
CS 107

Lecture 5: Stack

and Heap
0x7ffffffff000

0x7ffff7ffe000

8MB
reserved

Sized for
library

Grows on
demand

Sized for
executable

Shared library
text/data

Text

(machine code)

Low addresses
deliberately unmapped

0x602010

0x600000

0x400000

Heap

Global data

Stack

Friday, January 27, 2023

Computer Systems

Winter 2023

Stanford University

Computer Science Department

Reading: Reader: Ch 4, C Primer, K&R Ch 1.6,
5.1-5.5

Lecturers: Chris Gregg

1

Today's Topics

• Logistics

• Assign2 — Due Thursday February 2nd at 11:59pm, with a late deadline

of Saturday February 4th.

• Reading: Reader: C Primer

• Pointers to Arrays (finish from last time)

• Stack allocation

• Stack frames

• Parameter passing

• Dynamic allocation (malloc/realloc/free).

• More Pointers to pointers

2

Double pointers — why are they needed?

#include<stdio.h>
#include<stdlib.h>

// print the next character in p
// and update the local pointer, p (which does nothing)
char nextCharA(char *p) {
 char next = p[0];
 p++; // this does not do anything except inside this function
 // and, we are returning here, so it really doesn't
 // do anything productive
 return next;
}

// print the next character in the string pointed to by p
// and update the string pointer by one to go to the next character
char nextCharB(char **p) {
 char next = (*p)[0];
 (*p)++; // now the original pointer gets updated!
 // we return here, but the calling function has the
 // details it needs for the next call
 return next;
}

int main() {
 char *myString = "hello";
 char *pA = myString;
 char *pB = myString;

 for (int i = 0; i < 5; i++) {
 printf("nextCharA(pA): %c ", nextCharA(pA));
 printf("nextCharB(&pB): %c\n",
nextCharB(&pB));
 }
 return 0;
}

Let's take an in-depth look at the following example:

3

Pointers to Arrays — char *envp[]
One tricky part of CS 107 for many students is getting comfortable with what the
memory looks like for pointers to arrays, particularly when the arrays themselves are
filled with pointers. This week's assignment has a good example: envp.

With arrays:

1. Always draw a picture!!!1! Make up the

addresses -- the actual numbers aren't
particularly important for understanding.

4

Pointers to Arrays — char *envp[]
One tricky part of CS 107 for many students is getting comfortable with what the
memory looks like for pointers to arrays, particularly when the arrays themselves are
filled with pointers. This week's assignment has a good example: envp.

envp

With arrays:

1. Always draw a picture!!!1! Make up the

addresses -- the actual numbers aren't
particularly important for understanding.

6a48
5

Pointers to Arrays — char *envp[]
One tricky part of CS 107 for many students is getting comfortable with what the
memory looks like for pointers to arrays, particularly when the arrays themselves are
filled with pointers. This week's assignment has a good example: envp.

Address Value

0x6a70

0x6a68

0x6a60

0x6a58

0x6a50

0x6a48

envp

With arrays:

1. Always draw a picture!!!1! Make up the

addresses -- the actual numbers aren't
particularly important for understanding.

6a48
6

Pointers to Arrays — char *envp[]
One tricky part of CS 107 for many students is getting comfortable with what the
memory looks like for pointers to arrays, particularly when the arrays themselves are
filled with pointers. This week's assignment has a good example: envp.

Address Value

0x6a70
0x0

0x6a68
0x7d4f

0x6a60
0x7d41

0x6a58
0x7d31

0x6a50
0x7d1d

0x6a48
0x7d09

envp

With arrays:

1. Always draw a picture!!!1! Make up the

addresses -- the actual numbers aren't
particularly important for understanding.

6a48
7

Pointers to Arrays — char *envp[]
One tricky part of CS 107 for many students is getting comfortable with what the
memory looks like for pointers to arrays, particularly when the arrays themselves are
filled with pointers. This week's assignment has a good example: envp.

Address Value

0x6a70
0x0

0x6a68
0x7d4f

0x6a60
0x7d41

0x6a58
0x7d31

0x6a50
0x7d1d

0x6a48
0x7d09

envp

String

SSH_TTY=/dev/pts/29

HISTSIZE=5000

SHELL=/bin/bash

TERM=xterm-256color

XDG_SESSION_ID=3230

With arrays:

1. Always draw a picture!!!1! Make up the

addresses -- the actual numbers aren't
particularly important for understanding.

6a48
8

Pointers to Arrays — char *envp[]
One tricky part of CS 107 for many students is getting comfortable with what the
memory looks like for pointers to arrays, particularly when the arrays themselves are
filled with pointers. This week's assignment has a good example: envp.

Address Value

0x6a70
0x0

0x6a68
0x7d4f

0x6a60
0x7d41

0x6a58
0x7d31

0x6a50
0x7d1d

0x6a48
0x7d09

envp

String

SSH_TTY=/dev/pts/29

HISTSIZE=5000

SHELL=/bin/bash

TERM=xterm-256color

XDG_SESSION_ID=3230

With arrays:

1. Always draw a picture!!!1! Make up the

addresses -- the actual numbers aren't
particularly important for understanding.

2. If you know the type that is held in the
array, you can always dereference to get a
single pointer to the type. E.g., envp[0]
is a pointer to the string
"XDG_SESSION_ID=3230"

6a48

What is the value of
envp[2] for the
diagram?

9

What is the value of
envp[2] for the
diagram?

