
Monday, February 27, 2023

Computer Systems

Winter 2023

Stanford University

Computer Science Department

Reading: Course Reader: Managing the Heap

Language, Textbook: Chapter 9.9

Lecturer: Chris Gregg

CS 107
Lecture 13: Managing

the Heap Part I malloc()
calloc()
realloc()
free()

1

Today's Topics
Reading: Chapter 9.9
Programs from class: /afs/ir/class/cs107/samples/lect13
Logistics

Bank vault — how is it going?
Program Address Space
What does it mean to allocate memory?
The Heap, under the hood

Why do we have both stack and heap allocation?
Refresher on malloc, free, and realloc.
Allocator Requirements
Allocator Goals
Tracing the heap
How do we track heap allocations?
Placement: first-fit, next-fit, best-fit (throughput -vs- utilization)
Two different free lists: implicit and explicit
Splitting / Coalescing2

Feedback
Thank you for the excellent feedback!

• Yes, office hours are busy, and I know that can be frustrating. Please use Ed for a bit less
synchronous help.

"CS106A has electronic exams and CS107 previously had them, this testing method
seems like a regression."

•I agree. I have had electronic exams for many years, and like them. The problem is that
too many students were cheating on electronic exams, so we went back to paper. If you
want to help create an electronic exam that is impervious to cheating, please reach out to
me!

3

Feedback
"At a high level this class seems obsessed with having students experience unpleasant
tasks that were common 20 years ago but have since become very uncommon as
programmers collectively developed powerful tools to automate these tasks. Working in
C, decoding assembly, using CLI tools that lack modern productivity enhancements,
working with the x86 instruction sets, manual memory management. I hope the faculty
is developing a version of this class which covers the same academic topics: bitwise
manipulation, strings, pointers, heap vs stack, generics, floating point numbers,
assembly, disassembly all in the context of the modern world of computing. This is the
only course I've taken at Stanford where I've felt that a majority of the work was
pointless outside of this particular classroom."

•These tasks have not become uncommon for systems-level work, believe it or not. I'm
sorry you don't believe this, but understanding at this level and knowing how to work with
these tools is important for operating systems developers, embedded code developers,
and others. But, systems is not all of CS. We do want you to have experience at this
level, and we are not planning on removing it from the curriculum. 4

What does it mean to allocate memory?
As we have discussed, your programs have two areas of main memory: the stack and
the heap.

Your program has (by default) 8MB of stack space that it must manage based on the
conventions we discussed when learning assembly code.

The heap, on the other hand, is ultimately controlled by the operating system, and a
"heap allocator" (your final project!) maintains the heap as a collection of contiguous
memory blocks that are either free or allocated.

An allocated block has been reserved for a particular application. When you call
malloc(), you now have access to an allocated block, and only your program can
modify or read the values in that block. Allocated blocks remain allocated for the rest of
your program, or until you free() them. If your program ends, the heap allocator frees
the block.
5

Program Address Space
Ever wonder what happens when you type the following?

./program_name

The OS loader handles this — it does the following:
1. Creates a new process
2. Sets up address space/segments
3. Reads executable file, loads instructions, global data

Mapped from file into green segments
4. Libraries loaded on demand
5. Sets up and reserves the 8MB stack

Reserves stack segment, initializes %rsp, calls main
6. malloc written in C, will init self on use
7. Asks OS for large memory region, parcels out to service

requests

0x7ffffffff000

0x7ffff7ffe000

8MB reserved

Sized for library

Grows on demand

Sized for executable

Shared library
text/data

Text

(machine code)

Low addresses
deliberately unmapped

0x602010

0x600000

0x400000

Heap

Global data

Stack

6

Why do we have both stack and heap allocation?
As we have discussed before, stack memory is limited and serves as a scratch-
pad for functions, and it is continually being re-used by your functions. Stack
memory isn't persistent, but because it is already allocated to your program, it is
fast.

Heap memory takes more time to set up (you have to go through the heap
allocator), but it is unlimited (for all intents and purposes), and persistent for the
rest of your program.

7

malloc, free, and realloc refresher

void *malloc(size_t size)
Return pointer to memory block >= requested size
(failure returns NULL and sets errno)

void free(void *p)
Recycle memory block
p must be from previous malloc/realloc call

void *realloc(void *p, size_t size)
Changes size of block p, returns pointer to block (possibly same)
Contents of new block unchanged up to min of old and new size
If the new pointer isn't the same as the old pointer, the old block will have been free’d

This is what your heap allocator is going to do!

