
Friday, January 13, 2023

Computer Systems

Winter 2023

Stanford University

Computer Science Department

Reading: Reader: Bits and Bytes, Textbook: Chapter
2.2

Lecturer: Chris Gregg

CS 107

Lecture 2: Integer

Representations and
Bits / Bytes

Today's Topics
• Logistics

• Assign0 — Due Monday

• Labs start Wednesday

• Office hours in full coverage

• Reading: Reader: Bits and Bytes, Textbook: Chapter 2.2 (very mathy…)

• Integer Representations

• Unsigned numbers

• Signed numbers

• two's complement

• Signed vs Unsigned numbers

• Casting in C

• Signed and unsigned comparisons

• The sizeof operator

• Min and Max integer values

• Truncating integers

• two's complement overflow

Today's Topics

• More on extending the bit representation of numbers

• Truncating numbers

• Data Sizes

• Addressing and Byte Ordering

• Boolean Algebra

Integer Representations

Integer Representations

The C language has two different ways to represent numbers, unsigned and signed:

unsigned: can only represent non-negative numbers

signed: can represent negative, zero, and positive numbers

We are going to talk about these representations, and also about what happens
when we expand or shrink an encoded integer to fit into a different type (e.g., int to
long)

Unsigned Integers
For positive (unsigned) integers, there is a 1-to-1 relationship between the decimal
representation of a number and its binary representation. If you have a 4-bit
number, there are 16 possible combinations, and the unsigned numbers go from 0
to 15:

0b0000 = 0 0b0001 = 1 0b0010 = 2 0b0011 = 3
0b0100 = 4 0b0101 = 5 0b0110 = 6 0b0111 = 7
0b1000 = 8 0b1001 = 9 0b1010 = 10 0b1011 = 11
0b1100 = 12 0b1101 = 13 0b1110 = 14 0b1111 = 15

The range of an unsigned number is 0 → 2w - 1, where w is the number of bits in
our integer. For example, a 32-bit int can represent numbers from 0 to 232 - 1,
or 0 to 4,294,967,295.

Signed Integers: How do we represent them?
What if we want to represent negative numbers? We have choices!

One way we could encode a negative number is simply to designate some bit as a
"sign" bit, and then interpret the rest of the number as a regular binary number and
then apply the sign. For instance, for a four-bit number:

0 001 = 1

0 010 = 2

0 011 = 3

0 100 = 4

0 101 = 5

0 110 = 6

0 111 = 7

1 001 = -1

1 010 = -2

1 011 = -3

1 100 = -4

1 101 = -5

1 110 = -6

1 111 = -7

This might be okay...but we've only represented 14 of our 16 available numbers...

Signed Integers: How do we represent them?
0 001 = 1

0 010 = 2

0 011 = 3

0 100 = 4

0 101 = 5

0 110 = 6

0 111 = 7

1 001 = -1

1 010 = -2

1 011 = -3

1 100 = -4

1 101 = -5

1 110 = -6

1 111 = -7

What about 0 000 and 1 000? What should
they represent?

Well...this is a bit tricky!

Signed Integers: How do we represent them?
0 001 = 1

0 010 = 2

0 011 = 3

0 100 = 4

0 101 = 5

0 110 = 6

0 111 = 7

1 001 = -1

1 010 = -2

1 011 = -3

1 100 = -4

1 101 = -5

1 110 = -6

1 111 = -7 0 000 1 000Let's look at the bit patterns:

What about 0 000 and 1 000? What should
they represent?

Well...this is a bit tricky!

Should we make the 0 000 just represent decimal 0? What about 1 000? We
could make it 0 as well, or maybe -8, or maybe even 8, but none of the choices
are nice.

Signed Integers: How do we represent them?
0 001 = 1

0 010 = 2

0 011 = 3

0 100 = 4

0 101 = 5

0 110 = 6

0 111 = 7

1 001 = -1

1 010 = -2

1 011 = -3

1 100 = -4

1 101 = -5

1 110 = -6

1 111 = -7 0 000 1 000Let's look at the bit patterns:

Should we make the 0 000 just represent decimal 0? What about 1 000? We
could make it 0 as well, or maybe -8, or maybe even 8, but none of the choices
are nice.

What about 0 000 and 1 000? What should
they represent?

Well...this is a bit tricky!

Fine. Let's just make 0 000 to be equal to decimal 0. How does arithmetic work?

Well…to add two numbers, you need to know the sign, then you might have to
subtract (borrow and carry, etc.), and the sign might change…this is going to get
ugly!

Signed Integers: How do we represent them?

There is a better way!

