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Today's Topics

• Logistics

• Midterm next Wednesday, in person — we will post information about the 

midterm early this week.

• Reading: Reader: Floating Point, Textbook: Chapter 2.4

• Programs from class: /afs/ir/class/cs107/samples/lect8

• Floating Point Numbers


• Real Numbers

• Fixed Point

• IEEE 754 Floating Point


• Normalized values

• Denormalized values

• Exceptional values

• Arithmetic



Real Numbers

⅕



Real Numbers

⅕ = 0.2



Real Numbers

⅓



Real Numbers

⅓ = 0.33333…



Real Numbers

⅓ = 0.33333…
When I was in 6th grade, this was a mind blowing concept.



Fractions

⅓ = 0.33333…
Especially this



Real Numbers

π = 3.14159…
And don't get me started on this



Real Numbers
Once we leave the realm of integers, real numbers become … tricky. 


• Some rational numbers, e.g., ⅕, can be represented exactly, by a fixed number 
of decimal digits (0.2 in this case)


• Some rational numbers, e.g., ⅓, can not be represented exactly, and we have 
this idea of "repeating indefinitely," which we represent with "…" (0.33333…)


• Irrational numbers can never be represented by a fixed number of decimal digits, 
and the meaning of "…" means "indefinitely" but loses the "repeating" part. 
Irrational numbers can never be represented exactly using a digit notation.

The big question: how do we represent real numbers in a computer?



Real Numbers in a Computer

As always, we have choices. Here are some constraints:


1. We want to represent real numbers in a fixed number of bits. This 
means that we aren't going to be able to represent all real 
numbers exactly, nor even all rational numbers exactly. 
Furthermore, we can't even represent all rational numbers in a 
range exactly (there are infinitely many rational numbers in any 
fixed range).


2. We want to represent a large range of numbers.

3. We want to be able to perform calculations on the numbers.

The big question: how do we represent real numbers in a computer?



Real Numbers in a Computer

When we represented integers, we implicitly placed the decimal point 
(or binary point, in base 2) after the least significant digit, and we 
limited ourselves to positive powers of our base. E.g., 1234 is really 
1234.0000…


We could just move the decimal place, and use that as our system 
for representing real numbers:


In decimal:

e.g., 123.45

One idea: Fixed Point



Fixed Point

e.g., 123.45


What range of numbers can we represent now?



e.g., 123.45


What range of numbers can we represent now? 0 to 999.99

Fixed Point



e.g., 123.45


What range of numbers can we represent now?
What is the "precision" we can represent (i.e., how precise?)

0 to 999.99

Fixed Point



e.g., 123.45


What range of numbers can we represent now?
What is the "precision" we can represent (i.e., how precise?)

0 to 999.99

we can represent five decimal digits of precision, 
to the 100th place

Fixed Point



e.g., 123.45


We can't represent some rational numbers exactly:


123.456

123.333…

1000 (overflow? Also, 999.991, or 999.9901, or 999.99001, or …)

0.001 (underflow?)

We would have to round or truncate, or over/under-flow.

Fixed Point



e.g., 123.45


Fixed-point arithmetic is 
pretty easy:


 123.45
+678.90
 802.35

Fixed Point



e.g., 123.45


Fixed-point arithmetic is 
pretty easy:


 123.45
+678.90
 802.35

 100.22
*  1.08
  80176
 000000
1002200
1082376 = 108.2376
        = 108.24
        (rounded)  

Fixed Point



Fixed point has its uses, but it is somewhat limiting. We can do 
regular arithmetic, and we know how many decimal places of 
precision we get.


However, the range is set by where we fix the decimal place, and we 
had hoped for a large range. If we set the decimal place to be to the 
left of the most significant digit for a five-digit number, our range 
would only be 0 to 0.99999.

Fixed Point



A different idea is to represent numbers in the form 


In this form, we will break our number into two parts (actually, three, 
including a sign bit), with an exponent (y) and a fractional value (x).


Before we get into the details, let's investigate what fractional values 
in binary look like. Recall, in decimal:

Floating Point

Digits after the decimal point are represented by negative powers of 
10.