8

Allocator Requirements
The heap allocator must be able to service arbitrary sequence of malloc() and free()
requests

malloc must return a pointer to contiguous memory that is equal to or greater
than the requested size, or NULL if it can't satisfy the request.
The payload contents (this is the area that the pointer points to) are unspecified —
they can be 0s or garbage.
If the client introduces an error, then the behavior is undefined
• If the client tries to free non-allocated memory, or tries to use free'd memory.

The heap allocator has some constraints:
It can't control the number, size, or lifetime of the allocated blocks.
It must respond immediately to each malloc request

I.e., it can't reorder or buffer malloc requests — the first request must be handled
first.
It can defer, ignore, or reorder requests to free

9

Allocator Requirements (continued)
Other heap allocator constraints:
The allocator must align blocks so they satisfy all alignment requirements

i.e., 16 byte alignment for GNU malloc (libc malloc) on 64-bit Linux (for your
assignment, we only ask that you align on an 8-byte boundary).

The allocated payload must be maintained as-is
The allocator cannot move allocated blocks, such as to compact/coalesce free.
• Why not?

•The allocator can manipulate and modify free memory

All of the programs with allocated memory would have corrupted pointers!

10

Allocator Goals
The allocator should first and foremost attempt to service malloc and free requests
quickly.

Ideally, the requests should be handled in constant time and should not degrade to
linear behavior (we will see that some implementations can do this, some cannot)

The allocator must try for a tight space utilization.
Remember, the allocator has a fixed block of memory to dole out smaller parts — it
must try to allocate efficiently
The allocator should try to minimize fragmentation.
It should try to group allocated blocks together.
There should be a small overhead relative to the payload (we will see what this
mean soon!)

11

Allocator Goals (continued)
It is desirable for a heap allocator to have the following properties:

Good locality
• Blocks are allocated close in time are located close in space
• "Similar" blocks are allocated close in space

Robust
• Client errors should be recognized

• What is required to detect and report them?
Ease of implementation and maintenance
• Having *(void **) all over the place makes for hard-to-maintain code.

Instead, use structs, and typedef when appropriate.
• The code is necessarily complex, but the more efforts you put into writing clean

code, the more you will be rewarded by easier-to-maintain code.

12

Tracing the Heap (possible implementation)

void *a, *b, *c, *d, *e;
a = malloc(16);
b = malloc(8);
c = malloc(24);
d = malloc(16);
free(a);
free(c);
e = malloc(8);
b = realloc(b, 24);
e = realloc(e, 24);
void *f = malloc(24);

All allocated on the stack:

(free)

96 bytes
0x100 0x108 0x110 0x118 0x120 0x128 0x130 0x138 0x140 0x148 0x150 0x158

heap

Address Value
e 0xffffe820 0x0
d 0xffffe818 0xabcde
c 0xffffe810 0xf0123
b 0xffffe808 0x0
a 0xffffe800 0xbeef

13

Tracing the Heap (possible implementation)

void *a, *b, *c, *d, *e;
a = malloc(16);
b = malloc(8);
c = malloc(24);
d = malloc(16);
free(a);
free(c);
e = malloc(8);
b = realloc(b, 24);
e = realloc(e, 24);
void *f = malloc(24);

All allocated on the stack:

(free)

heap

Address Value
e 0xffffe820 0x0
d 0xffffe818 0xabcde
c 0xffffe810 0xf0123
b 0xffffe808 0x0
a 0xffffe800 0xbeef

Each section
represents 4
bytes

96 bytes
0x100 0x108 0x110 0x118 0x120 0x128 0x130 0x138 0x140 0x148 0x150 0x158

14

Tracing the Heap (possible implementation)

void *a, *b, *c, *d, *e;
a = malloc(16);
b = malloc(8);
c = malloc(24);
d = malloc(16);
free(a);
free(c);
e = malloc(8);
b = realloc(b, 24);
e = realloc(e, 24);
void *f = malloc(24);

All allocated on the stack:

(free)

heap

Address Value
e 0xffffe820 0x0
d 0xffffe818 0xabcde
c 0xffffe810 0xf0123
b 0xffffe808 0x0
a 0xffffe800 0xbeef

