
Jerry Chen (with materials adapted from Will Crichton)

Memory Safety
CS107 Additional Topics, 3/10/2023



What is memory safety?



What is memory safety?

A memory safe program is one 
that has no memory errors 



What are examples of memory errors?



What are examples of memory errors?

• Buffer overflows



What are examples of memory errors?

• Buffer overflows

• Invalid pointer



What are examples of memory errors?

• Buffer overflows

• Invalid pointer

• Heap management



What are examples of memory errors?

• Buffer overflows

• Invalid pointer

• Heap management

• Use after free



What are examples of memory errors?

• Buffer overflows

• Invalid pointer

• Heap management

• Use after free

• Double frees



What are examples of memory errors?

• Buffer overflows

• Invalid pointer

• Heap management

• Use after free

• Double frees

• Memory leaks (kind of)



What are examples of memory errors?

• Buffer overflows

• Invalid pointer

• Heap management

• Use after free

• Double frees

• Memory leaks (kind of)

But you’ve taken CS107 and know how to 
find and prevent these errors!

Real-world systems can’t possibly have 
these problems, right?



Real-world systems can’t possibly have these problems, right?



Real-world systems can’t possibly have these problems, right?
70% of all Microsoft vulnerabilities are memory errors

Microsoft Security Response Center. “A proactive approach to more secure code.” 2019



Real-world systems can’t possibly have these problems, right?
70% of severe security bugs in Google Chrome are memory errors

The Chromium Project. “Memory Safety.”



Real-world systems can’t possibly have these problems, right?
70% of severe security bugs in Google Chrome are memory errors

The Chromium Project. “Memory Safety.”



Real-world systems can’t possibly have these problems, right?
70% of severe security bugs in Google Chrome are memory errors

The Chromium Project. “Memory Safety.”

Over half of their memory errors 
are use-after-frees!



Real-world systems can’t possibly have these problems, right?
90% of Android vulnerabilities are memory errors

Google Security Blog. “Queue the Hardening Enhancements.” 2019



Real-world systems can’t possibly have these problems, right?
90% of Android vulnerabilities are memory errors

Google Security Blog. “Queue the Hardening Enhancements.” 2019

Out-of-bound writes comprise nearly 
half of all Android security bugs!



Real-world systems can’t possibly have these problems, right?
my laptop right as I was making the past few slides 😭



Real-world systems can’t possibly have these problems, right?
my laptop right as I was making the past few slides 😭



Real-world systems can’t possibly have these problems, right?
my laptop right as I was making the past few slides 😭

My laptop crashed because 
of a use-after-free bug!



What can attackers do with memory errors?
besides stealing money from an ATM



What can attackers do with memory errors?
EternalBlue and WannaCry (2017)



What can attackers do with memory errors?
EternalBlue and WannaCry (2017)

• EternalBlue: vulnerability found and kept secret by the NSA until it was 
leaked in April 2017



What can attackers do with memory errors?
EternalBlue and WannaCry (2017)

• EternalBlue: vulnerability found and kept secret by the NSA until it was 
leaked in April 2017

• WannaCry was a May 2017 ransomware attack using EternalBlue


• Shut down critical health services and infrastructure


• Economic damages on the order of $1 billion



What can attackers do with memory errors?
EternalBlue and WannaCry (2017)

• EternalBlue: vulnerability found and kept secret by the NSA until it was 
leaked in April 2017

• WannaCry was a May 2017 ransomware attack using EternalBlue


• Shut down critical health services and infrastructure


• Economic damages on the order of $1 billion

• How? Integer overflow while determining much memory to allocate, 
leading to a buffer overflow



What can attackers do with memory errors?
Heartbleed (2014)



What can attackers do with memory errors?
Heartbleed (2014)

• TLS (HTTPS): Internet protocol that keeps your internet activity private and 
secure



What can attackers do with memory errors?
Heartbleed (2014)

• TLS (HTTPS): Internet protocol that keeps your internet activity private and 
secure

• OpenSSL: open-sourced implementation of TLS


• “Heartbeat” mechanism where clients and servers periodically exchanged 
messages



What can attackers do with memory errors?
Heartbleed (2014)

• TLS (HTTPS): Internet protocol that keeps your internet activity private and 
secure

• OpenSSL: open-sourced implementation of TLS


• “Heartbeat” mechanism where clients and servers periodically exchanged 
messages

• Heartbleed vulnerability allowed attackers to read private data, including 
potentially passwords



What can attackers do with memory errors?
Heartbleed (2014)

• TLS (HTTPS): Internet protocol that keeps your internet activity private and 
secure

• OpenSSL: open-sourced implementation of TLS


• “Heartbeat” mechanism where clients and servers periodically exchanged 
messages

• Heartbleed vulnerability allowed attackers to read private data, including 
potentially passwords

• How? Missing bounds check, leading to a buffer over-read



What can attackers do with memory errors?
Heartbleed (2014)



What can attackers do with memory errors?
Heartbleed (2014)



What can attackers do with memory errors?
Heartbleed (2014)



Memory safety is difficult!