In binary, digits after the binary point are represented by negative powers of two:

Fractional Values in Binary

http://web.stanford.edu/class/cs107/float/
Online binary to decimal converter:

http://web.stanford.edu/class/cs107/float/


Example: 101.11 in binary:  

Fractional Values in Binary

What happens to your number if you shift the binary point to the left by one?



Example: 101.11 in binary:  

Fractional Values in Binary

What happens to your number if you shift the binary point to the left by one?

The number is divided by two.



Example: 101.11 in binary:  

Fractional Values in Binary

What happens to your number if you shift the binary point to the left by one?

The number is divided by two.

What happens to your number if you shift the binary point to the right by one?



Example: 101.11 in binary:  

Fractional Values in Binary

What happens to your number if you shift the binary point to the left by one?

The number is divided by two.

What happens to your number if you shift the binary point to the right by one?

The number is multiplied by two.



Example: 101.11 in binary:  

Fractional Values in Binary

What happens to your number if you shift the binary point to the left by one?

The number is divided by two.

What happens to your number if you shift the binary point to the right by one?

The number is multiplied by two.

What is represented by 0.111111…1?



Example: 101.11 in binary:  

Fractional Values in Binary

What happens to your number if you shift the binary point to the left by one?

The number is divided by two.

What happens to your number if you shift the binary point to the right by one?

The number is multiplied by two.

What is represented by 0.111111…1?

Numbers just below 1, e.g.: Shorthand: 1-𝜖



Just like decimal with numbers like ⅓ and ⅙, binary cannot represent exactly any 
numbers like ⅓ and ⅕, nor even ⅒:

Fractional Values in Binary

// testTenth.c
#include<stdio.h>
#include<stdlib.h>

int main()
{
    float f = 0.1;
    // print with 27 decimal places
    printf("%.27f\n",f);
    return 0;
}

$ ./testTenth
0.100000001490116119384765625

Fractional binary notation can 
only exactly represent numbers 
that can be written in the form:



IEEE Floating Point
When designing a number format, choices need to be made about the 
format specification. In the late 1970s, Intel sponsored William Kahan (from 
Berkeley…) to design a floating point standard, which formed the basis for 
the "IEEE Standard 754," or IEEE Floating Point, which almost all computers 
use today. The standard defines the bit pattern (32-bit, 64-bit, etc.) as a 
number in the form:

Where:

• The sign s is negative (s == 1) or positive (s == 0), with the sign for 

numerical value 0 as a special case.

• The significand M (sometimes called the Mantissa), is a fractional binary 

number that ranges either between 1 and 2-𝜖 or between 0 and 1-𝜖.

• The exponent E weights the value by a (possibly negative) power of 2. 



IEEE Floating Point Examples

Example: For s=0, M=1.5, E=9:




IEEE Floating Point

The bit representation of a floating point number is divided into three fields 
to encode these values: 


• The single sign bit s directly encodes the sign s. 

• The k-bit exponent field,                                 encodes the exponent E.

• The n-bit fraction field                                  encodes the significand M, 

but the value encoded also depends on whether or not the exponent field 
equals 0. 
 31 30 23 22 0

s exp fracSingle precision (float)



Before We Continue

Right now, you're saying to yourself, "Uhh…this is going to be complicated."

31 30 23 22 0

s exp fracSingle precision (float)



Before We Continue

Right now, you're saying to yourself, "Uhh…this is going to be complicated."


Yes, it does take some time to learn. We want you to appreciate a few things 
about the IEEE floating point format:
1. It is based on decisions and choices that were made, with good reason 

(we will discuss those reasons).

2. It is efficient, and attempts to eek out as much as it can from those 32 or 

64 bits — computing is often about efficiency, and the people who came 
up with the standard really thought hard about it.


3. We don't want you to think "I could never come up with that!" — rather, 
we want you to appreciate it for what it is.

31 30 23 22 0

s exp fracSingle precision (float)



Normalized Floats

•A float is considered to have a "normalized" value if the exponent is not all 
0s and it is not all 1s, and is the most common case (e.g., bits 23-30 are not 
the value 0 or the value 255).