Each section
represents 4
bytes

96 bytes
0x100 0x108 0x110 0x118 0x120 0x128 0x130 0x138 0x140 0x148 0x150 0x158

15

Tracing the Heap (possible implementation)

void *a, *b, *c, *d, *e;
a = malloc(16);
b = malloc(8);
c = malloc(24);
d = malloc(16);
free(a);
free(c);
e = malloc(8);
b = realloc(b, 24);
e = realloc(e, 24);
void *f = malloc(24);

All allocated on the stack:

aaaaaaaa (free)

heap

Address Value
e 0xffffe820 0x0
d 0xffffe818 0xabcde
c 0xffffe810 0xf0123
b 0xffffe808 0x0
a 0xffffe800 0x100

96 bytes
0x100 0x108 0x110 0x118 0x120 0x128 0x130 0x138 0x140 0x148 0x150 0x158

16

Tracing the Heap (possible implementation)

void *a, *b, *c, *d, *e;
a = malloc(16);
b = malloc(8);
c = malloc(24);
d = malloc(16);
free(a);
free(c);
e = malloc(8);
b = realloc(b, 24);
e = realloc(e, 24);
void *f = malloc(24);

All allocated on the stack:

aaaaaaaa bbbb (free)

heap

Address Value
e 0xffffe820 0x0
d 0xffffe818 0xabcde
c 0xffffe810 0xf0123
b 0xffffe808 0x110
a 0xffffe800 0x100

96 bytes
0x100 0x108 0x110 0x118 0x120 0x128 0x130 0x138 0x140 0x148 0x150 0x158

17

Tracing the Heap (possible implementation)

void *a, *b, *c, *d, *e;
a = malloc(16);
b = malloc(8);
c = malloc(24);
d = malloc(16);
free(a);
free(c);
e = malloc(8);
b = realloc(b, 24);
e = realloc(e, 24);
void *f = malloc(24);

All allocated on the stack:

aaaaaaaa bbbb cccccccccccc (free)

heap

Address Value
e 0xffffe820 0x0
d 0xffffe818 0xabcde
c 0xffffe810 0x118
b 0xffffe808 0x110
a 0xffffe800 0x100

96 bytes
0x100 0x108 0x110 0x118 0x120 0x128 0x130 0x138 0x140 0x148 0x150 0x158

18

Tracing the Heap (possible implementation)

void *a, *b, *c, *d, *e;
a = malloc(16);
b = malloc(8);
c = malloc(24);
d = malloc(16);
free(a);
free(c);
e = malloc(8);
b = realloc(b, 24);
e = realloc(e, 24);
void *f = malloc(24);

All allocated on the stack:

heap

Address Value
e 0xffffe820 0x0
d 0xffffe818 0x130
c 0xffffe810 0x118
b 0xffffe808 0x110
a 0xffffe800 0x100

aaaaaaaa bbbb cccccccccccc dddddddd (free)

96 bytes
0x100 0x108 0x110 0x118 0x120 0x128 0x130 0x138 0x140 0x148 0x150 0x158

19

Tracing the Heap (possible implementation)

void *a, *b, *c, *d, *e;
a = malloc(16);
b = malloc(8);
c = malloc(24);
d = malloc(16);
free(a);
free(c);
e = malloc(8);
b = realloc(b, 24);
e = realloc(e, 24);
void *f = malloc(24);

All allocated on the stack:

heap

Address Value
e 0xffffe820 0x0
d 0xffffe818 0x130
c 0xffffe810 0x118
b 0xffffe808 0x110
a 0xffffe800 0x100

(free) bbbb cccccccccccc dddddddd (free)

96 bytes
0x100 0x108 0x110 0x118 0x120 0x128 0x130 0x138 0x140 0x148 0x150 0x158

20

Tracing the Heap (possible implementation)

void *a, *b, *c, *d, *e;
a = malloc(16);
b = malloc(8);
c = malloc(24);
d = malloc(16);
free(a);
free(c);
e = malloc(8);
b = realloc(b, 24);
e = realloc(e, 24);
void *f = malloc(24);

All allocated on the stack:

heap

Address Value
e 0xffffe820 0x0
d 0xffffe818 0x130
c 0xffffe810 0x118
b 0xffffe808 0x110
a 0xffffe800 0x100

(free) bbbb (free) dddddddd (free)

