
 1

This exam is based on the final exam given in Fall 2017. The class was taught by Julie Zelenski
and Chris Gregg. This was a 3-hour paper exam.

Problem 1: C-strings

The function substring (char *input, size_t pos, size_t len) is intended to trim input to
the sequence of characters starting at pos and continuing for len characters. If pos or len is out
of range for the input string, the behavior is undefined. The implementation below is buggy:

void buggy_substring(char *input, size_t pos, size_t len)
{
 input += pos;
 input[len] = '\0';
}

You write a program to test the function:

int main(int argc, char *argv[])
{
 char name[16];
 strcpy(name, "Tessier-Lavigne");
 buggy_substring(name, 3, 2);
 printf("%s\n", name);
 return 0;
}

1a) The above test program is intended to print "si". What is printed instead?

1b) You change the prototype of substring to take the input string by reference. Implement the
body of the function so that it works correctly and is compatible with the new prototype.

void substring(char **p_input, size_t pos, size_t len)
{

1c) Complete the program started below to test the substring function. Compute the substring
of name starting at position 3 of length 2 and print it.

int main(int argc, char *argv[])
{
 char name[16];
 strcpy(name, "Tessier-Lavigne");

 2

Problem 2: Generics
2a) The function extract_min extracts the smallest element from a generic array according to a
comparison function. The client supplies an address as the first argument; the smallest element is
written to this address and that element is removed from the array. As an example, extract_min
on the array {8, 5, 19, 11} with ordinary integer comparison writes 5 to the client's address,
changes the array contents to {8, 19, 11}, and decrements the number of elements from 4 to 3.
The order of the remaining array elements is preserved and the array's storage is not resized.
Assume the array has at least one element.

The provided find_min function returns a pointer to the smallest element in a generic array. The
use of find_min below is correct and you can assume find_min is correctly implemented.
Complete the implementation of extract_min below.

void extract_min(void *addr, void *base, size_t *p_nelems, size_t width,
 int (*cmp)(const void *, const void *))
{
 void *min = find_min(base, *p_nelems, width, cmp);

2b) Complete the shortest function to remove the shortest string from an array of words and
return it. If two strings tie for shortest, either choice is fine. You must fill in the blank line in
shortest with a single call to extract_min and can assume the function works correctly. You
will also need to write the comparison function.

int cmp_len(const void *p, const void *q)
{
 __;
}

char *shortest(char *words[], size_t *p_nwords)
{
 char *min;
 __;
 return min;
}

 3

Problem 3: Floating point

A normalized IEEE 32-bit float is stored as the following bit pattern:

N EEEEEEEE SSSSSSSSSSSSSSSSSSSSSSS

where N is the sign bit (1 if negative), E is the 8-bit exponent (with a bias of 127), and S is the
23-bit significand, with an implicit leading "1."

3a) Given the following 32-bit float binary, what is the corresponding (simplified) decimal
number that it represents?

1 10000001 00100000000000000000000

3b) What is the output of the following code?

float val = 1.5;
printf("%g\n", val);

val = val * FLT_MAX;
printf("%g\n", val);

val = 0.0;
printf("%g\n", val / val);

float a = 1.234e20;
float b = a + 100;
printf("a == b? %s\n", (a == b) ? "true" : "false");

 4

Problem 4: x86 Assembly

Below is the assembly generated for the pinky function. It was compiled –Og (mild level of
optimization) and the compiler applied a strength reduction optimization when generating
assembly for the final line of the function.

pinky:
 push %rbx
 sub $0x10,%rsp
 mov %rsi,%rbx
 movq $0x0,0x8(%rsp)
 mov $0x10,%edx
 lea 0x8(%rsp),%rsi
 callq <strtol>
 mov %eax,%edx
 lea -0x7(%rax),%ecx
 cmp $0xc,%ecx
 jle .L1
 add 0xc(%rbx),%edx
.L1:
 lea 0x3(%rdx),%eax
 test %edx,%edx
 cmovns %edx,%eax
 sar $0x2,%eax
 add $0x10,%rsp
 pop %rbx
 retq

4a) Fill in the blanks in the C code below to match the assembly above. There should be no
typecasts. Note this is nonsense code, not intended to do anything at all meaningful.

int pinky(char *param1, int *param2)
{
 char *str = NULL;

 int local = __;

 if (__)

 {

 __;

 }

 __;
}

4b) What is a strength reduction optimization and how is it applied here?