Pointers to Arrays — char *envp[]
One tricky part of CS 107 for many students is getting comfortable with what the
memory looks like for pointers to arrays, particularly when the arrays themselves are
filled with pointers. This week's assignment has a good example: envp.

Address Value

0x6a70
0x0

0x6a68
0x7d4f

0x6a60
0x7d41

0x6a58
0x7d31

0x6a50
0x7d1d

0x6a48
0x7d09

envp
6a48

String

SSH_TTY=/dev/pts/29

HISTSIZE=5000

SHELL=/bin/bash

TERM=xterm-256color

XDG_SESSION_ID=3230

0x7d31

With arrays:

1. Always draw a picture!!!1! Make up the

addresses -- the actual numbers aren't
particularly important for understanding.

2. If you know the type that is held in the
array, you can always dereference to get a
single pointer to the type. E.g., envp[0]
is a pointer to the string
"XDG_SESSION_ID=3230"

10

Pointers to Arrays — char *envp[]
One tricky part of CS 107 for many students is getting comfortable with what the
memory looks like for pointers to arrays, particularly when the arrays themselves are
filled with pointers. This week's assignment has a good example: envp.

Address Value

0x6a70
0x0

0x6a68
0x7d4f

0x6a60
0x7d41

0x6a58
0x7d31

0x6a50
0x7d1d

0x6a48
0x7d09

envp
6a48

String

SSH_TTY=/dev/pts/29

HISTSIZE=5000

SHELL=/bin/bash

TERM=xterm-256color

XDG_SESSION_ID=3230

What type is envp[2]?

With arrays:

1. Always draw a picture!!!1! Make up the

addresses -- the actual numbers aren't
particularly important for understanding.

2. If you know the type that is held in the
array, you can always dereference to get a
single pointer to the type. E.g., envp[0]
is a pointer to the string
"XDG_SESSION_ID=3230"

11

Pointers to Arrays — char *envp[]
One tricky part of CS 107 for many students is getting comfortable with what the
memory looks like for pointers to arrays, particularly when the arrays themselves are
filled with pointers. This week's assignment has a good example: envp.

Address Value

0x6a70
0x0

0x6a68
0x7d4f

0x6a60
0x7d41

0x6a58
0x7d31

0x6a50
0x7d1d

0x6a48
0x7d09

envp
6a48

String

SSH_TTY=/dev/pts/29

HISTSIZE=5000

SHELL=/bin/bash

TERM=xterm-256color

XDG_SESSION_ID=3230

char *

With arrays:

1. Always draw a picture!!!1! Make up the

addresses -- the actual numbers aren't
particularly important for understanding.

2. If you know the type that is held in the
array, you can always dereference to get a
single pointer to the type. E.g., envp[0]
is a pointer to the string
"XDG_SESSION_ID=3230"

What type is envp[2]?

12

Pointers to Arrays — char *envp[]

Address Value

0x6a70
0x0

0x6a68
0x7d4f

0x6a60
0x7d41

0x6a58
0x7d31

0x6a50
0x7d1d

0x6a48
0x7d09

envp
6a48

String

SSH_TTY=/dev/pts/29

HISTSIZE=5000

SHELL=/bin/bash

TERM=xterm-256color

XDG_SESSION_ID=3230

Note: envp is a weird array in that
it is null-terminated! Very, very few
arrays have this property in C.

Most arrays are passed with
another variable that gives their
length. For example, we have argv
and argc.*

*Note: argv[argc] is defined to be
NULL, but that still an anomaly for C

arrays in general. 13

x86-64 Memory Layout

0x7ffffffff000

0x7ffff7ffe000

8MB
reserved

Sized for
library

Grows on
demand

Sized for
executable

Shared library
text/data

Text

(machine code)

Low addresses
deliberately unmapped

0x602010

0x600000

0x400000

Heap

Global data

Stack

In CS 107, we are going to talk about two different areas
of memory that your program will access, called the
stack and the heap.

This diagram shows the overall memory layout in Linux
on an x86-64 computer (e.g., the Myth computers).

Every program, by default, has access to an 8MB stack
segment in memory. Your program can do anything it
wants with that memory, but it is limited. The stack
grows downward in memory, so your program starts
with a location on the stack, and you get the next 8MB
lower in memory.

14

x86-64 Memory Layout

0x7ffffffff000

0x7ffff7ffe000

8MB
reserved

Sized for
library

Grows on
demand

Sized for
executable

Shared library
text/data

Text

(machine code)

Low addresses
deliberately unmapped

0x602010

0x600000

0x400000

Heap

Global data

Stack

Below the stack is the shared library. This is all of the
standard libraries that are used by programs (e.g.,
stdlib.h, stdio.h, string.h, etc.) Your programs do not
have access to these directly, except to call functions
that are there.

Below the shared library data is the heap, which is
managed by the operating system, and comprises the
vast majority of the memory in your computer. When a
program wants to use heap memory, it requests it from
the operating system (using malloc, calloc, or
realloc in C).

The heap starts at a low memory address and grows
upwards. 15

x86-64 Memory Layout

0x7ffffffff000

0x7ffff7ffe000

8MB
reserved

Sized for
library

Grows on
demand

Sized for
executable

Shared library
text/data

Text

(machine code)

Low addresses
deliberately unmapped

0x602010

0x600000

0x400000

Heap

Global data

Stack

Below the heap is global data for your program (i.e.,
global variables and string literals -- remember that string
literals are not modifiable).

Below the global data is your program code.