•The exponent is a signed integer in biased form. The exponent has a value 
exp - bias, where the "bias" is 2k-1 - 1, and where k is the number of bits in 
the exponent (k=8 for floats, meaning that the bias is 27 - 1 = 127). For 
floats, the exponent range is -126 to +127.


•The fraction is interpreted as having a fractional value f, where 0 ≤ f < 1, and 
having a binary representation of                         , with the binary point to 
the left of the most significant bit.


•The significand is defined to be M = 1 + f. This is an implied leading 1 
representation, and a trick for getting an additional digit for free!


31 30 23 22 0

s exp fracSingle precision (float)



An extra bit of precision for free?

•Yes! We can always adjust the exponent so that the significand is in the 
range 1 ≤ M < 2 (assuming no overflow), so we don't need to explicitly 
represent the leading bit, because it is always 1 (very cool!)


•Remember, the designers of IEEE Floating Point wanted the best system, 
and this is a cool idea.


Example:

31 30 23 22 0

s exponent (8 bits) fraction (23 bits)Single precision (float)

31 30 23 22 0

0 01111110 00000000000000000000000

•Sign: 0 (positive)

•Exponent: 01111110 = 126 (biased), so exponent of 2 will be 126 - 127 = -1

•Fraction: 0, which is assumed to be 1.0 (binary), which is 1.0 decimal

•Therefore, this number represents +1.0 x 2-1 = 0.5    (to the converter!) 

https://www.h-schmidt.net/FloatConverter/IEEE754.html


Let's try some more…

•Example:

31 30 23 22 0

s exponent (8 bits) fraction (23 bits)Single precision (float)

31 30 23 22 0

0 10000100 01010000000000000000000

•Sign: 0 (positive)

•Exponent: 10000100 = 132 (biased), so exponent of 2 will be 132 - 127 = 5

•Fraction: 0101, which is assumed to be 1.0101 (binary), which is:


•Therefore, this number represents +1.3125 x 25 = 42.0   (to the converter!) 

https://www.h-schmidt.net/FloatConverter/IEEE754.html

https://www.h-schmidt.net/FloatConverter/IEEE754.html
https://www.h-schmidt.net/FloatConverter/IEEE754.html


Let's try some more…

•Example:

31 30 23 22 0

s exponent (8 bits) fraction (23 bits)Single precision (float)

31 30 23 22 0

0 10000100 01011000000000000000000

•Sign: 0 (positive)

•Exponent: 10000100 = 132 (biased), so exponent of 2 will be 132 - 127 = 5

•Fraction: 01011, which is assumed to be 1.01011 (binary), which is:


•Therefore, this number represents +1.34375 x 25 = 43.0    (to the converter!) 

https://www.h-schmidt.net/FloatConverter/IEEE754.html


Let's try some more…

•Example:

31 30 23 22 0

s exponent (8 bits) fraction (23 bits)Single precision (float)

•Sign: 1 (negative)

•Exponent: 10000101 = 133 (biased), so exponent of 2 will be 133 - 127 = 6

•Fraction: 1001, which is assumed to be 1.1001 (binary), which is:


•Therefore, this number represents -1.5625 x 26 = -100.0    (to the converter!)

31 30 23 22 0

1 10000101 10010000000000000000000

https://www.h-schmidt.net/FloatConverter/IEEE754.html


Let's try some more…

•Example:

31 30 23 22 0

s exponent (8 bits) fraction (23 bits)Single precision (float)

•Sign: 0 (positive)

•Exponent: 01111010 = 122 (biased), so exponent of 2 will be 122 - 127 = -5

•Fraction: 1001, which is assumed to be 1.1001 (binary), which is:


•Therefore, this number represents +1.5625 x 2-5 = 0.048828125    

                                                                                     (to the converter!)

31 30 23 22 0

0 01111010 10010000000000000000000

https://www.h-schmidt.net/FloatConverter/IEEE754.html


3 minute break



When is a floating point value an integer?

•Before we tackle that question, let's ask another: what is the exponent really 
doing to the significand?

31 30 23 22 0

s exponent (8 bits) fraction (23 bits)Single precision (float)

•Remember: 

•We are multiplying the significand (M) by a power of two…in other words, 
we are shifting it.