 5

4c) For many operations, the same assembly instruction, e.g. add, can be used for either signed or
unsigned values, but this is not true for all operations. The declaration of local is changed to
unsigned int and pinky is recompiled. Consider the five lines of C in the pinky function.
Three of the lines generate the exact same sequence of assembly instructions as before; two do
not. Identify which two lines generate different assembly and describe how the assembly
changed.

 6

Problem 5: Runtime stack

The function concat is a poorly-coded attempt at concatenation. Not only does it declare the
result array with an arbitrary small size, it returns the address of that stack-allocated array.
Review the C source below on the left and the generated assembly on the right.

char *concat(const char *s, const char *t)
{
 char buffer[10];
 char *result = buffer;

 strcpy(result, s);
 strcat(result, t);
 return result;
}

concat:
 push %rbx
 sub $0x10,%rsp
 mov %rsi,%rbx
 mov %rdi,%rsi
 mov %rsp,%rdi
 callq <strcpy>
 mov %rbx,%rsi
 mov %rsp,%rdi
 callq <strcat>
 mov %rsp,%rax
 add $0x10,%rsp
 pop %rbx
 retq

int main(int argc, char *argv[])
{
 char *title = concat(argv[1], argv[2]);
 printf("%s\n", title);
 return 0;
}

main:
 sub $0x8,%rsp
 mov %rsi,%rax
 mov 0x10(%rsi),%rsi
 mov 0x8(%rax),%rdi
 callq <concat>
 mov %rax,%rsi
 mov $0x401850,%edi
 mov $0x0,%eax
 callq <printf>
 mov $0x0,%eax
 add $0x8,%rsp
 retq

5a) Running ./program LelandStanfordJunior University crashes during execution. Circle the
assembly instruction at which the crash occurs and explain why this instruction fails to execute.

5b) Seeing the array is too small, the implementer enlarges the size of the buffer declared
within concat to:

char buffer[4096];

After this change, running ./program LelandStanfordJunior University now prints
LelandStanfordJuniorUniversity. Explain why the program appears to work correctly despite
the fact that concat returns the address of a stack-allocated array.

 7

5c) Not wanting to squander memory, they then change the declaration of buffer to the proper
size:

char buffer[strlen(s) + strlen(t) + 1];

After this change, ./program LelandStanfordJunior University now prints garbage. Explain
how the change in sizing the array leads to this change in behavior.

5d) They decide to add the compiler flag -fstack-protector to see if that will change anything.
This flag tells GCC to add instructions at the start of each function to write something called a
canary value on the stack. This is an arbitrary constant value written directly below the saved
registers and above any local variables. GCC also adds instructions at the end of each function
to check the integrity of this canary value, and if it has changed, terminate the program with the
error message “stack smashing detected”, as it knows that some previous instructions improperly
wrote to that memory area.

Thus, they recompile the three program versions (too-small array, too-large array, right-sized
array) with the -fstack-protector flag and execute each as ./program LelandStanfordJunior
University. Only one of the versions has any noticeable change when executing. Explain which
version behaves differently and why.

 8

Problem 6: Heap allocator

You are writing code for an allocator that uses a block header and maintains an explicit free list.
Implementation details of this allocator include:

• All requests are rounded up to a multiple of 8-bytes and all returned pointers are aligned
to 8-byte boundaries. The minimum payload size is 8 bytes.

• The header is an unsigned long (8 bytes) that bit-mashes together the block information:
▸ most significant bit is 1 if block is in-use, 0 if free
▸ lower 63 bits store the payload size, expressed as count of 8-byte words

• The allocator maintains an explicit free list as a singly-linked list stored in the payload. A
global variable points to the payload of a free block (or NULL if no free blocks). The
first 8 payload bytes of each free block store a pointer to the payload of another free
block. The last free block on the list stores NULL in its payload.

Here is an example heap after a few requests have been serviced:

This segment starts at address 0x7000 and ends at 0x7088. Three blocks are in-use, two are free.
The in-use payloads are shown shaded in gray. The first header has the most significant bit on
(block is in-use) and the lower bits store 2 (size of payload is 2 words = 16 bytes). The
free_list points to the payload at 0x7080, the payload at 0x7080 stores a pointer to the payload
at 0x7040, and the payload at 0x7040 stores NULL.

