CS 107
| ecture 12:

Assembly Part [V

Friday, February 24, 2023 A[6] ==13

Computer Systems

Winter 2023 0x40055d <val at index> movslg %esi,$rsi
Stanford University 0x400560 <val at index+3> mov (%rdi,%rsi,4),%eax
Computer Science Department 0x400563 <val at index+6> retq

Reading: Course Reader: x86-64 Assembly
Language, Textbook: Chapter 3.1-3.4

Lecturer: Chris Gregg

loday's lopics

Reading: Chapter 3.7.4-3.7.6, 3.8-3.9
Programs from class: /afs/ir/class/csl07/samples/lectl?2
Logistics
Midterm requests in by Thursday
Final day of x86 Assembly Language
Procedures (from last slide-deck)
Local storage on the stack
L ocal storage In registers
Recursion
Arrays
Structures
Alignment
Function pointers
Assembly wrap-up, and comments on bank assignment.

Array Allocation and Access

- Arrays in C map in a fairly straightforward way to X86 assembly code, thanks to
the addressing modes available in instructions.

- When we perform pointer arithmetic, the assembly code that Is produced will have
address computations built into them.

- Optimizing compilers are very good at simplifying the address computations (in lab
you Will see another optimizing compiler benefit in the form of division — If the
compiler can avoid dividing, it willl). Because of the transformations, compiler-
generated assembly for arrays often doesn't look like what you are expecting.

+ Consider the following form of a data type T and integer constant /N:

I A[N]

+ T'he starting location Is designated as xa
- Ihe declaration allocates N * sizeof (/) bytes, and gives us an identifier that
we can use as a pointer (but it isn't a pointer!), with a value of xa.

Example:

char
char
int
double

The memory referencing operations in Xx86-64 are designed to simplify array
acCess. Suppose we wanted to access C[3] above. If the address of C is In

register $rdx, and 3 IS In register $rcx
The following copies C[3] Into %eax,

movl

Array Allocation and Access

Array Element Size Total Size Start address Element i
A[l12]; A 1 12 XA XA + |
*B[8]; B 8 64 XB Xg + 8I
C[6]; C 4 24 XC Xc + 4l
*D[5] D 8 40 XD XD + 8i

(3rdx,%rcx,4),

seax

Pointer Arithmetic

C allows arithmetic on pointers, where the computed value is calculated according
to the size of the data type referenced by the pointer.

The array reference A[i] iIs identical to * (A+1)

Example: if the address of array E Is In $rdx, and the integer index, i, IS In $rcx,

the following are some expressions involving E:

Expression Type Value Assembly Code

E int * XE movqg %rdx, %rax

E[0] int M([XE] movl (%rdx), %eax

E[i] int M([xe+4i] movl (%rdx,%rcx,4) %eax
SE[2] int * Xg+8 leag 8(%rdx), %rax

E+i-1 int * Xe+41-4 leag -4 (%rdx,%rcx,4), %rax

*(E+i-3) int M[xe+4i-12] movl -12(%rdx,%rcx,4) %eax

&SE[1]-E long | movqg $%rcx, $rax

Pointer Arithmetic

Practice: Xs is the address of a short integer array, S, stored in $rdx, and a long
INnteger index, i, Is stored In reqister $rcx.

For each of the following expressions, give its type, a formula for its value, and an
assembly-code implementation. The result should be stored In grax ifitis a
pointer, and the result should be In register $ax If it has a data type short.

Expression Type Value Assembly Code

S+1

S[3]
&S[1]
S[4*i+1]

S+1-5

Pointer Arithmetic

Practice: Xs is the address of a short integer array, S, stored in $rdx, and a long
INnteger index, i, Is stored In reqister $rcx.

For each of the following expressions, give its type, a formula for its value, and an
assembly-code implementation. The result should be stored In grax ifitis a
pointer, and the result should be In register $ax If it has a data type short.

Expression Type Value Assembly Code
S+1 short * Xs + 2 leaq 2(%rdx),%rax

S[3] short M[xs + 6] movw 6 (3rdx),%ax

&S[1] short * Xs + 21 leag (%rdx,%rcx,2),%rax
S[4*1+1] short M[xs + 81 + 2] movw 2(%rdx,%rcx,8),%ax

S+1-5 short * Xs + 21 - 10 leag -10(%rdx,%rcx,2),%rax

Structures

The C struct declaration is used to group objects of different types into a single
unit.