96 bytes
0x100 0x108 0x110 0x118 0x120 0x128 0x130 0x138 0x140 0x148 0x150 0x158

21

Tracing the Heap (possible implementation)

void *a, *b, *c, *d, *e;
a = malloc(16);
b = malloc(8);
c = malloc(24);
d = malloc(16);
free(a);
free(c);
e = malloc(8);
b = realloc(b, 24);
e = realloc(e, 24);
void *f = malloc(24);

All allocated on the stack:

heap

Address Value
e 0xffffe820 0x100
d 0xffffe818 0x130
c 0xffffe810 0x118
b 0xffffe808 0x110
a 0xffffe800 0x100

eeee (free) bbbb (free) dddddddd (free)

96 bytes
0x100 0x108 0x110 0x118 0x120 0x128 0x130 0x138 0x140 0x148 0x150 0x158

22

Tracing the Heap (possible implementation)

void *a, *b, *c, *d, *e;
a = malloc(16);
b = malloc(8);
c = malloc(24);
d = malloc(16);
free(a);
free(c);
e = malloc(8);
b = realloc(b, 24);
e = realloc(e, 24);
void *f = malloc(24);

All allocated on the stack:

heap

Address Value
e 0xffffe820 0x100
d 0xffffe818 0x130
c 0xffffe810 0x118
b 0xffffe808 0x110
a 0xffffe800 0x100

eeee (free) bbbbbbbbbbbb (free) dddddddd (free)

96 bytes
0x100 0x108 0x110 0x118 0x120 0x128 0x130 0x138 0x140 0x148 0x150 0x158

23

Tracing the Heap (possible implementation)

All allocated on the stack:

heap

Address Value
e 0xffffe820 0x140
d 0xffffe818 0x130
c 0xffffe810 0x118
b 0xffffe808 0x110
a 0xffffe800 0x100

(free) bbbbbbbbbbbb (free) dddddddd eeeeeeeeeeee (free)

void *a, *b, *c, *d, *e;
a = malloc(16);
b = malloc(8);
c = malloc(24);
d = malloc(16);
free(a);
free(c);
e = malloc(8);
b = realloc(b, 24);
e = realloc(e, 24);
void *f = malloc(24);

96 bytes
0x100 0x108 0x110 0x118 0x120 0x128 0x130 0x138 0x140 0x148 0x150 0x158

24

Tracing the Heap (possible implementation)

void *a, *b, *c, *d, *e;
a = malloc(16);
b = malloc(8);
c = malloc(24);
d = malloc(16);
free(a);
free(c);
e = malloc(8);
b = realloc(b, 24);
e = realloc(e, 24);
void *f = malloc(24);

All allocated on the stack:

heap

Address Value
e 0xffffe820 0x140
d 0xffffe818 0x130
c 0xffffe810 0x118
b 0xffffe808 0x110
a 0xffffe800 0x100
f 0xffffe7f0 0x0

Returns NULL

(free) bbbbbbbbbbbb (free) dddddddd eeeeeeeeeeee (free)

96 bytes
0x100 0x108 0x110 0x118 0x120 0x128 0x130 0x138 0x140 0x148 0x150 0x158

25

Take a Break!

Three Minute Break

26

Heap Allocator Implementation Issues
•How do we track the information in a block?

•Remember, free() is only given a pointer, not a size

•How do we organize/find free blocks?

•How do we pick which free block from available options?

•What do we do with excess space when allocating a block?

•How do we recycle a freed block?

27

One possibility: Separate list / table
•We could have a separate list or table that holds the free and in-use information.

•Given an address, how do we look up the information?
•How do we update the list or table to service mallocs and frees?
•How much overhead is there per block?

•The separate list approach could be a reasonable approach (we would have to answer
all of the above questions…), but it is not often used in practice, although there are
some exceptions:

•There are some special-case allocators that use this
•Valgrind uses this, because it needs to keep track of lots more information than
just the used / free blocks.

28

Another Possibility
•A second possibility, and the one that is actually common and used in practice, uses
what is called a block header to hold the information.

•The block header is actually stored in the same memory area as the payload, and it
generally precedes the payload.

29

Another Possibility
•A second possibility, and the one that is actually common and used in practice, uses
what is called a block header to hold the information.

•The block header is actually stored in the same memory area as the payload, and it
generally precedes the payload.

88

F

96 bytes
0x100 0x108 0x110 0x118 0x120 0x128 0x130 0x138 0x140 0x148 0x150 0x158

30

Another Possibility
•A second possibility, and the one that is actually common and used in practice, uses
what is called a block header to hold the information.