Below are the allocator’s global variables, constants, and type definitions.

// define Header type that is actually unsigned long
typedef unsigned long Header;
#define HDRSIZE sizeof(Header)

// mask to extract used bit from header
#define USED 0x8000000000000000

// remaining header bits store payload size as count of 8-byte words
#define NWORDS 0x7fffffffffffffff

static void *segment_start; // base address of heap segment
static void *segment_end; // end address of heap segment
static void *free_list; // pointer to payload of first free block
 // (NULL if no free blocks)

 9

6a) The USED and NWORDS bitmasks isolate the most significant bit from the lower bits. A code
reviewer is displeased with defining these as fixed constants and instead recommends building
the masks by construction. Your first attempt to follow their recommendation is shown below.

#define USED (1U << (HDRSIZE*8 - 1))
#define NWORDS -(USED)

Your approach is correct but the details are a little off. You examine the mask values in GDB
and see that both are zero -- oops! Rewrite the two mask definitions below, correcting where
they have gone astray. Only one character needs to be edited in each definition.

6b) The is_used function is given a pointer to a block’s header and returns true if the block is
in- use, false otherwise. Complete the function by filling the blank with the correct expression.

bool is_used(Header *hdr)
{
 return __;
}

6c) Implement get_neighbor. Given a pointer to a block’s header, it returns a pointer to the
header of the neighbor to the right, i.e., at the next higher address in the heap. If hdr has no right
neighbor (i.e., it is the rightmost block in the heap segment), the function returns NULL.

Header *get_neighbor(Header *hdr)
{

The function remove_from_freelist is given a pointer to a free payload. It searches the free list
for that entry and removes it from the list. An implementation is started below. The two blanks in
the code will be completed when answering parts d-g.

void remove_from_freelist(void *to_remove)
{
 void **prev = NULL;

 for (prev = __________; prev != NULL; memcpy(&prev, prev, sizeof(prev))) {

 if (*prev == to_remove) break;
 }

 __;

}

 10

6d) The loop initialization is missing the expression to be assigned to prev. Circle the correct
expression from the choices below:

to_remove &to_remove &prev

free_list &free_list *free_list

6e) The function should only be called with a pointer that is on the free list. Given this constraint,
the loop test prev != NULL can be removed entirely. Approximately how many fewer
instructions are executed during a call to remove_from_freelist as a result of this change?
Express your answer in Big-O notation in terms of the length of the freelist, N (e.g. O(logN)
would mean the reduction in instructions executed is proportional to logN).

6f) The memcpy call in the loop increment expression is correct, but slow. Rewrite the increment
expression below to achieve an equivalent effect, but efficiently, with no use of memcpy.

6g) The function is missing the splice operation. Complete the function by filling in the blank
line at the end of the function with a statement to correctly take to_remove out of the free list.

To add resize-in-place to myrealloc, you are writing the expand_right helper. The function is
given a pointer to a header and the number of additional bytes needed. If the right neighbor is
unavailable or too small, the function makes no changes and returns false. Otherwise, it absorbs
the right neighbor into the current block, updates all heap data structures, and returns true. The
function does not split any excess, nor does it attempt to expand beyond the first neighbor. The
implementation of expand_right is started below and will be completed in parts h-i.

bool expand_right(Header *cur, size_t nbytes)
{
 Header *neighbor = get_neighbor(cur);
 if (neighbor == NULL || is_used(neighbor) || (*neighbor + 1) < nbytes) {
 return false;
 } else {

 return true;
 }
}

6h) The expression (*neighbor + 1) < nbytes is supposed to reject the neighbor if it is too
small for the requested increase, but the test condition does not work as intended. Identify the
problem and describe the observed consequence when testing the flawed code.

 11

6i) Assume the issue above is resolved. Now complete the implementation of expand_right by
writing the code to add into the boxed area so that the function works correctly. You should call
remove_from_freelist and can assume it works correctly.

6j) You consider adding expand_left to absorb the left neighbor but decide against it. Explain
why expanding left cannot be efficiently implemented in the current design and furthermore why
expanding left will not provide the same benefit to myrealloc as expand right.

