
Monday, January 9, 2023

Computer Systems

Winter 2023

Stanford University 

Computer Science Department


Lecturer: Chris Gregg


Reading: Course reader: Introduction, Number 
Formats used in CS 107, Bits and Bytes


CS 107 
Lecture 1: 
Welcome

(gdb) disassemble main
Dump of assembler code for function main:
   0x000000000040052d <+0>:    push   %rbp
   0x000000000040052e <+1>:    mov    %rsp,%rbp
   0x0000000000400531 <+4>:    mov    $0x4005d4,%edi
   0x0000000000400536 <+9>:    callq  0x400410 <puts@plt>
   0x000000000040053b <+14>: mov    $0x0,%eax
   0x0000000000400540 <+19>: pop    %rbp
   0x0000000000400541 <+20>: retq
End of assembler dump.
(gdb)

#include<stdio.h>
#include<stdlib.h>

int main() {
    printf("Hello, World!\n");
    return 0;
}



Today's Topics

• What is CS107? 
• Who We Are 
• Course Components and Overview 
• The C Language 
• Logistics 

• Exams 
• Labs 
• Assignment 0 
• Lab Signup 

• Bits and Bytes 
• 0b10100 Questions



What is CS107?
 The CS106 series teaches you how to solve 
problems as a programmer 
 Many times CS106 instructors had to say “just don’t 
worry about that” or “it probably doesn’t make sense why 
that happens, but ignore it for now” or “just type this to 
fix it” 
 CS107 finally takes you behind the scenes  
How do things really work in there? 
  ›  It’s not quite down to hardware or physics/

electromagnetism (those will have to stay even further 
behind the scenes for now!)  

  ›  It’s how things work inside Python/C++ (we will 
explore from C), and how your programs map onto 
the components of computer systems  



CS107 Learning Goals
 The goals for CS107 are for students to gain mastery of 
  ›  writing C programs with complex use of memory and pointers  

  ›  an accurate model of the address space and compile/runtime 
behavior of C programs  

 to achieve competence in 

  ›  translating C to/from assembly  

  ›  writing programs that respect the limitations of computer arithmetic  

  ›  identifying bottlenecks and improving runtime performance  

  ›  writing code that correctly ports to other architectures  

  ›  working effectively in UNIX development environment  
 and have exposure to

› a working understanding of the basics of computer architecture 



Who We Are: Chris

Chris Gregg 
cgregg@stanford.edu

mailto:cgregg@stanford.edu


Who We Are: CAs

Frankie Cerkvenik 
(CS107A)

Daniel Rebelsky Christine Cheng

Megan Worrel

Jagriti Dixit

Tori Qiu

Jerry Chen

Eva Betelaan

Aman Kansal
Derek Chung

Alex Bradfield



Course Components and Overview
Textbook: Bryant and O’Hallaron, 3rd Edition 

You must get the 3rd Edition, as things have 
significantly changed since the previous editions.

 The suggested C reference is just one 
suggestion 
  ›  You could do just as well with a different C 

book  

  ›  You could do just as well with Google or 
websites like http://www.cplusplus.com/
reference/clibrary/   

  ›  Just need somewhere to turn when you 
have a question about C 

http://www.cplusplus.com/reference/clibrary/
http://www.cplusplus.com/reference/clibrary/


Course Components and Overview
There is a course reader, which condenses much 

of the material for the course: 

https://stanford.edu/~cgregg/cgi-bin/107-reader   

• If you find typos, let me know!

C H R I S G R E G G

C S 1 0 7 R E A D E R

S TA N F O R D C O M P U T E R S C I E N C E D E PA R T M E N T

https://stanford.edu/~cgregg/cgi-bin/107-reader


Course Components and Overview

Week Topics
1 Admin, UNIX environment, Integer representation
2 Bits/bitwise ops, computer arithmetic, C pointers/arrays
3 C-strings, C stdlib, dynamic allocation
4 C generics, void *, function pointers
5 Floating point representation, intro to assembly
6 x86-64: addressing, ALU ops  Midterm: Wed Feb 15th, Evening
7 x86-64: control, function calls, runtime stack
8 Address space, dynamic memory management
9 Performance / Optimization