•So…if the un-biased exponent shifts the significand enough bits so that 
none of the fractional bits are still fractions, then we have an integer.



When is a floating point value an integer?

•Example: Let's convert 1234567 decimal to floating point

•We need to divide by a power of two such that we get a fraction that is between 1 and 2.

•First, let's convert 1234567 to binary for the significand:


100101101011010000111 (use this website for the conversion)

•Remove the leading 1 (it's free!), and add zeros at the end to get to 23 bits:


•Now determine the amount we need to shift left to get the binary representation in the 
form of 1.xxxx (in this case, 20), and add the bias: 20 + 127 = 147, and convert to binary 
(also, add the sign bit, 0):


31 30 23 22 0

s exponent (8 bits) fraction (23 bits)Single precision (float)

31 30 23 22 0

00101101011010000111000

31 30 23 22 0

0 10010011 00101101011010000111000

http://web.stanford.edu/class/cs107/float/convert.html


Denormalized Floats

•When the exponent is all zeros, this is called "denormalized" form. We interpret the 
exponent differently: the exponent is now 1-Bias (or, you can think of the bias now being 1 
less, or 126 instead of 127 in the case of 32-bit floats). The significand value is simply the 
fraction, without a leading 1.


•Why do we do this?

•We now have a way to represent zero (all 0s). Technically, all 0s is +0.0, and a 1 followed 
by all 0s is -0.0.


•There is "gradual underflow," meaning that it allows us to extend the lower range of 
representable numbers, and to limit the amount of error with very small numbers. See 
here for more information than you may ever want: https://docs.oracle.com/cd/
E19957-01/816-2464/ncg_math.html 

31 30 23 22 0

s 00000000 fraction (23 bits)Single precision (float)

https://docs.oracle.com/cd/E19957-01/816-2464/ncg_math.html
https://docs.oracle.com/cd/E19957-01/816-2464/ncg_math.html


Exceptional Floating Point Values

•When the exponent is all ones, this is called "exceptional" form. These numbers are not 
real numbers in the sense that we can calculate with them (except in very certain 
circumstances).


•Exceptional numbers can denote the infinities:

• 0 11111111 00000000000000000000000 is +infinity

• 1 11111111 00000000000000000000000 is -infinity


•Exceptional numbers also define the "NaN" (Not a Number) numbers, which can have 
special purposes, but are largely ignored (and there are millions of them!)


•You can generate exceptional numbers in various ways:

• The divisions 0/0 and ±∞/±∞

• The multiplications 0×±∞ and ±∞×0.

• The additions ∞ + (−∞), (−∞) + ∞ and equivalent subtractions.

• The square root of a negative number.


•See https://en.wikipedia.org/wiki/NaN#Operations_generating_NaN for more details.

31 30 23 22 0

s 11111111 fraction (23 bits)Single precision (float)

https://en.wikipedia.org/wiki/NaN#Operations_generating_NaN


Arithmetic with Floating Point Numbers
On the first day of class, we looked at the following program:

#include<stdio.h>
#include<stdlib.h>

int main() {
    float a = 3.14;
    float b = 1e20;

    printf("(3.14 + 1e20) - 1e20 = %g\n", (a + b) - b);
    printf("3.14 + (1e20 - 1e20) = %g\n", a + (b - b));

    return 0;
}

$ ./floatMultTest
(3.14 + 1e20) - 1e20 = 0.000000
3.14 + (1e20 - 1e20) = 3.140000

we now have the tools to see why this happens!



Arithmetic with Floating Point Numbers
You might be thinking: oh, this is just overflowing. But it is more subtle than that.

    float a = 3.14;
    float b = 1e20;
    printf("(3.14 + 1e20) - 1e20 = %f\n", (a + b) - b);
    printf("3.14 + (1e20 - 1e20) = %f\n", a + (b - b));

Let's look at the binary representations for 3.14 and 1e20:
31 30 23 22 0

0 10000000 100100011110101110000113.14:  
31 30 23 22 0

0 11000001 010110101111000111011001e20:  

How are we going to add these numbers?