Note: When your program references memory, it
references virtual memory. Virtual memory is a way for
every program to think it has access to the entire
memory system, while hiding the details. The operating
system and PC hardware handle all of the details of the
translation between virtual memory and physical
memory, and for this course you only need to consider
the diagram to the left (you will discuss this when you
take CS 111) 16

Stack Allocation

When a function creates a local variable, or
when a function receives parameters, the data
is either kept in registers or kept on the stack.
We will cover registers when we get to
assembly language, but for now we will assume
that all of our local variables go on the stack
(and we will compile with "-O0" which forces
everything onto the stack.

Arrays are also kept on the stack.

Address Value

0x7fffffffe994
42

0x7fffffffe990
-5

0x7fffffffe98c
14

0x7fffffffe988
7

0x7fffffffe984
2

0x7fffffffe980
8

17

Stack Allocation
Let's look at an example:

// file: stack_ex1.c
#include<stdio.h>
#include<stdlib.h>

int main(int argc, char **argv)
{
 int a = 0x12345;
 int b = 0x98765432;
 char str[] = "hello";
 short array[] = {0x2, 0x4, 0x6, 0x8, 0xa};

 printf("0x%x\n", a);
 printf("0x%x\n", b);
 printf("%s\n", str);
 for (int i=0; i < sizeof(array) / sizeof(array[0]); i++) {
 printf("0x%x,", array[i]);
 }
 printf("\n");
 return 0;
}

Address Value

0x7fffffffe984

0x7fffffffe980

0x7fffffffe97c

0x7fffffffe978

0x7fffffffe974

0x7fffffffe970

0x7fffffffe96c

0x7fffffffe968 18

Stack Allocation
Let's look at an example:

// file: stack_ex1.c
#include<stdio.h>
#include<stdlib.h>

int main(int argc, char **argv)
{
 int a = 0x12345;
 int b = 0x98765432;
 char str[] = "hello";
 short array[] = {0x2, 0x4, 0x6, 0x8, 0xa};

 printf("0x%x\n", a);
 printf("0x%x\n", b);
 printf("%s\n",str);
 for (int i=0; i < sizeof(array) / sizeof(array[0]); i++) {
 printf("0x%x,", array[i]);
 }
 printf("\n");
 return 0;
}

Address Value

0x7fffffffe984

0x7fffffffe980

0x7fffffffe97c

0x7fffffffe978

0x7fffffffe974

0x7fffffffe970

0x7fffffffe96c

0x7fffffffe968

(gdb) p &a
$16 = (int *) 0x7fffffffe968

$ gcc -g -O0 -std=gnu99 -Wall
 stack_ex1.c -o stack_ex1
$./stack_ex1
0x12345
0x98765432
hello
0x2,0x4,0x6,0x8,0xa,
$ gdb stack_ex1
(gdb) break 12
Breakpoint 1 at 0x40067d: file
stack_ex1.c, line 12.
(gdb) run
Starting program: stack_ex1

Breakpoint 1, main (argc=1,
argv=0x7fffffffea78) at stack_ex1.c:12
12 printf("0x%x\n",a);
(gdb)

19

Stack Allocation
Let's look at an example: Address Value

0x7fffffffe984

0x7fffffffe980

0x7fffffffe97c

0x7fffffffe978

0x7fffffffe974

0x7fffffffe970

0x7fffffffe96c

0x7fffffffe968
0x12345

(gdb) p &a
$16 = (int *) 0x7fffffffe968

$ gcc -g -O0 -std=gnu99 -Wall
 stack_ex1.c -o stack_ex1
$./stack_ex1
0x12345
0x98765432
hello
0x2,0x4,0x6,0x8,0xa,
$ gdb stack_ex1
(gdb) break 12
Breakpoint 1 at 0x40067d: file
stack_ex1.c, line 12.
(gdb) run
Starting program: stack_ex1

Breakpoint 1, main (argc=1,
argv=0x7fffffffea78) at stack_ex1.c:12
12 printf("0x%x\n",a);
(gdb)

// file: stack_ex1.c
#include<stdio.h>
#include<stdlib.h>

int main(int argc, char **argv)
{
 int a = 0x12345;
 int b = 0x98765432;
 char str[] = "hello";
 short array[] = {0x2, 0x4, 0x6, 0x8, 0xa};

 printf("0x%x\n", a);
 printf("0x%x\n", b);
 printf("%s\n",str);
 for (int i=0; i < sizeof(array) / sizeof(array[0]); i++) {
 printf("0x%x,", array[i]);
 }
 printf("\n");
 return 0;
}

20

Stack Allocation
Let's look at an example: Address Value

0x7fffffffe984

0x7fffffffe980

0x7fffffffe97c

0x7fffffffe978

0x7fffffffe974

0x7fffffffe970

0x7fffffffe96c

0x7fffffffe968
0x12345

(gdb) p &a
$16 = (int *) 0x7fffffffe968
(gdb) p &b
$17 = (int *) 0x7fffffffe96c

$ gcc -g -O0 -std=gnu99 -Wall
 stack_ex1.c -o stack_ex1
$./stack_ex1
0x12345
0x98765432
hello
0x2,0x4,0x6,0x8,0xa,
$ gdb stack_ex1
(gdb) break 12
Breakpoint 1 at 0x40067d: file
stack_ex1.c, line 12.
(gdb) run
Starting program: stack_ex1

Breakpoint 1, main (argc=1,
argv=0x7fffffffea78) at stack_ex1.c:12
12 printf("0x%x\n",a);
(gdb)