10 Advanced topics, wrap/review
11 Final:  Friday Mar 24th 8:30AM-11:30AM



The C Language



The C Language: History and Background
 Birthdate around 1970 
 Created to make writing Unix (the OS itself) and tools for Unix easier  
 Part of the C/C++/Java family of languages 

› (with C++ and Java coming later)  
 Design principles: 

› Small,simple abstractions of hardware 
› Minimalist aesthetic 
› C is much more concerned with efficiency and minimalism than safety 
(Java/Python) or convenient high-level services and abstractions (Java, 
Python, C++) 



The C Language: Comparison of C and C++
 Some things will be very familiar: 
  ›  Syntax 

  ›  Basic data types 
  ›  Arithmetic, relational, and logical operators 

  You may be sad about what’s missing: 
  ›  No power features of C++ (overloading operators, default arguments, pass by reference, 

classes/objects, fancy ADTs) 
  ›  Thin standard libraries (no graphics, networking, etc) 
  ›  Weak compiler checks, almost no runtime checks  
 Benefits: 

› Small language footprint (not much to learn) 
 Philosophical difference: 
  ›  Procedural (C) 
  ›  Procedural + Objects (C++)  



The C Language: Hello, World! Compiling, gdb

Also: command line arguments and boolean values



Logistics
See the Course Handout for details (link) 

Web site: https://cs107.stanford.edu  

Class time: 11:30AM-1PM, M/F, Online (first two weeks), Bishop 
Auditorium (weeks 3-10, hopefully) 

Labs: Various Times Tu/We/Th 

Exams: Midterm, Wednesday, February 15th, Time TBD (evening) 
            Final Exam: Friday, March 24th, 8:30am-11:30am 

            (Note: there are no alternate final exam times) 

https://cs107.stanford.edu


Assignment 0: Unix!

Assignment page: https://web.stanford.edu/class/cs107/assign0/  

Six parts: 
1. Read / View Unix Overview Documents / Videos 
2. "Clone" Assignment 0 starter code 
3. Answer Questions in readme.txt
4. Honor Code Quiz 
5. Run make to compile a program, and make minor modifications 
6. Submit the assignment

Assignment already released, due Monday, 1/16

https://web.stanford.edu/class/cs107/assign0/


Lab Signup
Online: 

https://cs107.stanford.edu/labs 

The signup will be available Tuesday, January 10, 10:00am.   

Labs will be weekly, starting during week 2. 

Lab signup will not be first-come, first-served (you'll put in 
preferences), and the labs are held on Wednesdays, Thursdays

https://cs107.stanford.edu/labs


Bits and Bytes Introduction

0



Bits and Bytes Introduction

1



Computers are good at detecting "off" or "on"
We have lots of ways to tell the difference between two different states:

Clockwise / Counterclockwise

Lightbulb off / on

Punchcard hole / no hole



Computers are good at detecting "off" or "on"
Electronic computers are built using transistors

A transistor can be set up to 
either be "off" or "on" -- this 
gives us our 0 and 1!



One bit doesn't do much for us!
•We call a single on/off representation a 'bit'.  
•But having one bit isn't particularly helpful!  
•We only have two states we can represent with one bit!  

•If we want more states, we simply combine bits together, much like we do with 
base 10 representation.  

•If we want to combine more than ten states with base 10, we add another digit.

•Base 10 has ten digits: 0 1 2 3 4 5 6 7 8 9 
•We can represent up to ten numbers with one digit in base 10 
•If we want to represent more numbers, we add more digits: 10 11 12 13 14 ... 

•Base 2 is the same. We can represent two numbers with one digit: 0 or 1 
•To represent more numbers, we add more digits! 10 11 100 101 110 ...



Combinations of bits can represent everything

We can encode anything 
we want with bits. E.g., the 
ASCII character set. 



CS107: Three Number Representations

Unsigned Integers: positive integers and zero only 
Ex. 0, 1, 2, ..., 74629, 99999999

Signed Integers: negative, positive, and zero integers only 
Ex. 0, 1, 2, ..., 74629, 99999999 
(represented in "two's complement")

Floating Point Numbers: a base-2 representation of 
scientific notation, for real numbers 
Ex. 0.0, 0.1, -12.2, 4.87563 x 103, -1.00005 x 10-12



Computers use a limited number of bits for numbers

Let's write a little program...