•The block header is actually stored in the same memory area as the payload, and it
generally precedes the payload.

88

F

•This is where things start to get a bit tricky. The heap allocator has 96 bytes, and it
needs to keep the free block information in those 96 bytes (I N C E P T I O N)
•In other words, the heap allocator is using part of the 96 bytes as housekeeping.
•In this case, 8 bytes are taken up with the information that there are 88 Free (F) bytes
ahead in the block.

96 bytes
0x100 0x108 0x110 0x118 0x120 0x128 0x130 0x138 0x140 0x148 0x150 0x158

31

Another Possibility
a = malloc(16);

16

U aaaaaaaa 64

F

•This is where things start to get a bit tricky. The heap allocator has 96 bytes, and it
needs to keep the free block information in those 96 bytes (I N C E P T I O N)
•In other words, the heap allocator is using part of the 96 bytes as housekeeping.
•Note here that there are now 16 bytes of overhead, because there are two header
blocks.
•Here, the first 8-byte header block denotes 16 Used bytes, then there is a 16 byte
payload, and then there is another 8-byte header to denote the 64 free bytes after.
•

96 bytes
0x100 0x108 0x110 0x118 0x120 0x128 0x130 0x138 0x140 0x148 0x150 0x158

Address Value
e 0xffffe820
d 0xffffe818
c 0xffffe810
b 0xffffe808
a 0xffffe800 0x108

32

Another Possibility
a = malloc(16);
b = malloc(8);

16

U aaaaaaaa 8

U bbbb 48

F

•We changed the header to reflect the fact that 8 bytes are going to to b, and we
added a header for the remaining 48 bytes.
•Also, note that the pointer returned for a is 0x108, and the pointer returned for b
is 0x120.

96 bytes
0x100 0x108 0x110 0x118 0x120 0x128 0x130 0x138 0x140 0x148 0x150 0x158

Address Value
e 0xffffe820
d 0xffffe818
c 0xffffe810
b 0xffffe808 0x120
a 0xffffe800 0x108

33

Another Possibility
a = malloc(16);
b = malloc(8);
c = malloc(24);

16

U aaaaaaaa 8

U bbbb 24

U cccccccccccc 16

F

•Now we only have 16 bytes left for payloads…let's free some memory.

96 bytes
0x100 0x108 0x110 0x118 0x120 0x128 0x130 0x138 0x140 0x148 0x150 0x158

Address Value
e 0xffffe820
d 0xffffe818
c 0xffffe810 0x130
b 0xffffe808 0x120
a 0xffffe800 0x108

34

Another Possibility
a = malloc(16);
b = malloc(8);
c = malloc(24);
free(a);

16

U aaaaaaaa 8

U bbbb 24

U cccccccccccc 16

F

•Notice that 0x108 will be passed to free. How do we know how much to free?
•We have to do some pointer arithmetic, so we can grab the 16 from address
0x100 (this diagram does not reflect the free yet).

•As you'll find out when writing your heap allocator: the arithmetic is super important.

96 bytes
0x100 0x108 0x110 0x118 0x120 0x128 0x130 0x138 0x140 0x148 0x150 0x158

Address Value
e 0xffffe820
d 0xffffe818
c 0xffffe810 0x130
b 0xffffe808 0x120
a 0xffffe800 0x108

35

Another Possibility
a = malloc(16);
b = malloc(8);
c = malloc(24);
free(a);

16

F aaaaaaaa 8

U bbbb 24

U cccccccccccc 16

F

•The diagram now reflects the free.
•The change to the diagram was subtle — the only thing that changed was that the
block header now says "F" (free) instead of "U" (used). This is because the data
remains, but it can be written over any time after we reassign that block — this
can cause bugs! For clarity sake, on the next page, we'll remove the `aaaaaaaa`,
but know that the heap allocator doesn't wipe it clean (this another reason that
free can be fast!)

96 bytes
0x100 0x108 0x110 0x118 0x120 0x128 0x130 0x138 0x140 0x148 0x150 0x158

Address Value
e 0xffffe820
d 0xffffe818
c 0xffffe810 0x130
b 0xffffe808 0x120
a 0xffffe800 0x108

36

Another Possibility
a = malloc(16);
b = malloc(8);
c = malloc(24);
free(a);
free(c);

16

F

8

U bbbb 24

U cccccccccccc 16

F

•Again, 0x130 is passed in to this free, so we need to figure out that we need to
look at address 0x128 for the amount of bytes to free.
•On the next slide, we will remove the `cccccccccccc`, but again: it is not cleared
out, and we're just doing this for the sake of clarity on the diagram.