Buggy Vector in C
Struct Definition

// Vec is short for "vector", a common term for a resizable array.

// For simplicity, our vector type can only hold ints.

typedef struct {

    int *data;    // Pointer to our array on the heap

    int length;   // How many elements are in our array

    int capacity; // How many elements our array can hold

} Vec;




Buggy Vector in C
What’s wrong here?

Vec *vec_create() {

    Vec vec;

    vec.data = malloc(sizeof(int));

    vec.length = 0;

    vec.capacity = 1;


    return &vec;

}




Buggy Vector in C
What’s wrong here?

Vec *vec_create() {

    Vec vec;

    vec.data = malloc(sizeof(int));

    vec.length = 0;

    vec.capacity = 1;


    return &vec;

}


Our Vec is stack-allocated!

We return a pointer, but that pointer will be invalid 
because the stack-allocated Vec will be destroyed when 
the function returns.



Buggy Vector in C
What’s wrong here?

Vec *vec_create() {

    Vec vec;

    vec.data = malloc(sizeof(int));

    vec.length = 0;

    vec.capacity = 1;


    return &vec;

}


Our Vec is stack-allocated!

We return a pointer, but that pointer will be invalid 
because the stack-allocated Vec will be destroyed when 
the function returns.

Vec *vec_create() {

    Vec *vec = malloc(sizeof(Vec));

    vec->data = malloc(sizeof(int));

    vec->length = 0;

    vec->capacity = 1;


    return vec;

}




Buggy Vector in C
What’s wrong here?

void vec_push(Vec *vec, int n) {

    // Double the capacity of our vector if it is full

    if (vec->length == vec->capacity) {

        vec->data = realloc(vec->data, vec->capacity * 2);

        assert(vec->data != NULL);


        vec->capacity *= 2;

    }


    // Append the element to the end of our vector

    vec->data[vec->length] = n;

    vec->length++;

}




Buggy Vector in C
What’s wrong here?

Not realloc’ing with the correct size!

realloc requires the number of bytes, not elements

Multiply by sizeof(int)

void vec_push(Vec *vec, int n) {

    // Double the capacity of our vector if it is full

    if (vec->length == vec->capacity) {

        vec->data = realloc(vec->data, vec->capacity * 2);

        assert(vec->data != NULL);


        vec->capacity *= 2;

    }


    // Append the element to the end of our vector

    vec->data[vec->length] = n;

    vec->length++;

}




Buggy Vector in C
What’s wrong here?

void main() {

    Vec *vec = vec_create();

    vec_push(vec, 107);

    int *n = &vec->data[0];


    vec_push(vec, 111);

    printf("%d\n", *n);


    free(vec);

}




Buggy Vector in C
What’s wrong here?

void main() {

    Vec *vec = vec_create();

    vec_push(vec, 107);

    int *n = &vec->data[0];


    vec_push(vec, 111);

    printf("%d\n", *n);


    free(vec);

}


1. Memory Leak: need to free vec->data first



Buggy Vector in C
What’s wrong here?

void main() {

    Vec *vec = vec_create();

    vec_push(vec, 107);

    int *n = &vec->data[0];


    vec_push(vec, 111);

    printf("%d\n", *n);


    free(vec);

}


2. Is it safe to dereference the n pointer here?

1. Memory Leak: need to free vec->data first



Buggy Vector in C
What’s wrong here?

void main() {

    Vec *vec = vec_create();

    vec_push(vec, 107);

    int *n = &vec->data[0];


    vec_push(vec, 111);

    printf("%d\n", *n);


    free(vec);

}


2. Is it safe to dereference the n pointer here?

No! vec_push() will resize the data array by calling 
realloc(). This can invalidate the pointer to old memory!