Computers use a limited number of bits for numbers
#include<stdio.h>
#include<stdlib.h>

int main() {
    int a = 200;
    int b = 300;
    int c = 400;
    int d = 500;

    int answer = a * b * c * d;
    printf("%d\n",answer);
    return 0;
}

$ gcc -g -O0 mult-test.c -o mult-test
$ ./mult-test
-884901888
$



Computers use a limited number of bits for numbers
#include<stdio.h>
#include<stdlib.h>

int main() {
    int a = 200;
    int b = 300;
    int c = 400;
    int d = 500;

    int answer = a * b * c * d;
    printf("%d\n",answer);
    return 0;
}

Recall that in base 10, you can represent: 10 
numbers with one digit (0 - 9),  
100 numbers with two digits (00 - 99),  
1000 numbers with three digits (000 - 999) 

I.e., with n digits, you can represent up to  10n 
numbers.

In base 2, you can represent: 
2 numbers with one digit (0 - 1) 
4 numbers with two digits (00 - 11) 
8 numbers with three digits (000 - 111) 

I.e., with n digits, you can represent up to 2n 
numbers

The C int type is a "32-bit" number, meaning it uses 32 digits. That 
means we can represent up to 232 numbers.



Computers use a limited number of bits for numbers
#include<stdio.h>
#include<stdlib.h>

int main() {
    int a = 200;
    int b = 300;
    int c = 400;
    int d = 500;

    int answer = a * b * c * d;
    printf("%d\n",answer);
    return 0;
}

            232        =  4,294,967,296

$ gcc -g -O0 mult-test.c -o mult-
test
$ ./mult-test
-884901888
$

200 * 300 * 400 * 500 = 12,000,000,000

Turns out it is worse -- ints are signed, 
meaning that the largest positive number is  

(232 / 2) - 1 = 
231 - 1 = 2,147,483,647



Computers use a limited number of bits for numbers
#include<stdio.h>
#include<stdlib.h>

int main() {
    int a = 200;
    int b = 300;
    int c = 400;
    int d = 500;

    int answer = a * b * c * d;
    printf("%d\n",answer);
    return 0;
}

$ gcc -g -O0 mult-test.c -o mult-
test
$ ./mult-test
-884901888
$

The good news: all of the following produce 
the same (wrong) answer: 

(500 * 400) * (300 * 200)
((500 * 400) * 300) * 200
((200 * 500) * 300) * 400
400 * (200 * (300 * 500))



Let's look at a different program
#include<stdio.h>
#include<stdlib.h>

int main() {
    float a = 3.14;
    float b = 1e20;

    printf("(3.14 + 1e20) - 1e20 = %f\n", (a + b) - b);
    printf("3.14 + (1e20 - 1e20) = %f\n", a + (b - b));

    return 0;
}

$ gcc -g -Og -std=gnu99 float-mult-
test.c -o float-mult-test

$ ./float-mult-test.c
(3.14 + 1e20) - 1e20 = 0.000000
3.14 + (1e20 - 1e20) = 3.140000
$

bigger problem!



Let's look at a different program

$ gcc -g -Og -std=gnu99 float-mult-
test.c -o float-mult-test

$ ./float-mult-test.c
(3.14 + 1e20) - 1e20 = 0.000000
3.14 + (1e20 - 1e20) = 3.140000
$

$ gcc -g -O0 mult-test.c -o mult-
test
$ ./mult-test
-884901888
$

Both C and C++ have specific 
representations of numbers that 
allow for these kinds of bugs. 



Information Storage



Information Storage

In C, everything can be thought of as a block of 8 bits



Information Storage

In C, everything can be thought of as a block of 8 bits 
called a "byte"



Information Storage
We will discuss manipulating bytes on a bit-by-bit level, but we won't be able 
to consider an individual bit on its own. 

In a computer, the memory system is simply a large array of bytes (sound 
familiar, from CS106B?)

7 2 8 3 14 99 -6 3 45 11
200d 204d 208d 212d 216d 220d 224d 228d 232d 236d
0xc8 0xcc 0xd0 0xd4 0xd8 0xdc 0xe0 0xe4 0xe8 0xec

values (ints): 
address (decimal): 

address (hex):

Each address (a pointer!) represents the next byte in memory. 