Signed Integers: How do we represent them?
Behold: the "two's complement" circle:

In the early days of computing*, two's
complement was determined to be an
excellent way to store binary numbers.

In two's complement notation, positive
numbers are represented as themselves
(phew), and negative numbers are
represented as the two's complement of
themselves (definition to follow).

This leads to some amazing arithmetic
properties!

*John von Neumann suggested it in 1945, for the EDVAC computer.

Two's Complement

In practice, a negative number in two's complement is obtained by
inverting all the bits of its positive counterpart*, and then adding 1.
*Inverting all the bits of a number is its "one's complement"

Definition:

A two's-complement number system encodes positive
and negative numbers in a binary number representation.
The weight of each bit is a power of two, except for the
most significant bit, whose weight is the negative of the
corresponding power of two.

B2Tw means "Binary to Two's complement function"

Two's Complement
In practice, a negative number in two's
complement is obtained by inverting all
the bits of its positive counterpart*, and
then adding 1, or: x = ~x + 1

*Inverting all the bits of a number is its "one's complement"

Example: The number 2 is represented as normal in
binary: 0010

-2 is represented by inverting the bits, and adding 1:

0010 ☞ 1101

 1101

+ 1

 1110

Two's Complement
Trick: to convert a positive number to its
negative in two's complement, start
from the right of the number, and write
down all the digits until you get to a 1.
Then invert the rest of the digits:

*Inverting all the bits of a number is its "one's complement"

Example: The number 2 is represented as normal in
binary: 0010

Going from the right, write down numbers until you
get to a 1:

 10

Then invert the rest of the digits:

1110

Two's Complement
To convert a negative number to a
positive number, perform the same
steps!

Example: The number -5 is represented in two's
complements as: 1011

5 is represented by inverting the bits, and adding 1:

1011 ☞ 0100

 0100

+ 1

 0101

Shortcut: start from the right, and write down
numbers until you get to a 1:

 1

Now invert all the rest of the digits:

0101

Two's Complement: Neat Properties
There are a number of useful properties
associated with two's complement
numbers:

1. There is only one zero (yay!)

2. The highest order bit (left-most) is 1

for negative, 0 for positive (so it is
easy to tell if a number is negative)

3. Adding two numbers is just…adding!

Example:

2 + -5 = -3

 0010 ☞ 2

+1011 ☞ -5

 1101 ☞ -3 decimal (wow!)

Two's Complement: Neat Properties
More useful properties:

4. Subtracting two numbers is simply
performing the two's complement on
one of them and then adding.

Example:

4 - 5 = -1

0100 ☞ 4, 0101 ☞ 5

Find the two's complement of 5: 1011

add:

 0100 ☞ 4

+1011 ☞ -5

 1111 ☞ -1 decimal

Two's Complement: Neat Properties
More useful properties:

5. Multiplication of two's complement
works just by multiplying (throw away
overflow digits).

Example: -2 * -3 = 6

 1110 ☞ -2

 x1101 ☞ -3

 1110

 0000

 1110

 +1110

 10110110 ☞ 6

Two's Complement: Powers of two remain!

From the definition of a two's complement
number, we can see that we are still
dealing with bits being equal to their
powers-of-two place: there isn't anything
magical about the placement of the bits:

-5 = 1 0 1 1

 (1 * -23) + (0 * 22) + (1 * 21) + (1 * 20)

Practice
Convert the following 4-bit numbers
from positive to negative, or from
negative to positive using two's
complement notation:

a. -4 (1100) ☞

b. 7 (0111) ☞

c. 3 (0011) ☞

d. -8 (1000) ☞

Practice
Convert the following 4-bit numbers
from positive to negative, or from
negative to positive using two's
complement notation:

a. -4 (1100) ☞

b. 7 (0111) ☞

c. 3 (0011) ☞

d. -8 (1000) ☞

0100

1001

1101

 1000 (?! If you look at
the chart, +8 cannot be represented
in two's complement with 4 bits!)

Practice
Convert the following 8-bit numbers
from positive to negative, or from
negative to positive using two's
complement notation:

a. -4 (11111100) ☞

b. 27 (00011011) ☞

c. -127 (10000001) ☞

d. 1 (00000001) ☞

00000100

11100101

01111111

11111111

Casting Between Signed and Unsigned
Converting between two numbers in C can happen explicitly (using a
parenthesized cast), or implicitly (without a cast):

int tx, ty;
unsigned ux, uy;
…
tx = (int) ux;
uy = (unsigned) ty;

1
2
3
4
5

int tx, ty;
unsigned ux, uy;
…
tx = ux; // cast to signed
uy = ty; // cast to unsigned

1
2
3
4
5

explicit implicit

When casting: the underlying bits do not change, so there isn't any
conversion going on, except that the variable is treated as the type that it is.
You cannot convert a signed number to its unsigned counterpart using a cast!