96 bytes
0x100 0x108 0x110 0x118 0x120 0x128 0x130 0x138 0x140 0x148 0x150 0x158

Address Value
e 0xffffe820
d 0xffffe818
c 0xffffe810 0x130
b 0xffffe808 0x120
a 0xffffe800 0x108

37

Another Possibility
a = malloc(16);
b = malloc(8);
c = malloc(24);
free(a);
free(c);

16

F

8

U bbbb 24

F
16

F

•This diagram shows one possible result of the free. Note that we have actually
fragmented our free space! It looks like we only have a block of 24 bytes and then
a block of 16 bytes to allocate, yet we should have a block of 48 bytes (we can
save a header, too!)

96 bytes
0x100 0x108 0x110 0x118 0x120 0x128 0x130 0x138 0x140 0x148 0x150 0x158

Address Value
e 0xffffe820
d 0xffffe818
c 0xffffe810 0x130
b 0xffffe808 0x120
a 0xffffe800 0x108

38

Another Possibility
a = malloc(16);
b = malloc(8);
c = malloc(24);
free(a);
free(c);

16

F

8

U bbbb 48

F

•When we combine free blocks, this is called coalescing, and it is an important tool
that the heap allocator uses to keep memory as unfragmented as possible.
•We can't coalesce any more because b is in the middle, and we absolutely cannot
move that block until the program we gave it to frees it.

96 bytes
0x100 0x108 0x110 0x118 0x120 0x128 0x130 0x138 0x140 0x148 0x150 0x158

Address Value
e 0xffffe820
d 0xffffe818
c 0xffffe810 0x130
b 0xffffe808 0x120
a 0xffffe800 0x108

39

Implicit Free List

16

F

8

U bbbb 48

F

96 bytes
0x100 0x108 0x110 0x118 0x120 0x128 0x130 0x138 0x140 0x148 0x150 0x158

•The method just demonstrated is called an "implicit free list," meaning that we have a
list of free blocks that we can traverse to find an appropriate fit. The header holds the
size of the block and whether it is free (F) or used (U) (note: the free and used
information can be stored in 1 bit). To find the next available free block, we must look
from the beginning and traverse the list in order.
•As blocks fill up, implicit free lists can cause malloc to be slow as the heap fills up —
the linear search isn't a terrific method. (We will see another type next lecture!)

40

Implicit Free List

16

F

8

U bbbb 48

F

96 bytes
0x100 0x108 0x110 0x118 0x120 0x128 0x130 0x138 0x140 0x148 0x150 0x158

•Let's answer the questions we posed before:
•How do we track the information in a block?

•The header block that holds the bytes in the block and the state (free or used)
•How do we organize/find free blocks?

•Linear search, starting from the first block.
•How do we pick which free block from available options?

• If the block is free and has enough space we can choose it, though there are other options
(covered in the next few slides).

•What do we do with excess space when allocating a block?
• If we can fit another header and still have at least a block's worth of space, we can do that. If
we can't, it should just become part of the block we are allocating.

•How do we recycle a freed block?
•Mark it free, and coalesce if we can.41

Placement: first-fit, next-fit, best-fit
The method we have described simply finds the first available block that is free and fits the
request, and then starts from the beginning again on a future allocation. This is called a
first-fit placement policy. One drawback is that you always have to start from the beginning
of the heap, and it can be slow. Another drawback is that it can leave "splinters" (small free
blocks) towards the beginning of the list. One advantage is that it leaves large blocks
towards the end of the list, which allows for larger allocations if necessary.

A second method is called next-fit, and was first proposed by Donald Knuth. With next-fit,
you start looking for follow-on blocks after the location of the last allocation. If you found a
suitable block before, you have a good chance to find another one in the same location. It is
still not clear whether next-fit leads to better (or comparable) memory utilization.

The final method is called best-fit, and relies on searching the entire heap to find a block
that matches the requested allocation the best. The obvious drawback of best-fit is that it
requires an exhaustive search of the list.

42

Splitting and Coalescing
We have already described both splitting and coalescing as used in the implicit free list
implementation.

Splitting the memory block is necessary when you have one large block to work with
(which is what you will have for the heap allocator assignment). However, the heap
allocator can request an increase in the size of the block of memory (using the sbrk
system call), meaning that you could have a policy to use the entire block and just
request more. But, we aren't going to cover that low level in this course.