1. Memory Leak: need to free vec->data first



C/C++ are inherently unsafe



C/C++ are inherently unsafe



C/C++ are inherently unsafe

• Extremely powerful


• Low-level systems programming


• Manual memory management


• Casting and reinterpreting raw bytes



C/C++ are inherently unsafe

• Extremely powerful


• Low-level systems programming


• Manual memory management


• Casting and reinterpreting raw bytes

• Extremely dangerous


• Low-level systems programming


• Manual memory management


• Casting and reinterpreting raw bytes



Memory safe languages



Memory safe languages
Run-time memory safety



Memory safe languages
Run-time memory safety

• There are many higher-level languages, such as Java, Python, and Go, that guarantee memory safety at 
run-time



Memory safe languages
Run-time memory safety

• There are many higher-level languages, such as Java, Python, and Go, that guarantee memory safety at 
run-time

• Run-time checks: crash the program if a memory error is ever detected



Memory safe languages
Run-time memory safety

• There are many higher-level languages, such as Java, Python, and Go, that guarantee memory safety at 
run-time

• Run-time checks: crash the program if a memory error is ever detected

• Index out-of-bounds



Memory safe languages
Run-time memory safety

• There are many higher-level languages, such as Java, Python, and Go, that guarantee memory safety at 
run-time

• Run-time checks: crash the program if a memory error is ever detected

• Index out-of-bounds

• Type mismatches



Memory safe languages
Run-time memory safety

• There are many higher-level languages, such as Java, Python, and Go, that guarantee memory safety at 
run-time

• Run-time checks: crash the program if a memory error is ever detected

• Index out-of-bounds

• Type mismatches

• Invalid pointer dereferences



Memory safe languages
Run-time memory safety

• There are many higher-level languages, such as Java, Python, and Go, that guarantee memory safety at 
run-time

• Run-time checks: crash the program if a memory error is ever detected

• Index out-of-bounds

• Type mismatches

• Invalid pointer dereferences

• Garbage collection: memory management is abstracted away by the language



Memory safe languages
Run-time memory safety

• There are many higher-level languages, such as Java, Python, and Go, that guarantee memory safety at 
run-time

• Run-time checks: crash the program if a memory error is ever detected

• Index out-of-bounds

• Type mismatches

• Invalid pointer dereferences

• Garbage collection: memory management is abstracted away by the language

• As a program executes, it periodically sweeps through and reclaims memory that was previously 
allocated but no longer used



Memory safe languages
Run-time memory safety

• There are many higher-level languages, such as Java, Python, and Go, that guarantee memory safety at 
run-time

• Run-time checks: crash the program if a memory error is ever detected

• Index out-of-bounds

• Type mismatches

• Invalid pointer dereferences

• Garbage collection: memory management is abstracted away by the language

• As a program executes, it periodically sweeps through and reclaims memory that was previously 
allocated but no longer used

• As the programmer, you never have to worry about memory errors!



Memory safe languages
Run-time memory safety

• There are many higher-level languages, such as Java, Python, and Go, that guarantee memory safety at 
run-time

• Run-time checks: crash the program if a memory error is ever detected

• Index out-of-bounds

• Type mismatches

• Invalid pointer dereferences

• Garbage collection: memory management is abstracted away by the language

• As a program executes, it periodically sweeps through and reclaims memory that was previously 
allocated but no longer used

• As the programmer, you never have to worry about memory errors!

• Sometimes at the cost of performance…



Memory safe languages
Cost of runtime safety

This graph shows a couple performance metrics for one of Discord’s core 
services to keep track of what messages a user has read (lower is better)

Jesse Howarth. “Why Discord is Switching from Go to Rust.” 2020.



Memory safe languages
Cost of runtime safety

This graph shows a couple performance metrics for one of Discord’s core 
services to keep track of what messages a user has read (lower is better)

Jesse Howarth. “Why Discord is Switching from Go to Rust.” 2020.

Each of the spikes represents the garbage collector running every couple minutes!

Can we achieve memory safety without sacrificing performance?



Memory safe languages
Cost of runtime safety

This graph shows a couple performance metrics for one of Discord’s core 
services to keep track of what messages a user has read (lower is better)

Jesse Howarth. “Why Discord is Switching from Go to Rust.” 2020.

Each of the spikes represents the garbage collector running every couple minutes!

Can we achieve memory safety without sacrificing performance?



Memory safe languages
Compile-time memory safety: Rust



Memory safe languages
Compile-time memory safety: Rust

• Safety is encoded directly into the syntax and grammar of the language



Memory safe languages
Compile-time memory safety: Rust

• Safety is encoded directly into the syntax and grammar of the language

• The compiler can verify whether code is safe to run before even trying to 
translate it to assembly for the computer to run



Memory safe languages
Compile-time memory safety: Rust

• Safety is encoded directly into the syntax and grammar of the language

• The compiler can verify whether code is safe to run before even trying to 
translate it to assembly for the computer to run

• Minimal run-time cost: memory management and safety is handled at 
compile-time



Memory safe languages
Compile-time memory safety: Rust

• Safety is encoded directly into the syntax and grammar of the language

• The compiler can verify whether code is safe to run before even trying to 
translate it to assembly for the computer to run

• Minimal run-time cost: memory management and safety is handled at 
compile-time

• Comparable performance to C++ with none of the potential bugs!