Casting Between Signed and Unsigned

// test_cast.c
#include<stdio.h>
#include<stdlib.h>

int main() {
 int v = -12345;
 unsigned int uv = (unsigned int) v;

 printf("v = %d, uv = %u\n",v,uv);

 return 0;
}

1
2
3
4
5
6
7
8
9

10
11
12

$./test_cast
v = -12345, uv = 4294954951

When casting: the underlying bits do not change, so there isn't any
conversion going on, except that the variable is treated as the type that it is.
You cannot convert a signed number to its unsigned counterpart using a cast!

Casting Between Signed and Unsigned

 int x = -1;
 unsigned u = 3000000000; // 3 billion

 printf("x = %u = %d\n", x, x);
 printf("u = %u = %d\n", u, u);

1
2
3
4
5

$./test_printf
x = 4294967295 = -1
u = 3000000000 = -1294967296

printf has three 32-bit integer representations:

%d : signed 32-bit int

%u : unsigned 32-bit int

%x : hex 32-bit int

As long as the value is a 32-bit type, printf will treat it according to the
formatter it is applying:

Signed vs Unsigned Number Wheels

Comparison between signed and unsigned integers
When a C expression has combinations of signed and unsigned variables, you
need to be careful!

If an operation is performed that has both a signed and an unsigned value, C
implicitly casts the signed argument to unsigned and performs the
operation assuming both numbers are non-negative. Let's take a look…

Expression Type Evaluation
0 == 0U
-1 < 0
-1 < 0U
2147483647 > -2147483647 - 1
2147483647U > -2147483647 - 1
2147483647 > (int)2147483648U
-1 > -2
(unsigned)-1 > -2

Comparison between signed and unsigned integers
When a C expression has combinations of signed and unsigned variables, you
need to be careful!

If an operation is performed that has both a signed and an unsigned value, C
implicitly casts the signed argument to unsigned and performs the
operation assuming both numbers are non-negative. Let's take a look…

Expression Type Evaluation
0 == 0U Unsigned 1
-1 < 0 Signed 1
-1 < 0U Unsigned 0
2147483647 > -2147483647 - 1 Signed 1
2147483647U > -2147483647 - 1 Unsigned 0
2147483647 > (int)2147483648U Signed 1
-1 > -2 Signed
 1
(unsigned)-1 > -2 Unsigned 1
Note: In C, 0 is false and everything else is true. When C produces a boolean value, it allways chooses 1 to represent true.

Comparison between signed and unsigned integers
Let's try some more…a bit more abstractly.
int s1, s2, s3, s4;

unsigned int u1, u2, u3, u4;

Which many of the following
statements are true? (assume that

variables are set to values that place
them in the spots shown)

s3 > u3
u2 > u4
s2 > s4
s1 > s2
u1 > u2
s1 > u3

Comparison between signed and unsigned integers
Let's try some more…a bit more abstractly.
int s1, s2, s3, s4;

unsigned int u1, u2, u3, u4;

Which many of the following
statements are true? (assume that

variables are set to values that place
them in the spots shown)

s3 > u3 : true
u2 > u4 : true
s2 > s4 : false
s1 > s2 : true
u1 > u2 : true
s1 > u3 : true

The sizeof Operator
As we have seen, integer types are limited by the number of bits they hold. On
the 64-bit myth machines, we can use the sizeof operator to find how many
bytes each type uses:
int main() {
 printf("sizeof(char): %d\n", (int) sizeof(char));
 printf("sizeof(short): %d\n", (int) sizeof(short));
 printf("sizeof(int): %d\n", (int) sizeof(int));
 printf("sizeof(unsigned int): %d\n", (int) sizeof(unsigned int));
 printf("sizeof(long): %d\n", (int) sizeof(long));
 printf("sizeof(long long): %d\n", (int) sizeof(long long));
 printf("sizeof(size_t): %d\n", (int) sizeof(size_t));
 printf("sizeof(void *): %d\n", (int) sizeof(void *));
 return 0;
}

$./sizeof
sizeof(char): 1
sizeof(short): 2
sizeof(int): 4
sizeof(unsigned int): 4
sizeof(long): 8
sizeof(long long): 8
sizeof(size_t): 8
sizeof(void *): 8

Type Width in bytes Width in bits
char 1 8
short 2 16
int 4 32
long 8 64
void * 8 64

MIN and MAX values for integers
Because we now know how bit patterns for integers works, we can figure out the
maximum and minimum values, designated by INT_MAX, UINT_MAX, INT_MIN,
(etc.), which are defined in limits.h