// file: stack_ex1.c
#include<stdio.h>
#include<stdlib.h>

int main(int argc, char **argv)
{
 int a = 0x12345;
 int b = 0x98765432;
 char str[] = "hello";
 short array[] = {0x2, 0x4, 0x6, 0x8, 0xa};

 printf("0x%x\n", a);
 printf("0x%x\n", b);
 printf("%s\n",str);
 for (int i=0; i < sizeof(array) / sizeof(array[0]); i++) {
 printf("0x%x,", array[i]);
 }
 printf("\n");
 return 0;
}

21

Stack Allocation
Let's look at an example: Address Value

0x7fffffffe984

0x7fffffffe980

0x7fffffffe97c

0x7fffffffe978

0x7fffffffe974

0x7fffffffe970

0x7fffffffe96c
0x98765432

0x7fffffffe968
0x12345

(gdb) p &a
$16 = (int *) 0x7fffffffe968
(gdb) p &b
$17 = (int *) 0x7fffffffe96c

$ gcc -g -O0 -std=gnu99 -Wall
 stack_ex1.c -o stack_ex1
$./stack_ex1
0x12345
0x98765432
hello
0x2,0x4,0x6,0x8,0xa,
$ gdb stack_ex1
(gdb) break 12
Breakpoint 1 at 0x40067d: file
stack_ex1.c, line 12.
(gdb) run
Starting program: stack_ex1

Breakpoint 1, main (argc=1,
argv=0x7fffffffea78) at stack_ex1.c:12
12 printf("0x%x\n",a);
(gdb)

// file: stack_ex1.c
#include<stdio.h>
#include<stdlib.h>

int main(int argc, char **argv)
{
 int a = 0x12345;
 int b = 0x98765432;
 char str[] = "hello";
 short array[] = {0x2, 0x4, 0x6, 0x8, 0xa};

 printf("0x%x\n", a);
 printf("0x%x\n", b);
 printf("%s\n",str);
 for (int i=0; i < sizeof(array) / sizeof(array[0]); i++) {
 printf("0x%x,", array[i]);
 }
 printf("\n");
 return 0;
}

22

Stack Allocation
Let's look at an example: Address Value

0x7fffffffe984

0x7fffffffe980

0x7fffffffe97c

0x7fffffffe978

0x7fffffffe974

0x7fffffffe970

0x7fffffffe96c
0x98765432

0x7fffffffe968
0x12345

(gdb) p &a
$16 = (int *) 0x7fffffffe968
(gdb) p &b
$17 = (int *) 0x7fffffffe96c
(gdb) p &array[0]
$18 = (short *) 0x7fffffffe970

$ gcc -g -O0 -std=gnu99 -Wall
 stack_ex1.c -o stack_ex1
$./stack_ex1
0x12345
0x98765432
hello
0x2,0x4,0x6,0x8,0xa,
$ gdb stack_ex1
(gdb) break 12
Breakpoint 1 at 0x40067d: file
stack_ex1.c, line 12.
(gdb) run
Starting program: stack_ex1

Breakpoint 1, main (argc=1,
argv=0x7fffffffea78) at stack_ex1.c:12
12 printf("0x%x\n",a);
(gdb)

// file: stack_ex1.c
#include<stdio.h>
#include<stdlib.h>

int main(int argc, char **argv)
{
 int a = 0x12345;
 int b = 0x98765432;
 char str[] = "hello";
 short array[] = {0x2, 0x4, 0x6, 0x8, 0xa};

 printf("0x%x\n", a);
 printf("0x%x\n", b);
 printf("%s\n",str);
 for (int i=0; i < sizeof(array) / sizeof(array[0]); i++) {
 printf("0x%x,", array[i]);
 }
 printf("\n");
 return 0;
}

23

Stack Allocation
Let's look at an example: Address Value

0x7fffffffe984

0x7fffffffe980

0x7fffffffe97c

0x7fffffffe978 0xa

0x7fffffffe974

0x8

0x6

0x7fffffffe970

0x4

0x2

0x7fffffffe96c
0x98765432

0x7fffffffe968
0x12345

(gdb) p &a
$16 = (int *) 0x7fffffffe968
(gdb) p &b
$17 = (int *) 0x7fffffffe96c
(gdb) p &array[0]
$18 = (short *) 0x7fffffffe970

$ gcc -g -O0 -std=gnu99 -Wall
 stack_ex1.c -o stack_ex1
$./stack_ex1
0x12345
0x98765432
hello
0x2,0x4,0x6,0x8,0xa,
$ gdb stack_ex1
(gdb) break 12
Breakpoint 1 at 0x40067d: file
stack_ex1.c, line 12.
(gdb) run
Starting program: stack_ex1

Breakpoint 1, main (argc=1,
argv=0x7fffffffea78) at stack_ex1.c:12
12 printf("0x%x\n",a);
(gdb)

// file: stack_ex1.c
#include<stdio.h>
#include<stdlib.h>

int main(int argc, char **argv)
{
 int a = 0x12345;
 int b = 0x98765432;
 char str[] = "hello";
 short array[] = {0x2, 0x4, 0x6, 0x8, 0xa};

 printf("0x%x\n", a);
 printf("0x%x\n", b);
 printf("%s\n",str);
 for (int i=0; i < sizeof(array) / sizeof(array[0]); i++) {
 printf("0x%x,", array[i]);
 }
 printf("\n");
 return 0;
}

