to break
computer security. Use fgets() instead.

How can we identify buffer overflows?

* Valgrind: your best friend for this
* Write your own tests
* Consider writing tests before writing the main program

csle7.stanford.edu/testing.html

How Can We Fix Overflows?

Documentation & MAN Pages (Written by Others)

The strcpy() function copies the string pointed to by src,
including the terminating null byte (€\@’), to the buffer pointed
to by dest. The strings may not overlap, and the destination
string dest must be large enough to receive the copy. Beware of
buffer overruns!

If the destination string of a strcpy() is not large enough, then
anything might happen. Overflowing fixed-length string buffers is
a favorite cracker technique for taking complete control of the
machine. Any time a program reads or copies data into a buffer,
the program first needs to check that there’s enough space. This
may be unnecessary if you can show that overflow is impossible,
but be careful: programs can get changed over time, in ways that
may make the impossible possible.

Memory Safe Systems Programming

Choose your Tools & Languages Carefully

Existing code bases or requirements for a project may dictate what tools you
use. Knowing C is crucial — it is and will remain widely used.

When you you are choosing tools for systems programming, consider languages
that can help guard against programmer error.

* Rust (Mozilla)
* Go (Google)
* Project Verona (Microsoft)

10

Association for Computing Machinery
Code of Ethics

ACM Code of Ethics and Professional Conduct

ACM Code of Ethics and Professional Conduct

Preamble

Computing professionals' actions change the world. To act responsibly, they should reflect upon the wider
impacts of their work, consistently supporting the public good. The ACM Code of Ethics and Professional
Conduct ("the Code") expresses the conscience of the profession.

The Code is designed to inspire and guide the ethical conduct of all computing professionals, including
current and aspiring practitioners, instructors, students, influencers, and anyone who uses computing
technology in an impactful way. Additionally, the Code serves as a basis for remediation when violations
occur. The Code includes principles formulated as statements of responsibility, based on the
understanding that the public good is always the primary consideration. Each principle is supplemented
by guidelines, which provide explanations to assist computing professionals in understanding and

On This Page

Preamble
1. GENERAL ET

1.1 Contribute
well-being, ack
are stakeholder

1.2 Avoid harm
1.3 Be honest ¢

1.4 Be fair and
discriminate.

11

ACM Code of Ethics on Security

2.9 Design and implement systems that are robustly and usably secure.

Breaches of computer security cause harm. Robust security should be a primary consideration when
designing and implementing systems. Computing professionals should perform due diligence to ensure
the system functions as intended, and take appropriate action to secure resources against accidental and
intentional misuse, modification, and denial of service. As threats can arise and change after a system is
deployed, computing professionals should integrate mitigation techniques and policies, such as
monitoring, patching, and vulnerability reporting. Computing professionals should also take steps to
ensure parties affected by data breaches are notified in a timely and clear manner, providing appropriate
guidance and remediation.

To ensure the system achieves its intended purpose, security features should be designed to be as
intuitive and easy to use as possible. Computing professionals should discourage security precautions
that are too confusing, are situationally inappropriate, or otherwise inhibit legitimate use.

In cases where misuse or harm are predictable or unavoidable, the best option may be to not implement
the system.

12

Demo: Memory Errors

* A pointer is a variable that stores a memory address.

* Because there is no pass-by-reference in C like in C++, we rely on pointers to
share the addresses of variables with other functions.

* A single pointer can identify a single byte or an arbitrarily large data structure!
* Pointers are essential to dynamic memory allocation (coming soon).

* Pointers allow us to generically identify memory (coming less soon, but still
soon).

14

Looking Back at C++

How would we write a program with a function that takes in an int and
modifies it? We might use pass by reference.

void myFunc(int& num) {
num = 3;
}

int main(int argc, char *argv[]) {
int x = 2;
myFunc(x);
printf("%d", x); // 3!

15

Looking Ahead to C

 All parameters in C are passed "by value". For efficiency reasons, arrays (and
strings, by extension) passed in as parameters are caught as pointers.

* The address itself is copied as all parameters are. But because that address is
presumably the location of data meaningful to program execution, we have
access to, and can even modify, that data.

* More generally, if we want to modify a parameter value in a function and have
any changes persist afterward the function returns, we can share the location
of the value—that is, share its address—instead of sharing the value itself. This
way we copy the address instead of the value.

16

int x = 2;

// Make a pointer that stores the address of x.
// (& means "address of")
int *xptr = &x;

// Dereference the pointer to go to that address.
// (* means "dereference")
printf("%d", *xptr); // prints 2

17