Type
Width
(bytes)

Width
(bits)

Min in hex (name) Max in hex (name)

char 1 8 80 (CHAR_MIN) 7F (CHAR_MAX)

unsigned char 1 8 0 FF (UCHAR_MAX)

short 2 16 8000 (SHRT_MIN) 7FFF (SHRT_MAX)

unsigned short 2 16 0 FFFF (USHRT_MAX)

int 4 32 80000000 (INT_MIN) 7FFFFFFF (INT_MAX)

unsigned int 4 32 0 FFFFFFFF (UINT_MAX)

long 8 64 8000000000000000 (LONG_MIN) 7FFFFFFFFFFFFFFF (LONG_MAX)

unsigned long 8 64 0 FFFFFFFFFFFFFFFF (ULONG_MAX)

Expanding the bit representation of a number
Sometimes we want to convert between two integers having different sizes.
E.g., a short to an int, or an int to a long.

We might not be able to convert from a bigger data type to a smaller data
type, but we do want to always be able to convert from a smaller data type to
a bigger data type.

This is easy for unsigned values: simply add leading zeros to the
representation (called "zero extension").

unsigned short s = 4;
// short is a 16-bit format, so s = 0000 0000 0000 0100b

unsigned int i = s;
// conversion to 32-bit int, so i = 0000 0000 0000 0000 0000 0000 0000 0100b

Expanding the bit representation of a number
For signed values, we want the number to remain the same, just with more
bits. In this case, we perform a "sign extension" by repeating the sign of the
value for the new digits. E.g.,

short s = 4;
// short is a 16-bit format, so s = 0000 0000 0000 0100b

int i = s;
// conversion to 32-bit int, so i = 0000 0000 0000 0000 0000 0000 0000 0100b

— or —

short s = -4;
// short is a 16-bit format, so s = 1111 1111 1111 1100b

int i = s;
// conversion to 32-bit int, so i = 1111 1111 1111 1111 1111 1111 1111 1100b

Sign-extension Example
// show_bytes() defined on pg. 45, Bryant and O'Halloran
int main() {
 short sx = -12345; // -12345
 unsigned short usx = sx; // 53191
 int x = sx; // -12345
 unsigned ux = usx; // 53191

 printf("sx = %d:\t", sx);
 show_bytes((byte_pointer) &sx, sizeof(short));
 printf("usx = %u:\t", usx);
 show_bytes((byte_pointer) &usx, sizeof(unsigned short));
 printf("x = %d:\t", x);
 show_bytes((byte_pointer) &x, sizeof(int));
 printf("ux = %u:\t", ux);
 show_bytes((byte_pointer) &ux, sizeof(unsigned));

 return 0;
}

$./sign_extension
sx = -12345: c7 cf
usx = 53191: c7 cf
x = -12345: c7 cf ff ff
ux = 53191: c7 cf 00 00

(careful: this was printed
on the little-endian myth
machines!)

Truncating Numbers: Signed
What if we want to reduce the
number of bits that a number
holds? E.g.

int x = 53191;
short sx = (short) x;
int y = sx;

What happens here? Let's look at the bits in x (a 32-bit int), 53191:

0000 0000 0000 0000 1100 1111 1100 0111

When we cast x to a short, it only has 16-bits, and C truncates the number:

1100 1111 1100 0111

What is this number in decimal? Well, it must be negative (b/c of the initial
1), and it is -12345.

Truncating Numbers: Signed
What if we want to reduce the
number of bits that a number
holds? E.g.

int x = 53191; // 53191
short sx = (short) x; // -12345
int y = sx;

This is a form of overflow! We have altered the value of the number.
Be careful!

We don't have enough bits to store the int in the short for the value we have
in the int, so the strange values occur.

What is y above? We are converting a short to an int, so we sign-extend,
and we get -12345!

 1100 1111 1100 0111 becomes

Play around here: http://www.convertforfree.com/twos-complement-calculator/
1111 1111 1111 1111 1100 1111 1100 0111

http://www.convertforfree.com/twos-complement-calculator/

Truncating Numbers: Signed
If the number does fit into the
smaller representation in the
current form, it will convert just
fine.

int x = -3; // -3
short sx = (short) -3; // -3
int y = sx; // -3

x: 1111 1111 1111 1111 1111 1111 1111 1101 becomes

Play around here: http://www.convertforfree.com/twos-complement-calculator/

sx: 1111 1111 1111 1101

http://www.convertforfree.com/twos-complement-calculator/

Truncating Numbers: Unsigned
We can also lose information with
unsigned numbers:

unsigned int x = 128000;
unsigned short sx = (short) x;
unsigned int y = sx;

Bit representation for x = 128000 (32-bit unsigned int):

0000 0000 0000 0001 1111 0100 0000 0000

Truncated unsigned short sx:

 1111 0100 0000 0000

which equals 62464 decimal.