24

Stack Allocation
Let's look at an example: Address Value

0x7fffffffe984

0x7fffffffe980

0x7fffffffe97c

0x7fffffffe978 0xa

0x7fffffffe974

0x8

0x6

0x7fffffffe970

0x4

0x2

0x7fffffffe96c
0x98765432

0x7fffffffe968
0x12345

(gdb) p &a
$16 = (int *) 0x7fffffffe968
(gdb) p &b
$17 = (int *) 0x7fffffffe96c
(gdb) p &array[0]
$18 = (short *) 0x7fffffffe970
(gdb) p &str[0]
$19 = 0x7fffffffe980 "hello"

$ gcc -g -O0 -std=gnu99 -Wall
 stack_ex1.c -o stack_ex1
$./stack_ex1
0x12345
0x98765432
hello
0x2,0x4,0x6,0x8,0xa,
$ gdb stack_ex1
(gdb) break 12
Breakpoint 1 at 0x40067d: file
stack_ex1.c, line 12.
(gdb) run
Starting program: stack_ex1

Breakpoint 1, main (argc=1,
argv=0x7fffffffea78) at stack_ex1.c:12
12 printf("0x%x\n",a);
(gdb)

// file: stack_ex1.c
#include<stdio.h>
#include<stdlib.h>

int main(int argc, char **argv)
{
 int a = 0x12345;
 int b = 0x98765432;
 char str[] = "hello";
 short array[] = {0x2, 0x4, 0x6, 0x8, 0xa};

 printf("0x%x\n", a);
 printf("0x%x\n", b);
 printf("%s\n",str);
 for (int i=0; i < sizeof(array) / sizeof(array[0]); i++) {
 printf("0x%x,", array[i]);
 }
 printf("\n");
 return 0;
}

25

Stack Allocation
Let's look at an example: Address Value

0x7fffffffe984
\0

o

0x7fffffffe980

l

l

e

h

0x7fffffffe97c

0x7fffffffe978 0xa

0x7fffffffe974

0x8

0x6

0x7fffffffe970

0x4

0x2

0x7fffffffe96c
0x98765432

0x7fffffffe968
0x12345

(gdb) p &a
$16 = (int *) 0x7fffffffe968
(gdb) p &b
$17 = (int *) 0x7fffffffe96c
(gdb) p &array[0]
$18 = (short *) 0x7fffffffe970
(gdb) p &str[0]
$19 = 0x7fffffffe980 "hello"

$ gcc -g -O0 -std=gnu99 -Wall
 stack_ex1.c -o stack_ex1
$./stack_ex1
0x12345
0x98765432
hello
0x2,0x4,0x6,0x8,0xa,
$ gdb stack_ex1
(gdb) break 12
Breakpoint 1 at 0x40067d: file
stack_ex1.c, line 12.
(gdb) run
Starting program: stack_ex1

Breakpoint 1, main (argc=1,
argv=0x7fffffffea78) at stack_ex1.c:12
12 printf("0x%x\n",a);
(gdb)

// file: stack_ex1.c
#include<stdio.h>
#include<stdlib.h>

int main(int argc, char **argv)
{
 int a = 0x12345;
 int b = 0x98765432;
 char str[] = "hello";
 short array[] = {0x2, 0x4, 0x6, 0x8, 0xa};

 printf("0x%x\n", a);
 printf("0x%x\n", b);
 printf("%s\n",str);
 for (int i=0; i < sizeof(array) / sizeof(array[0]); i++) {
 printf("0x%x,", array[i]);
 }
 printf("\n");
 return 0;
}

26

Stack Allocation
Let's look at an example: Address Value

0x7fffffffe984
\0

o

0x7fffffffe980

l

l

e

h

0x7fffffffe97c

0x7fffffffe978 0xa

0x7fffffffe974

0x8

0x6

0x7fffffffe970

0x4

0x2

0x7fffffffe96c
0x98765432

0x7fffffffe968
0x12345

(gdb) p &a
$16 = (int *) 0x7fffffffe968
(gdb) p &b
$17 = (int *) 0x7fffffffe96c
(gdb) p &array[0]
$18 = (short *) 0x7fffffffe970
(gdb) p &str[0]
$19 = 0x7fffffffe980 "hello"
(gdb) x/30bx &a
0x7fffffffe968: 0x45 0x23 0x01 0x00 0x32 0x54 0x76 0x98
0x7fffffffe970: 0x02 0x00 0x04 0x00 0x06 0x00 0x08 0x00
0x7fffffffe978: 0x0a 0x00 0x40 0x00 0x00 0x00 0x00 0x00
0x7fffffffe980: 0x68 0x65 0x6c 0x6c 0x6f 0x00
(gdb)

$ gcc -g -O0 -std=gnu99 -Wall
 stack_ex1.c -o stack_ex1
$./stack_ex1
0x12345
0x98765432
hello
0x2,0x4,0x6,0x8,0xa,
$ gdb stack_ex1
(gdb) break 12
Breakpoint 1 at 0x40067d: file
stack_ex1.c, line 12.
(gdb) run
Starting program: stack_ex1

Breakpoint 1, main (argc=1,
argv=0x7fffffffea78) at stack_ex1.c:12
12 printf("0x%x\n",a);
(gdb)

// file: stack_ex1.c
#include<stdio.h>
#include<stdlib.h>

int main(int argc, char **argv)
{
 int a = 0x12345;
 int b = 0x98765432;
 char str[] = "hello";
 short array[] = {0x2, 0x4, 0x6, 0x8, 0xa};

 printf("0x%x\n", a);
 printf("0x%x\n", b);
 printf("%s\n",str);
 for (int i=0; i < sizeof(array) / sizeof(array[0]); i++) {
 printf("0x%x,", array[i]);
 }
 printf("\n");
 return 0;
}