Each "field" is referenced by a name, and can be accessed using dot (.) or (if
there Is a pointer to the struct) arrow (-=>) notation.

Structures are kept in contiguous memory

A pointer to a struct is to its first byte, and the compiler maintains the byte offset
iInformation for each field.

In assembly, the references to the fields are via the byte offsets.

Structures

Example:
struct rec { - This structure has four fields: two 4-byte values of type int, a
it 5. two-element array of type int, and an 8-byte int pointer, for a
int a[2]; total of 24 bytes:
int *p;
Offset 0 4 38 16 24
Contents 1 J af[0] af[l] P

The numbers along the top of the diagram are the byte offsets of the fields from
the beginning of the structure.
Note that the array is embedded in the structure.

o access the fields, the compiler generates code that adds the field offset to the
address of the structure.

Structures

Example:
struct rec { - This structure has four fields: two 4-byte values of type int, a
it 5. two-element array of type int, and an 8-byte int pointer, for a
int a[2]; total of 24 bytes:
tnt *p; Offset 0 4 38 16 24
Contents 1 J af[0] af[l] P

Example: Variable r of type struct rec * is in register $rdi. The following copies
element r->1i to element r->7:

movl (%rdi), %eax // get r->i

movl %eax, 4(%rdi) // store in r->j

added to the address of $rdi to store mto J.

Structures

Example:
struct rec { - This structure has four fields: two 4-byte values of type int, a
int 1 two-element array of type int, and an 8-byte int pointer, for a
int j; ’ ’
int a[2]; total of 24 bytes:
int *p;
Offset 0 4 38 16 24
Contents 1 J af[0] af[l] P

We can generate a pointer to a field by adding the field's offset to the struct
address. To generate & (r->a[1]) we add offset 8 + 4 12. For a pointer r
N reqgister $rdi and long int variable i in $rsi, we can generate the pointer
value & (r-=>af[i]) with one instruction:

leag 8(%rdi,%rsi,4), %rax // set %rax to &r->a[i]

Structures

Example:
struct rec { - This structure has four fields: two 4-byte values of type int, a
it 5. two-element array of type int, and an 8-byte int pointer, for a
int a[2]; total of 24 bytes:
int *p;
Offset 0 4 38 16 24
Contents 1 J af[0] af[l] P

The following code implements r->p = &r->a[r->i + r->j];
// r in %rdi

movl 4(%rdi), %eax // get r->7j
addl (%rdi), %eax // add r->i
cltqg // extend %eax to 8 bytes, %rax

leaqg 8(%rdi,%rax,4), %rax // compute &r->a[r->i + r->j] ==,
movq %$rax, 16(%rdi) // store in r->p

Structures

Example:
struct rec { - This structure has four fields: two 4-byte values of type int, a
it 5. two-element array of type int, and an 8-byte int pointer, for a
int a[2]; total of 24 bytes:
tnt *p; Offset 0 4 38 16 24
Contents 1 J af[0] af[l] P

Notice that all struct manipulation is handled at compile time, and the machine
code doesn't contain any information about the field declarations or the names of

the fields.
The compiler does all the work, keeping track as it produces the assembly code.

BTW, if you're curious about how the compiler actually does the transformation
from C to assembly, take a compilers class, e.g., CS143.

Data Alignment

Computer systems often put restrictions on the allowable addresses for primitive
data types, requiring that the address for some objects must be a multiple of
some value K (hormally 2, 4, or 8).

These alignment restrictions simplify the design of the hardware.

For example, suppose that a processor always fetches 8 bytes from the memory
system, and an address must be a multiple of 8. If we can guarantee that any
double will be aligned to have its address as a multiple of 38, then we can read or
write the values with a single memory access.