Converting back to an unsigned int, y = 62464

Overflow in Unsigned Addition
When integer operations overflow in C, the runtime does not produce an error:
#include<stdio.h>
#include<stdlib.h>
#include<limits.h> // for UINT_MAX

int main() {
 unsigned int a = UINT_MAX;
 unsigned int b = 1;
 unsigned int c = a + b;

 printf("a = %u\n",a);
 printf("b = %u\n",b);
 printf("a + b = %u\n",c);

 return 0;
}

$./unsigned_overflow
a = 4294967295
b = 1
a + b = 0

Technically, unsigned integers in C don't
overflow, they just wrap. You need to be
aware of the size of your numbers. Here is
one way to test if an addition will fail:

// for addition
#include <limits.h>
unsigned int a = <something>;
unsigned int x = <something>;
if (a > UINT_MAX - x) /* `a + x` would overflow */;

Overflow in Signed Addition
Signed overflow wraps around to the negative numbers:

YouTube fell into this trap — their view counter was a signed, 32-bit int. They
fixed it after it was noticed, but for a while, the view count for Gangnam Style
(the first video with over INT_MAX number of views) was negative.

Overflow in Signed Addition
In the news on January 5, 2022 (!):

https://arstechnica.com/gadgets/2022/01/google-fixes-nightmare-android-bug-
that-stopped-user-from-calling-911/

https://arstechnica.com/gadgets/2022/01/google-fixes-nightmare-android-bug-that-stopped-user-from-calling-911/
https://arstechnica.com/gadgets/2022/01/google-fixes-nightmare-android-bug-that-stopped-user-from-calling-911/

Overflow in Signed Addition
Signed overflow wraps around to the negative numbers.

$./signed_overflow
a = 2147483647
b = 1
a + b = -2147483648

#include<stdio.h>
#include<stdlib.h>
#include<limits.h> // for INT_MAX

int main() {
 int a = INT_MAX;
 int b = 1;
 int c = a + b;

 printf("a = %d\n",a);
 printf("b = %d\n",b);
 printf("a + b = %d\n",c);

 return 0;
}

Technically, signed integers in C produce
undefined behavior when they overflow. On two's
complement machines (virtually all machines these
days), it does overflow predictably. You can test to
see if your addition will be correct:

// for addition
#include <limits.h>
int a = <something>;
int x = <something>;
if ((x > 0) && (a > INT_MAX - x)) /* `a + x` would overflow */;
if ((x < 0) && (a < INT_MIN - x)) /* `a + x` would underflow */;

3 Minute Break

WHEN CS107 GOES TOO FAST

TAKE A BREAK

Data Sizes

Data Sizes

On the myth computers (and
most 64-bit computers today),

the int representation is
comprised of 32-bits, or four 8-
bit bytes. but the C language
does not mandate this. To the
right is Figure 2.3 from your

textbook:

Data Sizes

There are guarantees on the
lower-bounds for type sizes, but
you should expect that the myth
machines will have the numbers

in the 64-bit column.

Data Sizes

You can be guaranteed the sizes
for int32_t (4 bytes) and

int64_t (8 bytes)

Data Sizes

C allows a variety of ways to
order keywords to define a type.
The following all have the same

meaning:

unsigned long
unsigned long int
long unsigned
long unsigned int

Addressing and Byte Ordering

On the myth machines, pointers are 64-bits long, meaning that a program can
"address" up to 264 bytes of memory, because each byte is individually addressable.

This is a lot of memory! It is 16 exabytes, or 1.84 x 1019 bytes. Older, 32-bit machines
could only address 232 bytes, or 4 Gigabytes.

64-bit machines can address 4 billion times more memory than 32-bit machines...

Machines will not need to address more than 264 bytes of memory for a long, long time.

Addressing and Byte Ordering
We've already talked about the fact that a memory address (pointer) points to a

particular byte. But, what if we want to store a data type that has more than one byte?

The int type on our machines is 4 bytes long. So, how is a byte stored in memory?

We have choices!

First, let's talk about the ordering of the bytes in a 4-byte hex number. We can
represent an ints as 8-digit hex numbers:

0x01234567

We can separate out the bytes:

0x 01 23 45 67

Addressing and Byte Ordering
 01 23 45 67

0000 0001 0010 0011 0100 0101 0110 0111
--------- --------- --------- ---------

	 most significant least significant

	 •	 Some machines choose to store the bytes ordered from least significant byte to
most significant byte, called “little endian” (because the “little end” comes first).  