Arithmetic with Floating Point Numbers

You cannot simply add the two significands together, you have to align their

binary points. If we wanted to add the decimal values, it would look like this:


                      3.14
+ 100000000000000000000.00
  100000000000000000003.14

31 30 23 22 0

0 10000000 100100011110101110000113.14:  
31 30 23 22 0

0 11000001 010110101111000111011001e20:  

Let's see what this looks like in 32-bit IEEE format…



Arithmetic with Floating Point Numbers
Let's see what this looks like in 32-bit IEEE format…

  100000000000000000003.14

First: Convert to proper binary (http://web.stanford.edu/class/cs107/float/convert.html):
1010110101111000111010111100010110101100011000100000000000000000011.001000111101011100001010001111010111…

Second: Find the most significant 1 and take the next 23 digits after the 1 (we get the 1 
for free!). We round up if the rest of the number contributes more than half (0.1b is 1/2): 
1 01011010111100011101011 1100. (we round up to: 
01011010111100011101100. This is the significand.


Third: Count how many places we need to shift left to put the number in 1.xxx format. In 
this case it is 66. We add 127 to this number, which gives us 127 + 66 = 193, which is 
our exponent (binary: 11000001)


Fourth: if the sign is positive, the sign bit will be 0, otherwise 1.

http://web.stanford.edu/class/cs107/float/convert.html


Arithmetic with Floating Point Numbers
So, we are left with the following for 100000000000000000003.14 decimal:

31 30 23 22 0

0 11000001 01011010111100011101100

Let's compare this to 1e20 that we had before:
31 30 23 22 0

0 11000001 01011010111100011101100

Identical! We didn't have enough bits to differentiate between 1e20 and   
100000000000000000003.14




Arithmetic with Floating Point Numbers
Back to our original example:

    float a = 3.14;
    float b = 1e20;
    printf("(3.14 + 1e20) - 1e20 = %f\n", (a + b) - b);
    printf("3.14 + (1e20 - 1e20) = %f\n", a + (b - b));

$ ./floatMultTest
(3.14 + 1e20) - 1e20 = 0.000000
3.14 + (1e20 - 1e20) = 3.140000

Clearly, 1e20 - 1e20 will produce 0 (no need to shift the binary points). What this 
really means is that floating point arithmetic is not associative. In other words, 
the order of operations matters.



Arithmetic with Floating Point Numbers
Here is another example:

The rounding that happens during the calculation of 0.1 + 0.2 produces a different 
number than 0.3!

int main()
{
    double a = 0.1;
    double b = 0.2;
    double c = 0.3;
    double d = a + b;
    printf("0.1 + 0.2 == 0.3 ? %s\n", a + b == c ? "true" : "false");
    return 0;
}

$ ./floatEquality
0.1 + 0.2 == 0.3 ? false



Arithmetic with Floating Point Numbers
int main()
{
    double a = 0.1;
    double b = 0.2;
    double c = 0.3;
    double d = a + b;
    printf("0.1 + 0.2 == 0.3 ? %s\n", a + b == c ? "true" : "false");
    printf("0.1:\t%.50g\n",a);
    printf("0.2:\t%.50g\n",b);
    printf("0.3:\t%.50g\n",c);
    printf("a + b:\t%.50g\n",d);
    return 0;
}
$ ./floatEquality
0.1 + 0.2 == 0.3 ? false
0.1: 0.1000000000000000055511151231257827021181583404541
0.2: 0.2000000000000000111022302462515654042363166809082
0.3: 0.2999999999999999888977697537484345957636833190918
a + b: 0.30000000000000004440892098500626161694526672363281

See extra slide for gdb run.



Arithmetic with Floating Point Numbers
Here is another example:

#include<stdio.h>
#include<stdlib.h>
int main()
{
    printf("16777224.0f == 16777225.0f ? %s\n", 
            16777224.0f == 16777225.0f ? "true" : "false");
    return 0;
}



Arithmetic with Floating Point Numbers
Here is another example:

It turns out that 16777225 is an integer that you cannot represent as a 32-bit float.