For x380-64, Intel recommends the following alignments for best performance:

K Types

1 char

2 short

4 int, float
8

long, double, char =*

Data Alignment

The compiler enforces alignment by making sure that every data type is organized
IN such a way that every field within the struct satisties the alignment restrictions.
For example, let's look at the following struct:

struct S1 {

int 1;
char c¢;
int j;
. Offset 0 4 5 9
} ' Contents i C j

f the compiler used a minimal allocation:
This would make it impossible to align fields i (offset O) and 5 (offset 5). Instead,
the compiler inserts a 3-byte gap between fields ¢ and j:

Offset 0 4 5 8 12

Contents i C]

*>oe
""""""
- A

:;;é > z 9 “'--

R FR N

° ,.-ﬂ, N £/'9@) .i
g A\ \

So, don't be surprised if your structs have a sizeof () thatis larger than you expect! ({ 7+ 2

‘‘‘‘‘
000000

Function Pointers in Assembly

- Let's look at the following code:

void *gfind max(void *arr, int n, size t elemsz,
int (*compar) (const void *, const void

volid *pmax = arr;
for (int 1 = 1; 1 < n; 1++) {
void *ith = (char *)arr + i1*elemsz;
if (compar(ith, pmax) > 0)
pmax = 1ith;
}

return pmax;

cmp alpha(const void *p, const void *q)

const char *first = *(const char **)p;
const char *second = *(const char **)q;
return strcmp(first, second);

int main(int argc, char *argv[])

{

char **pmax gfind max(argv+l, argc-1, sizeof(argv[0]), cmp alpha);
printf ("max $s\n", *pmax);
return O0;

Function Pointers in Assembly

- Let's look at the following code:

void *gfind max(void *arr, int n, size t elemsz,
int (*compar) (const void *, const void *))

{

volid *pmax = arr;
for (int 1 = 1; 1 < n; 1++) {
void *ith = (char *)arr + i*elemsz;
if (compar(ith, pmax) > 0)
pmax = 1th;
}

return pmax;

cmp alpha(const void *p, const void *q)

const char *first = *(const char **)p;
const char *second = *(const char **)q;
return strcmp(first, second);

int main(int argc, char *argv[])

{

char **pmax
printf ("max
return O0;

gfind max(argv+l, argc-1,
$s\n", *pmax);

sizeof(argv[0]), cmp alpha);

+ Because compar IS a function
pointer, the compiler calls the
function via the address that Is
N the compar variable.

- Let's take a look at this in gdb.

References and Advanced Reading

- References:

- Stanford guide to x86-64: https://web.stanford.edu/class/cs107/quide/
Xx86-64.html

- CS107 one-page of x86-64: https://web.stanford.edu/class/cs10//resources/
onepage x86-64.pdf

- gdbtui: https://beej.us/quide/bgadb/

+ More gdbtui: https://sourceware.org/gdb/onlinedocs/gdb/TUl.html

- Compiler explorer: https://gcc.godbolt.org
- Advanced Reading:

- Stack frame layout on x86-64: https://eli.thegreenplace.net/2011/09/06/stack-

frame-layout-on-x86-64

- X86-64 Intel Software Developer manual: https://software.intel.com/sites/
default/files/managed/39/c5/325462-sdm-vol-1-2abcd-3abcd. pdf

+history of x86 instructions: https://en.wikipedia.org/wiki/X86 Instruction Ilstlnf,g%___

+ X86-64 Wikipedia: https://en.wikipedia.org/wiki/X86-64

‘‘‘‘‘
000000

https://web.stanford.edu/class/cs107/guide/x86-64.html
https://web.stanford.edu/class/cs107/guide/x86-64.html
https://web.stanford.edu/class/cs107/resources/onepage_x86-64.pdf
https://web.stanford.edu/class/cs107/resources/onepage_x86-64.pdf
https://beej.us/guide/bggdb/
https://sourceware.org/gdb/onlinedocs/gdb/TUI.html
https://gcc.godbolt.org
https://eli.thegreenplace.net/2011/09/06/stack-frame-layout-on-x86-64
https://eli.thegreenplace.net/2011/09/06/stack-frame-layout-on-x86-64
https://software.intel.com/sites/default/files/managed/39/c5/325462-sdm-vol-1-2abcd-3abcd.pdf
https://software.intel.com/sites/default/files/managed/39/c5/325462-sdm-vol-1-2abcd-3abcd.pdf
https://software.intel.com/sites/default/files/managed/39/c5/325462-sdm-vol-1-2abcd-3abcd.pdf
https://en.wikipedia.org/wiki/X86_instruction_listings
https://en.wikipedia.org/wiki/X86-64

Extra Slides

Extra Slides