	 •	 Other machines choose to store the bytes ordered from most significant byte to
least significant byte, called “big endian” (because the “big end” comes first).  

Addressing and Byte Ordering
• Our 0x01234567 number would look like this in memory for a little endian computer

(which, by the way, is the way the myth computers store ints):

• A big-endian representation would look like this:  

	 Many times we don’t care how our integers are stored, but in cs107 we will! Let’s look
at a sample program and dig under the hood to see how little-endian works.

byte: 67 45 23 01
address: 0x100 0x101 0x102 0x103

byte: 01 23 45 67
address: 0x100 0x101 0x102 0x103

Addressing and Byte Ordering
• Our 0x01234567 number would look like this in memory for a little endian computer

(which, by the way, is the way the myth computers store ints):

address: 0x100 0x101 0x102 0x103
value: 67 45 23 01

• A big-endian representation would look like this:  

address: 0x100 0x101 0x102 0x103
value: 01 23 45 67

	 Many times we don’t care how our integers are stored, but in cs107
we will! Let’s look at a sample program and dig under the hood to see

how little-endian works.

Addressing and Byte Ordering

#include<stdio.h>
#include<stdlib.h>

int main() {
 // a variable
 int a = 0x01234567;

 // print the variable in big endian format
 printf("a's value: 0x%.8x\n",a);
 return 0;
}

 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11

Addressing and Byte Ordering
$ gcc -g -O0 -std=gnu99 big_endian.c -o big_endian
$./big_endian
a's value: 0x01234567

$ gdb big_endian
GNU gdb (Ubuntu 7.7.1-0ubuntu5~14.04.3) 7.7.1
...
(gdb) break main
Breakpoint 1 at 0x400535: file big_endian.c, line 6.
(gdb) run
Starting program: /afs/.ir.stanford.edu/users/c/g/cgregg/107/lectures/lecture2_bits_bytes_continued/big_endian

Breakpoint 1, main () at big_endian.c:6
6 int a = 0x01234567;
(gdb) n
9 printf("a's value: 0x%08x\n",a);
(gdb) p/x a
$1 = 0x1234567
(gdb) p &a
$2 = (int *) 0x7fffffffe98c
(gdb) x/16bx &a
0x7fffffffe98c: 0x67 0x45 0x23 0x01 0x00 0x00 0x00 0x00
0x7fffffffe994: 0x00 0x00 0x00 0x00 0x45 0x2f 0xa3 0xf7
(gdb)

Note the ordering: 0x01234567 is stored as Little Endian!

Boolean Algebra

Boolean Algebra

• Because computers store values in binary, we need to learn about boolean
algebra. Most of you have already studied this in some form in math classes
before, but we are going to quantify it and discuss it in the context of computing
and programming.

• We can define Boolean algebra over a 2-element set, 0 and 1, where 0
represents false and 1 represents true.

• The symbols are: ~ for NOT, & for AND, | for OR, and ^ for "exclusive or," which
means that if one and only one of the values is true, the expression is true.

Boolean Algebra

• Be careful! There are logical analogs to some of these that you have used in
C++ and other programming languages: ! (logical NOT), && (logical AND), and
|| (logical OR), but we are now talking about bit operations that result in 0 or
1 for each bit in a number.

• The bitwise operators use single character representations for AND and OR,
not double-characters.

Boolean Algebra

• When a boolean operator is applied to two numbers (or, in the case of ~, a
single number), the operator is applied to the corresponding bits in each
number. For example:

 0110
& 1100

 0100

 0110
1100
 1110

 0110
^ 1100

 1010

~ 1100

 0011

Boolean Algebra: Mystery Function
• Let's look at a mystery function!

$./mystery 4 5// mystery1.c
#include<stdlib.h>
#include<stdio.h>

void mystery(int *x, int *y) {
 if (x != y) {
 *y = *x ^ *y;
 *x = *x ^ *y;
 *y = *x ^ *y;
 }
}

int main(int argc, char *argv[]) {
 int x = atoi(argv[1]);
 int y = atoi(argv[2]);

 printf("x:%d, y:%d\n",x,y);

 mystery(&x,&y);

 printf("x:%d, y:%d\n",x,y);
 return 0;
}

 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
12
13
14
15
16
17
18
19
20
21
22
23

Boolean Algebra: Mystery Function
• Let's look at a mystery function!