#include<stdio.h>
#include<stdlib.h>
int main()
{
    printf("16777224.0f == 16777225.0f ? %s\n", 
            16777224.0f == 16777225.0f ? "true" : "false");
    return 0;
}

$ ./floatEquality2
16777224.0f == 16777225.0f ? true



Floating Point Takeaways
• The IEEE Floating Point Standard was a carefully thought-out way to get the 

most out of a discrete set of bits. It may not be simple, but it is a great study in 
good engineering design.


• Floating point numbers represent a very large range, in a limited number of bits. 
A 32-bit float can only hold a bit over 4 billion numbers and has a range of 
-3.4E+38 to +3.4E+38. Not only is this literally an infinite number of reals that 
the format must try and represent, but that is a phenomenal range of numbers. 
The 64-bit double range is -1.7E+308 to +1.7E+308 (!)


• Most numbers are, therefore, only represented approximately in float format, 
including many integers. Example:

• 1 trillion = 1,000,000,000,000, and in 32-bit floating point, it is actually 

represented by the value 999,999,995,904, off by 4096!

• You almost certainly don't want to use floats for currency!



Floating Point Takeaways
• You have to be very careful with your arithmetic when you are dealing with floats:


• Associativity does not hold for numbers far apart in the range.

• Many numbers are not exact (e.g., 0.1, 0.4, etc.)

• Equality comparison operations are often unwise.

•



References and Advanced Reading
• References:


• IEEE 754: https://en.wikipedia.org/wiki/IEEE_754

• IEEE Floating point: http://steve.hollasch.net/cgindex/coding/ieeefloat.html

• Floating point arithmetic: https://en.wikipedia.org/wiki/Floating-

point_arithmetic#Dealing_with_exceptional_cases 

• Advanced Reading:


• Comparing floats using equality: https://stackoverflow.com/questions/
1088216/whats-wrong-with-using-to-compare-floats-in-java


• Floating point converter: https://www.h-schmidt.net/FloatConverter/
IEEE754.html


• What Every Computer Scientist Should Know About Floating-Point Arithmetic

• Floating point rounding errors: https://

softwareengineering.stackexchange.com/questions/101163/what-causes-
floating-point-rounding-errors 


• Why do we have a bias in floating point exponents?

https://en.wikipedia.org/wiki/IEEE_754
http://steve.hollasch.net/cgindex/coding/ieeefloat.html
https://en.wikipedia.org/wiki/Floating-point_arithmetic#Dealing_with_exceptional_cases
https://en.wikipedia.org/wiki/Floating-point_arithmetic#Dealing_with_exceptional_cases
https://stackoverflow.com/questions/1088216/whats-wrong-with-using-to-compare-floats-in-java
https://stackoverflow.com/questions/1088216/whats-wrong-with-using-to-compare-floats-in-java
https://www.h-schmidt.net/FloatConverter/IEEE754.html
https://www.h-schmidt.net/FloatConverter/IEEE754.html
https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html
https://softwareengineering.stackexchange.com/questions/101163/what-causes-floating-point-rounding-errors
https://softwareengineering.stackexchange.com/questions/101163/what-causes-floating-point-rounding-errors
https://softwareengineering.stackexchange.com/questions/101163/what-causes-floating-point-rounding-errors
https://stackoverflow.com/a/2835476/561677


Extra Slides

Extra Slides



gdb run for 0.1 + 0.2 != 0.3
$ gdb floatEquality
The target architecture is assumed to be i386:x86-64
Reading symbols from floatEquality...done.
(gdb) break main
Breakpoint 1 at 0x400535: file floatEquality.c, line 5.
(gdb) run
Starting program: /afs/ir.stanford.edu/class/cs107/samples/lect10/floatEquality

Breakpoint 1, main () at floatEquality.c:5
5     double a = 0.1;
(gdb) n
6     double b = 0.2;
(gdb)
7     double c = 0.3;
(gdb)
8     double d = a + b;
(gdb)
9     printf("0.1 + 0.2 == 0.3 ? %s\n", a + b == c ? "true" : "false");
(gdb) x/gt &c
0x7fffffffe9e0: 0011111111010011001100110011001100110011001100110011001100110011
(gdb) x/gt &d
0x7fffffffe9e8: 0011111111010011001100110011001100110011001100110011001100110100
(gdb)