Coalescing does not have to happen when you free — you can postpone coalescing
until future mallocs or reallocs, and while it makes malloc a bit slower, frees are
lighting fast.

43

More on Coalescing: coalescing backwards
Coalescing forwards is straightforward:

16

F

8

U bbbb 24

F
8

F

96 bytes
0x100 0x108 0x110 0x118 0x120 0x128 0x130 0x138 0x140 0x148 0x150 0x158

If we just freed the 24-byte block, we know exactly where the next block is in order to
see if it (and subsequent blocks) are free.

However, what if we had just freed the 8 byte block? How could we coalesce the two
blocks?

One way would be to look through the whole list from the beginning, keeping track of
where the just-freed block is. But…this is slow.

44

More on Coalescing: coalescing backwards
Coalescing forwards is straightforward:

16

F

8

U bbbb 24

F
8

F

96 bytes
0x100 0x108 0x110 0x118 0x120 0x128 0x130 0x138 0x140 0x148 0x150 0x158

Another method (described by Knuth) is to keep a footer on each block, as well. The footer is identical to the
header, but it refers to the prior bytes. The above list would look like this with headers and footers (assume
we were using them the whole time, and we have to add more space because of the extra overhead):

16

F

16

F

8

U bbbb 8

U
24

F

24

F

8

F

8

F

160 bytes
0x100 0x108 0x110 0x118 0x120 0x128 0x130 0x138 0x140 0x148 0x150 0x158 0x160 0x168 0x170 0x178

Now, let's say we just free'd the 8 byte block at 0x168. We can look eight bytes back (to
0x160) at the footer for the 24-byte block, and we can see that it is also free, and we
can coalesce.

45

More on Coalescing: coalescing backwards

16

F

16

F

8

U bbbb 8

U
24

F

24

F

8

F

8

F

160 bytes
0x100 0x108 0x110 0x118 0x120 0x128 0x130 0x138 0x140 0x148 0x150 0x158 0x160 0x168 0x170 0x178

Free'd block

46

More on Coalescing: coalescing backwards

16

F

16

F

8

U bbbb 8

U
24

F

24

F

8

F

8

F

160 bytes
0x100 0x108 0x110 0x118 0x120 0x128 0x130 0x138 0x140 0x148 0x150 0x158 0x160 0x168 0x170 0x178

Free'd block
header

47

More on Coalescing: coalescing backwards

16

F

16

F

8

U bbbb 8

U
24

F

24

F

8

F

8

F

160 bytes
0x100 0x108 0x110 0x118 0x120 0x128 0x130 0x138 0x140 0x148 0x150 0x158 0x160 0x168 0x170 0x178

Footer for
previous

block (also
free)

48

More on Coalescing: coalescing backwards

16

F

16

F

8

U bbbb 8

U
24

F

24

F

8

F

8

F

160 bytes
0x100 0x108 0x110 0x118 0x120 0x128 0x130 0x138 0x140 0x148 0x150 0x158 0x160 0x168 0x170 0x178

Entire free
area

16

F

16

F

8

U bbbb 8

U
56

F

56

F

160 bytes
0x100 0x108 0x110 0x118 0x120 0x128 0x130 0x138 0x140 0x148 0x150 0x158 0x160 0x168 0x170 0x178

After coalescing
backwards

49

Explicit Free List
One critical issue with the implicit list is the problem with the linear search to find free
blocks.

The explicit free list solves this problem by keeping a linked list of free blocks embedded
in the memory. This is best shown with an example. As before, let's start with an empty
block of memory. With an explicit list, we keep a pointer to the first free block.

152

F

160 bytes
0x100 0x108 0x110 0x118 0x120 0x128 0x130 0x138 0x140 0x148 0x150 0x158 0x160 0x168 0x170 0x178

We use two blocks in the payload of the free block to point to the next and previous free
blocks.

50

Explicit Free List
One critical issue with the implicit list is the problem with the linear search to find free
blocks.

The explicit free list solves this problem by keeping a linked list of free blocks embedded
in the memory. This is best shown with an example. As before, let's start with an empty
block of memory. With an explicit list, we keep a pointer to the first free block.

152

F

160 bytes
0x100 0x108 0x110 0x118 0x120 0x128 0x130 0x138 0x140 0x148 0x150 0x158 0x160 0x168 0x170 0x178

We use two blocks in the payload of the free block to point to the next and previous free
blocks.