// mystery1.c
#include<stdlib.h>
#include<stdio.h>

void mystery(int *x, int *y) {
 if (x != y) {
 *y = *x ^ *y;
 *x = *x ^ *y;
 *y = *x ^ *y;
 }
}

int main(int argc, char *argv[]) {
 int x = atoi(argv[1]);
 int y = atoi(argv[2]);

 printf("x:%d, y:%d\n",x,y);

 mystery(&x,&y);

 printf("x:%d, y:%d\n",x,y);
 return 0;
}

 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
12
13
14
15
16
17
18
19
20
21
22
23

$./mystery 4 5

x:4, y:5
x:5, y:4

https://en.wikipedia.org/wiki/
XOR_swap_algorithm

This relies on the fact that x^x == 0,
and the associativity and commutativity
of the exclusive or function.
Incidentally, if you XOR a number with all
1s, you get the complement!

https://en.wikipedia.org/wiki/XOR_swap_algorithm
https://en.wikipedia.org/wiki/XOR_swap_algorithm

Boolean Algebra: Operations on bit flags
We can represent finite sets with bit vectors, where we can perform set functions
such as union, intersection, and complement. For example:

bit vector a = [01101001] encodes the set A = {0,3,5,6} (reading the 1 positions
from right to left, with #0 being the right-most, #7 being the left-most)

bit vector b = [01010101] encodes the set B = {0,2,4,6}

The | operator produces a set union:

a | b → [01111101], or A ∪ B = {0,2,3,4,5,6}

The & operator produces a set intersection:

a & b → [01000001], or A ∩ B = {0,6}

Boolean Algebra: Bit Masking
A common use of bit-level operations is to implement masking operations, where a
mask is a bit pattern that will be used to choose a selected set of bits in a word. For
example, the mask of 0xFF means the lowest byte in an integer. To get the low-
order byte out of an integer, we simply use the bitwise AND operator with the mask:
int j = 0x89ABCDEF;
int k = j & 0xFF; // k now holds the value 0xEF,
 // which is the low-order byte of j

A useful expression is ~0, which makes an integer with all 1s, regardless of the size
of the integer.

Boolean Algebra: Bit Masking

Challenge 2: write an expression that complements all but the least significant byte
of j, with the least significant byte unchanged. E.g.

0x87654321 → 0x789ABC21

Challenge 1: write an expression that sets the least significant byte to all ones, and
all other bytes of the number (assume it is the variable j) left unchanged E.g.

0x87654321 → 0x876543FF

Possible answer: j ^ ~0xFF

Possible answer: j | 0xFF

Boolean Algebra: Shift Operations
C provides operations to shift bit patterns to the left and to the right.

The << operator moves the bits to the left, replacing the lower order bits with zeros
and dropping any values that would be bigger than the type can hold:

x << k will shift x to the left by k number of bits.

Examples for an 8-bit binary number:

00110111 << 2 returns 11011100
01100011 << 4 returns 00110000
10010101 << 4 returns 01010000

Boolean Algebra: Shift Operations
There are actually two flavors of right shift, which work differently depending on the
value and type of the number you are shifting.

A logical right shift moves the values to the right, replacing the upper bits with 0s.

An arithmetic right shift moves the values to the right, replacing the upper bits with a
copy of the most significant bit. This may seem weird! But, we will see why this is
useful soon!

Examples for an 8-bit binary number:

Logical right shift:

00110111 >> 2 returns 00001101
10110111 >> 2 returns 00101101
01100011 >> 4 returns 00000110
10010101 >> 4 returns 00001001

Examples for an 8-bit binary number:

Artithmetic right shift:

00110111 >> 2 returns 00001101
10110111 >> 2 returns 11101101
01100011 >> 4 returns 00000110
10010101 >> 4 returns 11111001

Right shift: arithmetic -vs- logical
// show_bytes() defined on pg. 45, Bryant and O'Halloran
int main() {
 int a = 1048576;
 int a_rs8 = a >> 8;

 int b = -1048576;
 int b_rs8 = b >> 8;

 printf("a = %d:\t", a);
 show_bytes((byte_pointer) &a, sizeof(int));

 printf("a >> 8 = %d:\t", a_rs8);
 show_bytes((byte_pointer) &a_rs8, sizeof(int));

 printf("b = %d:\t", b);
 show_bytes((byte_pointer) &b, sizeof(int));

 printf("b >> 8 = %d:\t", b_rs8);
 show_bytes((byte_pointer) &b_rs8, sizeof(int));
 return 0;
}

$./right_shift
a = 1048576: 00 00 10 00
a >> 8 = 4096: 00 10 00 00
b = -1048576: 00 00 f0 ff
b >> 8 = -4096: 00 f0 ff ff

(run on a little-endian machine)

The right-shift (>>) operator
behaves differently for unsigned
and signed numbers:

• Unsigned numbers are
logically-right shifted (by shifting
in 0s, always)

• Signed numbers are
arithmetically-right shifted (by
shifting in the sign bit)

Shift Operation Pitfalls
There are two important things you need to consider when using the shift operators:

1. The C standard does not precisely define whether a right shift for signed integers
is logical or arithmetic. Almost all compilers / machines use arithmetic shifts for
signed integers, and you can most likely assume this. Don't be surprised if some
Internet pedant yells at you about it some day. :) All unsigned integers will always
use a logical right shift (more on this later!)