27

"take a break"

created on January 25, 2023

by DALL·E 2 Artificial Intelligence

"pop art" style

https://creator.nightcafe.studio/creation/
qMxgt3u8i68DoyxFzT0f

28

https://creator.nightcafe.studio/creation/qMxgt3u8i68DoyxFzT0f
https://creator.nightcafe.studio/creation/qMxgt3u8i68DoyxFzT0f

Stack Frames
Every time you call a
function, the data for
the current function
needs to be saved.
The x86 operating
system handles this in
an elegant manner: a
function just uses
memory farther down
in the stack, and
leaves the part of the
stack that the calling
function was using
unchanged. Example:

int rotate_rgb(int rgb)
{
 // rgb -> brg
 int g = ((rgb & 0xff) << 16);
 return (rgb >> 8) | g;
}

void colorize(int *colors, size_t nelems)
{
 for (int i=0; i < nelems; i++) {
 colors[i] = rotate_rgb(colors[i]);
 }
}

int main(int argc, char **argv)
{
 size_t nelems = argc-1;
 int values[nelems];
 char *err;
 for (int i=0; i < argc-1; i++) {
 values[i] = strtol(argv[i+1],&err,0);
 }
 print_colors(values, nelems);
 colorize(values,sizeof(values)/sizeof(values[0]));
 print_colors(values, nelems);
 return 0;
}

Shared library text/
data

Stack

29

Stack Frames
Every time you call a
function, the data for
the current function
needs to be saved.
The x86 operating
system handles this in
an elegant manner: a
function just uses
memory farther down
in the stack, and
leaves the part of the
stack that the calling
function was using
unchanged. Example:

Shared library text/
data

Stack

int rotate_rgb(int rgb)
{
 // rgb -> brg
 int g = ((rgb & 0xff) << 16);
 return (rgb >> 8) | g;
}

void colorize(int *colors, size_t nelems)
{
 for (int i=0; i < nelems; i++) {
 colors[i] = rotate_rgb(colors[i]);
 }
}

int main(int argc, char **argv)
{
 size_t nelems = argc-1;
 int values[nelems];
 char *err;
 for (int i=0; i < argc-1; i++) {
 values[i] = strtol(argv[i+1],&err,0);
 }
 print_colors(values, nelems);
 colorize(values,sizeof(values)/sizeof(values[0]));
 print_colors(values, nelems);
 return 0;
}

i
nelems
values
err

main
argc
argv

30

Stack Frames
Every time you call a
function, the data for
the current function
needs to be saved.
The x86 operating
system handles this in
an elegant manner: a
function just uses
memory farther down
in the stack, and
leaves the part of the
stack that the calling
function was using
unchanged. Example:

Shared library text/
data

Stack

int rotate_rgb(int rgb)
{
 // rgb -> brg
 int g = ((rgb & 0xff) << 16);
 return (rgb >> 8) | g;
}

void colorize(int *colors, size_t nelems)
{
 for (int i=0; i < nelems; i++) {
 colors[i] = rotate_rgb(colors[i]);
 }
}

int main(int argc, char **argv)
{
 size_t nelems = argc-1;
 int values[nelems];
 char *err;
 for (int i=0; i < argc-1; i++) {
 values[i] = strtol(argv[i+1],&err,0);
 }
 print_colors(values, nelems);
 colorize(values,sizeof(values)/sizeof(values[0]));
 print_colors(values, nelems);
 return 0;
}

nelems
values
err

main

colors
nelems
i

colorize

argc
argv

31

Stack Frames
Every time you call a
function, the data for
the current function
needs to be saved.
The x86 operating
system handles this in
an elegant manner: a
function just uses
memory farther down
in the stack, and
leaves the part of the
stack that the calling
function was using
unchanged. Example:

Shared library text/
data

Stack

int rotate_rgb(int rgb)
{
 // rgb -> brg
 int g = ((rgb & 0xff) << 16);
 return (rgb >> 8) | g;
}

void colorize(int *colors, size_t nelems)
{
 for (int i=0; i < nelems; i++) {
 colors[i] = rotate_rgb(colors[i]);
 }
}

int main(int argc, char **argv)
{
 size_t nelems = argc-1;
 int values[nelems];
 char *err;
 for (int i=0; i < argc-1; i++) {
 values[i] = strtol(argv[i+1],&err,0);
 }
 print_colors(values, nelems);
 colorize(values,sizeof(values)/sizeof(values[0]));
 print_colors(values, nelems);
 return 0;
}

nelems
values
err

main

colors
nelems
i

colorize

rgb
grotate_rgb

argc
argv

32

Stack Frames
Every time you call a
function, the data for
the current function
needs to be saved.
The x86 operating
system handles this in
an elegant manner: a
function just uses
memory farther down
in the stack, and
leaves the part of the
stack that the calling
function was using
unchanged. Example:

Shared library text/
data

Stack

int rotate_rgb(int rgb)
{
 // rgb -> brg
 int g = ((rgb & 0xff) << 16);
 return (rgb >> 8) | g;
}

void colorize(int *colors, size_t nelems)
{
 for (int i=0; i < nelems; i++) {
 colors[i] = rotate_rgb(colors[i]);
 }
}

int main(int argc, char **argv)
{
 size_t nelems = argc-1;
 int values[nelems];
 char *err;
 for (int i=0; i < argc-1; i++) {
 values[i] = strtol(argv[i+1],&err,0);
 }
 print_colors(values, nelems);
 colorize(values,sizeof(values)/sizeof(values[0]));
 print_colors(values, nelems);
 return 0;
}

nelems
values
err

main

colors
nelems
i

colorize

argc
argv

33

Stack Frames
Every time you call a
function, the data for
the current function
needs to be saved.
The x86 operating
system handles this in
an elegant manner: a
function just uses
memory farther down
in the stack, and
leaves the part of the
stack that the calling
function was using
unchanged. Example:

Shared library text/
data

Stack

int rotate_rgb(int rgb)
{
 // rgb -> brg
 int g = ((rgb & 0xff) << 16);
 return (rgb >> 8) | g;
}

void colorize(int *colors, size_t nelems)
{
 for (int i=0; i < nelems; i++) {
 colors[i] = rotate_rgb(colors[i]);
 }
}

int main(int argc, char **argv)
{
 size_t nelems = argc-1;
 int values[nelems];
 char *err;
 for (int i=0; i < argc-1; i++) {
 values[i] = strtol(argv[i+1],&err,0);
 }
 print_colors(values, nelems);
 colorize(values,sizeof(values)/sizeof(values[0]));
 print_colors(values, nelems);
 return 0;
}

nelems
values
err

main
argc
argv

34

Parameter Passing
Parameters can also
be put onto the stack,
and they just behave
like local variables.

They might actually
point to other
elements on the
stack.

In our example, colors
points to the values
array. Non-pointers
are just copied (e.g.,
nelems).

Shared library text/
data

Stack

int rotate_rgb(int rgb)
{
 // rgb -> brg
 int g = ((rgb & 0xff) << 16);
 return (rgb >> 8) | g;
}

void colorize(int *colors, size_t nelems)
{
 for (int i=0; i < nelems; i++) {
 colors[i] = rotate_rgb(colors[i]);
 }
}

int main(int argc, char **argv)
{
 size_t nelems = argc-1;
 int values[nelems];
 char *err;
 for (int i=0; i < argc-1; i++) {
 values[i] = strtol(argv[i+1],&err,0);
 }
 print_colors(values, nelems);
 colorize(values,sizeof(values)/sizeof(values[0]));
 print_colors(values, nelems);
 return 0;
}

nelems
values
err

main

colors
nelems
i

colorize

argc
argv

35

Why we like stack allocation
It is fast. Allocating space on the stack is efficient because your program
already has access to the memory.

It is convenient. When you leave a function, all your stack-allocated data is
left in place, and there isn't anything to clean up. Think of the stack as
"scratch space" where your program can jot things down when it needs
them inside a function. The scope (lifetime) of the data is inside the function,
so it keeps things tidy.

Type safety. You are controlling the type of the variables, and therefore the
compiler can do lots of checks on the data. We will see that this isn't always
the case with heap memory.

36

Why we dislike stack allocation
It isn't that plentiful. You're limited to 8MB of data for your program, by
default (you can change this before you run the program if you want). This
might seem like a good deal of space, but if your program needs more
space, you can't get it from the stack!

Size fixed at declaration, with no option to resize. You can't resize an
array, and once you allocate it, it is there for the lifetime of your function or
block.

Limited scope. Once the function or block is finished, your stack-based
memory is gone! You can't return a pointer to a stack array, for instance (well,
you can, but your program will be corrupted).

37

Dynamic Allocation (malloc / realloc / free)
"Dynamic allocation" should be familiar to you if you took CS 106B, where you
used the new and delete operators to request memory for arrays and objects.

In C, we don't have objects, but we can request memory from the heap, using
three functions:

malloc

calloc

realloc

and we return the memory to the operating system using free.

38

malloc
The most common method for requesting memory from the heap is by using
malloc. The function is used to allocate a specified number of bytes:

void *malloc(size_t size);

Size is always in bytes, so often you need to calculate the number of bytes with
sizeof and a multiplication.

malloc returns a "void *" pointer, which basically means that you can assign the
return value to any pointer. Example:

int *scores = malloc(20 * sizeof(int)); // allocate an array of 20 ints.

(In reality, this is just an allocation of 80 bytes, which the compiler will treat as an int array)

If malloc returns NULL, then there wasn't enough memory for the request. :(39

calloc
calloc is like malloc, except that it takes two parameters which are multiplied to
calculate the number of bytes, and it zeros the memory for you (malloc does
not zero the memory!*)

void *calloc(size_t nmemb, size_t size);

nmemb * size will be bytes, so the following would be functionally equivalent:

int *scores = calloc(20, sizeof(int)); // allocate and zero 20 ints

// alternate (but slower)
int *scores = malloc(20 * sizeof(int)); // allocate an array of 20 ints.
for (int i=0; i < 20; i++) scores[i] = 0;

* it's a bit more subtle than that -- new memory that your process hasn't used before will be zeroed for security reasons by
malloc, but if the OS re-issues you memory, it won't be zeroed. 40

realloc
realloc can be used to (potentially) change the size of the memory block
pointed to by its pointer:

void *realloc(void *ptr, size_t size);

The realloc function returns a pointer to the memory block, which will often be
the same pointer you pass in as ptr. If it needs to move the data, it moves it for
you, frees the old memory, and then passes back a different pointer. If the
request fails, it returns NULL, but the original memory is not affected (e.g., your
original pointer is still valid). Example:

int *values = malloc(10 * sizeof(int)); // allocate space for 10 ints
... // fill up values, etc.
int *new_values = realloc(values, 20 * sizeof(int)); // increase the memory to 20 ints
if (new_values != NULL) values = new_values;
else { ...request failed, deal with gracefully }

41

free
When a function uses malloc, calloc, and realloc, the function is
responsible for returning the memory to the operating system when it no longer
needs it. Un-returned memory is called a memory leak, and wastes memory.