51

Explicit Free List
One critical issue with the implicit list is the problem with the linear search to find free
blocks.

The explicit free list solves this problem by keeping a linked list of free blocks embedded
in the memory. This is best shown with an example. As before, let's start with an empty
block of memory. With an explicit list, we keep a pointer to the first free block.

152

F

P:

0x0

N:

0x0

160 bytes
0x100 0x108 0x110 0x118 0x120 0x128 0x130 0x138 0x140 0x148 0x150 0x158 0x160 0x168 0x170 0x178

We use two blocks in the payload of the free block to point to the next and previous free
blocks. In this case, there aren't any more free blocks, so they are NULL pointers.

0x100 First Free Block

52

Explicit Free List

16

U aaaaaaaa 96

F
P:

0x0
N:

0x0

160 bytes
0x100 0x108 0x110 0x118 0x120 0x128 0x130 0x138 0x140 0x148 0x150 0x158 0x160 0x168 0x170 0x178

a = malloc(16);

If we malloc 16, then we allocate as we would in the implicit list, but now we have a
pointer to the next free block, and that block still has no previous or next free block.

0x118 First Free Block

53

Explicit Free List

16

U aaaaaaaa 16

U bbbbbbbb 24

U cccccccccccc 48

F
P:

0x0
N:

0x0

160 bytes
0x100 0x108 0x110 0x118 0x120 0x128 0x130 0x138 0x140 0x148 0x150 0x158 0x160 0x168 0x170 0x178

a = malloc(16);
b = malloc(8);
c = malloc(24);
We continue the process. Note that we must leave at least 16 bytes in a block to save
room for pointers if we eventually free (e.g., b has more space than it requested).

0x150 First Free Block

54

Explicit Free List

160 bytes
0x100 0x108 0x110 0x118 0x120 0x128 0x130 0x138 0x140 0x148 0x150 0x158 0x160 0x168 0x170 0x178

a = malloc(16);
b = malloc(8);
c = malloc(24);
free(b);

Now when we free b, we point to the newly free'd memory, and update the pointers

16

U aaaaaaaa 16

F
P:

0x0
N:

0x150
24

U cccccccccccc 48

F
P:

0x118
N:

0x0

0x118 First Free Block

55

Explicit Free List

160 bytes
0x100 0x108 0x110 0x118 0x120 0x128 0x130 0x138 0x140 0x148 0x150 0x158 0x160 0x168 0x170 0x178

Why is this better than the implicit free list?

16

U aaaaaaaa 16

F
P:

0x0
N:

0x150
24

U cccccccccccc 48

F
P:

0x118
N:

0x0

0x118 First Free Block

56

Explicit Free List

160 bytes
0x100 0x108 0x110 0x118 0x120 0x128 0x130 0x138 0x140 0x148 0x150 0x158 0x160 0x168 0x170 0x178

Why is this better than the implicit free list?

16

U aaaaaaaa 16

F
P:

0x0
N:

0x150
24

U cccccccccccc 48

F
P:

0x118
N:

0x0

0x118

•We can now traverse only the free blocks!
•This is much faster than traversing the whole list.
•For instance, if we now tried to malloc 24 bytes, we would only need to look
through two blocks (0x118 and then 0x150) to find enough space.

First Free Block

57

•More on explicit free lists next lecture!

References and Advanced Reading
References:
•The textbook is the best reference for this material.
•Here are more slides from a similar course: https://courses.engr.illinois.edu/
cs241/sp2014/lecture/06-HeapMemory_sol.pdf

Advanced Reading:
• Implementation tactics for a heap allocator: https://stackoverflow.com/questions/
2946604/c-implementation-tactics-for-heap-allocators

58

https://courses.engr.illinois.edu/cs241/sp2014/lecture/06-HeapMemory_sol.pdf
https://courses.engr.illinois.edu/cs241/sp2014/lecture/06-HeapMemory_sol.pdf
https://courses.engr.illinois.edu/cs241/sp2014/lecture/06-HeapMemory_sol.pdf
https://stackoverflow.com/questions/2946604/c-implementation-tactics-for-heap-allocators
https://stackoverflow.com/questions/2946604/c-implementation-tactics-for-heap-allocators
https://stackoverflow.com/questions/2946604/c-implementation-tactics-for-heap-allocators