E.g., address 0 is a byte, then address 1 is the next full byte, etc. 

Again: you can't address a bit. You must address at the byte level.



Byte Range
Because a byte is made up of 8 bits, we can represent the range of a byte as 
follows: 

00000000 to 11111111


This range is 0 to 255 in decimal. 

But, neither binary nor decimal is particularly convenient to write out bytes 
(binary is too long, and decimal isn't numerically friendly for byte 
representation) 

So, we use "hexadecimal," (base 16).



Hexadecimal
Hexadecimal has 16 digits, so we augment our normal 0-9 digits with six 
more digits: A, B, C, D, E, and F. 

Figure 2.2 in the textbook shows the hex digits and their binary and decimal 
values:



Hexadecimal
• In C, we write a hexadecimal with a starting 0x. So, you will see numbers 

such as 0xfa1d37b, which means that it is a hex number. 
• You should memorize the binary representations for each hex digit. One 

trick is to memorize A (1010), C (1100), and F (1111), and the others are 
easy to figure out. 

• Let's practice some hex to binary and binary to hex conversions: 

Convert: 0x173A4C to binary.

0x173A4C is binary  
0b000101110011101001001100



Hexadecimal
Convert: 0b1111001010110110110011 to hexadecimal.

0b1111001010110110110011  
is hexadecimal 3CADB3

(start from the right)



Hexadecimal
Convert: 0b1111001010110110110011 to hexadecimal.

0b1111001010110110110011  
is hexadecimal 3CADB3

(start from the right)



Hexadecimal
Convert: 0b1111001010110110110011 to hexadecimal.

0b1111001010110110110011  
is hexadecimal 3CADB3

(start from the right)



Hexadecimal
Convert: 0b1111001010110110110011 to hexadecimal.

0b1111001010110110110011  
is hexadecimal 3CADB3

(start from the right)



Hexadecimal
Convert: 0b1111001010110110110011 to hexadecimal.

0b1111001010110110110011  
is hexadecimal 3CADB3

(start from the right)



Hexadecimal
Convert: 0b1111001010110110110011 to hexadecimal.

0b1111001010110110110011  
is hexadecimal 3CADB3

(start from the right)



Hexadecimal
Convert: 0b1111001010110110110011 to hexadecimal.

0b1111001010110110110011  
is hexadecimal 3CADB3

(start from the right)



Decimal to Hexadecimal
To convert from decimal to hexadecimal, you need to repeatedly divide 

  the number in question by 16, and the remainders make up the digits of 
  the hex number:



Hexidecimal to Decimal

To convert from hexadecimal to decimal, multiply each of the hexadecimal 
digits by the appropriate power of 16:



Let the computer do it!
Honestly, hex to decimal and vice versa are easy to let the computer 
handle. You can either use a search engine (Google does this 
automatically), or you can use a python one-liner:



Let the computer do it!

You can also use Python to convert to and from binary:

(but you should memorize this as it is easy and you will use it frequently)



20 Questions for Chris

In the last few minutes of class, you get to ask me 20 
questions 
• The questions can be about the class, about me, about 

computing, about philosophy, etc. 
• I do reserve the right to not answer something too 

personal. :) 

Code: 



References and Advanced Reading

•References: 
•Tiobe Programming Index: https://www.tiobe.com/tiobe-index/  
•The C Language: https://en.wikipedia.org/wiki/C_(programming_language)  
•Kernighan and Ritchie (K&R) C: https://www.youtube.com/watch?v=de2Hsvxaf8M  
•C Standard Library: http://www.cplusplus.com/reference/clibrary/  

•Advanced Reading: 
•After All These Years, the World is Still Powered by C Programming 
•Is C Still Relevant in the 21st Century? 
•Why Every Programmer Should Learn C

https://www.tiobe.com/tiobe-index/
https://en.wikipedia.org/wiki/C_(programming_language)
https://www.youtube.com/watch?v=de2Hsvxaf8M
http://www.cplusplus.com/reference/clibrary/
https://www.toptal.com/c/after-all-these-years-the-world-is-still-powered-by-c-programming
http://insights.dice.com/2014/12/08/c-still-relevant-21st-century/
https://www.pluralsight.com/blog/software-development/why-every-programmer-should-learn-c