To return memory, the free function is used:

void free(void *ptr);

ptr must point to a previously allocated block (or it can be NULL). Once a
program frees memory, it cannot be used again. The pointer can, of course, be
re-used to point elsewhere.

42

dynamic memory allocation example
// file: allocation.c
#include<stdio.h>
#include<stdlib.h>
#include<error.h>

int main(int argc, char **argv)
{
 int nelems = argc - 1;
 int *scores = malloc(nelems * sizeof(int)); // allocate an array for args.
 if (scores == NULL) {
 error(1,0,"Could not allocate memory!");
 }

 for (int i=0; i < nelems; i++) {
 scores[i] = atoi(argv[i+1]);
 }

 // let's add some more scores
 nelems += 2;
 int *new_scores = realloc(scores,nelems * sizeof(int));
 if (new_scores == NULL) {
 error(1,0,"Could not reallocate memory!");
 }
 scores = new_scores;

 scores[nelems-2] = 90;
 scores[nelems-1] = 95;

 for (int i=0; i < nelems; i++) {
 printf("%d",scores[i]);
 i == nelems - 1 ? printf("\n") : printf(",");
 }

 free(scores);

 return 0;
}

$./allocation 90 85 92
90,85,92,90,95

$ valgrind ./allocation 90 85 92
==6038== Memcheck, a memory error detector
==6038== Copyright (C) 2002-2015, and GNU GPL'd, by Julian Seward et al.
==6038== Using Valgrind-3.11.0 and LibVEX; rerun with -h for copyright info
==6038== Command: ./allocation 90 85 92
==6038==
90,85,92,90,95
==6038==
==6038== HEAP SUMMARY:
==6038== in use at exit: 0 bytes in 0 blocks
==6038== total heap usage: 3 allocs, 3 frees, 1,056 bytes allocated
==6038==
==6038== All heap blocks were freed -- no leaks are possible
==6038==
==6038== For counts of detected and suppressed errors, rerun with: -v
==6038== ERROR SUMMARY: 0 errors from 0 contexts (suppressed: 0 from 0)

We can use valgrind to determine if there
are memory leaks:

You want to see the "All heap blocks were
freed" message. 43

References and Advanced Reading

•References:
•K&R C Programming (from our course)

•Course Reader, C Primer

•Awesome C book: http://books.goalkicker.com/CBook

•Advanced Reading:
•virtual memory: https://en.wikipedia.org/wiki/Virtual_memory

44

http://books.goalkicker.com/CBook
https://en.wikipedia.org/wiki/Virtual_memory

Extra Slides

45

Values of variables
char arr1[8]; // assume arr1 is at address 0x7ffdf94d7830
char *ptr1; // assume ptr1 is at address 0x7ffdf94d77e0

char *arr2[8]; // assume arr2 is at address 0x7ffdf94d77f0
char **ptr2; // assume ptr2 is at address 0x7ffdf94d77e8

What values print out?

printf("%p\n",arr1);
printf("%lu\n",sizeof(arr1));
printf("%p\n",ptr1);
printf("%lu\n",sizeof(ptr1));

printf("%p\n",arr2);
printf("%lu\n",sizeof(arr2));
printf("%p\n",ptr2);
printf("%lu\n",sizeof(ptr1));

46

Values of variables
char arr1[8]; // assume arr1 is at address 0x7ffdf94d7830
char *ptr1 = 0; // assume ptr1 is at address 0x7ffdf94d77e0

char *arr2[8]; // assume arr2 is at address 0x7ffdf94d77f0
char **ptr2 = 0; // assume ptr2 is at address 0x7ffdf94d77e8

What values print out?

printf("%p\n",arr1); // 0x7ffdf84d7830
printf("%lu\n",sizeof(arr1)); // 8
printf("%p\n",ptr1); // 0 (or (nil))
printf("%lu\n",sizeof(ptr1)); // 8

printf("%p\n",arr2); // 0x7ffdf94d77f0
printf("%lu\n",sizeof(arr2)); // 64
printf("%p\n",ptr2); // 0 (or (nil))
printf("%lu\n",sizeof(ptr1)); // 8

47

Values of variables

char *str = "a string"; // assume str has the value of 0x40073d
 // assume str's address is 0x7ffecdcbcc38

What bytes get moved, and where do they move to?

memmove(arr1,&str,8);
memmove(&ptr1,&str,8);
memmove(arr1,str,8);
memmove(ptr1,&str,8);

char arr1[8]; // assume arr1 is at address 0x7ffdf94d7830
char *ptr1 = 0; // assume ptr1 is at address 0x7ffdf94d77e0

48

Values of variables

char *str = "a string"; // assume str has the value of 0x40073d
 // assume str's address is 0x7ffecdcbcc38

What bytes get moved, and where do they move to?

memmove(arr1,&str,8); // "0x40073d" is moved from 0x7ffecdcbcc38 to 0x7ffdf94d7830
memmove(&ptr1,&str,8); // "0x40073d" is moved from 0x7ffecdcbcc38 to 0x7ffdf94d77e0
memmove(arr1,str,8); // "a string" (without \0) is moved from 0x40073d to
 // 0x7ffdf94d7830
memmove(ptr1,&str,8); // seg fault!

char arr1[8]; // assume arr1 is at address 0x7ffdf94d7830
char *ptr1 = 0; // assume ptr1 is at address 0x7ffdf94d77e0

49