2. Operator precedence can be tricky! Example:

1<<2 + 3<<4 means this: 1 << (2 + 3) << 4, because addition and
subtraction have a higher precedence than shifts!

Always parenthesize to be sure:

(1<<2) + (3<<4)

Practice!
Let's take a look at lots of examples:

If you want to try the examples out yourself. On myth:

$ cd CS107
$ cp -r /afs/ir/class/cs107/lecture-code/lect2 .
cd lect2
make
ls # to see the files

References and Advanced Reading

•References:
•Two's complement calculator: http://www.convertforfree.com/twos-complement-
calculator/

•Wikipedia on Two's complement: https://en.wikipedia.org/wiki/
Two%27s_complement

•The sizeof operator: http://www.geeksforgeeks.org/sizeof-operator-c/

•Advanced Reading:
•Signed overflow: https://stackoverflow.com/questions/16056758/c-c-unsigned-
integer-overflow

•Integer overflow in C: https://www.gnu.org/software/autoconf/manual/
autoconf-2.62/html_node/Integer-Overflow.html

•https://stackoverflow.com/questions/34885966/when-an-int-is-cast-to-a-short-and-
truncated-how-is-the-new-value-determined

http://www.convertforfree.com/twos-complement-calculator/
http://www.convertforfree.com/twos-complement-calculator/
https://en.wikipedia.org/wiki/Two%27s_complement
https://en.wikipedia.org/wiki/Two%27s_complement
http://www.geeksforgeeks.org/sizeof-operator-c/
https://stackoverflow.com/questions/16056758/c-c-unsigned-integer-overflow
https://stackoverflow.com/questions/16056758/c-c-unsigned-integer-overflow
https://www.gnu.org/software/autoconf/manual/autoconf-2.62/html_node/Integer-Overflow.html
https://www.gnu.org/software/autoconf/manual/autoconf-2.62/html_node/Integer-Overflow.html
https://stackoverflow.com/questions/34885966/when-an-int-is-cast-to-a-short-and-truncated-how-is-the-new-value-determined
https://stackoverflow.com/questions/34885966/when-an-int-is-cast-to-a-short-and-truncated-how-is-the-new-value-determined

References and Advanced Reading

•References:
•argc and argv: http://crasseux.com/books/ctutorial/argc-and-argv.html

•The C Language: https://en.wikipedia.org/wiki/C_(programming_language)

•Kernighan and Ritchie (K&R) C: https://www.youtube.com/watch?v=de2Hsvxaf8M

•C Standard Library: http://www.cplusplus.com/reference/clibrary/

•https://en.wikipedia.org/wiki/Bitwise_operations_in_C

•http://en.cppreference.com/w/c/language/operator_precedence

•Advanced Reading:
•After All These Years, the World is Still Powered by C Programming

•Is C Still Relevant in the 21st Century?

•Why Every Programmer Should Learn C

http://crasseux.com/books/ctutorial/argc-and-argv.html
https://en.wikipedia.org/wiki/C_(programming_language)
https://www.youtube.com/watch?v=de2Hsvxaf8M
http://www.cplusplus.com/reference/clibrary/
https://en.wikipedia.org/wiki/Bitwise_operations_in_C
http://en.cppreference.com/w/c/language/operator_precedence
https://www.toptal.com/c/after-all-these-years-the-world-is-still-powered-by-c-programming
http://insights.dice.com/2014/12/08/c-still-relevant-21st-century/
https://www.pluralsight.com/blog/software-development/why-every-programmer-should-learn-c

0
1

2

3

4

-1

-2

-3

-4

7

6

5

-7

-6

-5

-8

0000 0001

0010

0011

0100

0101

0110

0111

1111

1110

1101

1100

1011

1010

1001 1000

4-bit

two's complement

signed integer
representation

0
1

2

3

4

15

14

13

12

7

6

5

9

10

11

8

0000 0001

0010

0011

0100

0101

0110

0111

1111

1110

1101

1100

1011

1010

1001 1000

4-bit

unsigned integer
representation