Memory safe languages
Compile-time memory safety: Rust

• Safety is encoded directly into the syntax and grammar of the language

• The compiler can verify whether code is safe to run before even trying to 
translate it to assembly for the computer to run

• Minimal run-time cost: memory management and safety is handled at 
compile-time

• Comparable performance to C++ with none of the potential bugs!

• Growing consensus that Rust should be the language of choice when 
building new performance- and safety-critical applications



Memory safe languages
Compile-time memory safety: Rust

• Safety is encoded directly into the syntax and grammar of the language

• The compiler can verify whether code is safe to run before even trying to 
translate it to assembly for the computer to run

• Minimal run-time cost: memory management and safety is handled at 
compile-time

• Comparable performance to C++ with none of the potential bugs!

• Growing consensus that Rust should be the language of choice when 
building new performance- and safety-critical applications



Rust Ownership Model

Rust adopts a unique approach to memory management known as ownership



Rust Ownership Model

Rust adopts a unique approach to memory management known as ownership

• Each value in memory has a variable called its owner



Rust Ownership Model

Rust adopts a unique approach to memory management known as ownership

• Each value in memory has a variable called its owner

• A value can only have one owner at a time



Rust Ownership Model

Rust adopts a unique approach to memory management known as ownership

• Each value in memory has a variable called its owner

• A value can only have one owner at a time

• When the owner goes out of scope, the value is “dropped” (deallocated)



Rust Ownership Model

{

    let s1: String = String::from("Hello");

    println!("{}", s1);

}


Output:

Hello



Rust Ownership Model

{

    let s1: String = String::from("Hello");

    println!("{}", s1);

}


HeapStack

Output:

Hello



Rust Ownership Model

{

    let s1: String = String::from("Hello");

    println!("{}", s1);

}


H

e

l

l

o

HeapStack

Output:

Hello



Rust Ownership Model

{

    let s1: String = String::from("Hello");

    println!("{}", s1);

}


H

e

l

l

o

s1

HeapStack

Output:

Hello



Rust Ownership Model

{

    let s1: String = String::from("Hello");

    println!("{}", s1);

}


H

e

l

l

o

s1

HeapStack
ownership

Output:

Hello



Rust Ownership Model

{

    let s1: String = String::from("Hello");

    println!("{}", s1);

}


H

e

l

l

o

s1

HeapStack
ownership

Compiler sees end of scope and 
drops s1 to deallocate the string. 
Hooray for no memory leaks!

Output:

Hello



Rust Ownership Model
Preventing use-after-free
{

    let s1: String = String::from("Hello");

    drop(s1);

    println!("{}", s1);

}




Rust Ownership Model
Preventing use-after-free
{

    let s1: String = String::from("Hello");

    drop(s1);

    println!("{}", s1);

}




Rust Ownership Model
This code won’t compile!
{

    let s1: String = String::from(“Hello");

    let s2: String = s1;

    println!("{}", s1);

    println!("{}", s2);

}




Rust Ownership Model
This code won’t compile!
{

    let s1: String = String::from(“Hello");

    let s2: String = s1;

    println!("{}", s1);

    println!("{}", s2);

}




Rust Ownership Model
This code won’t compile!
{

    let s1: String = String::from(“Hello");

    let s2: String = s1;

    println!("{}", s1);

    println!("{}", s2);

}


Values are “moved” by default:

ownership is transferred to s2



Rust Ownership Model
This code won’t compile!
{

    let s1: String = String::from(“Hello");

    let s2: String = s1;

    println!("{}", s1);

    println!("{}", s2);

}


HeapStack
Values are “moved” by default:

ownership is transferred to s2



Rust Ownership Model
This code won’t compile!
{

    let s1: String = String::from(“Hello");

    let s2: String = s1;

    println!("{}", s1);

    println!("{}", s2);

}


H

e

l

l

o

HeapStack
Values are “moved” by default:

ownership is transferred to s2



Rust Ownership Model
This code won’t compile!
{

    let s1: String = String::from(“Hello");

    let s2: String = s1;

    println!("{}", s1);

    println!("{}", s2);

}


H

e

l

l

o

s1

HeapStack
ownershipValues are “moved” by default:


ownership is transferred to s2



Rust Ownership Model
This code won’t compile!
{

    let s1: String = String::from(“Hello");

    let s2: String = s1;

    println!("{}", s1);

    println!("{}", s2);

}


H

e

l

l

o

s1

HeapStack
ownership

s2

Values are “moved” by default:

ownership is transferred to s2



Rust Ownership Model
This code won’t compile!
{

    let s1: String = String::from(“Hello");

    let s2: String = s1;

    println!("{}", s1);

    println!("{}", s2);

}


H

e

l

l

o

s1

HeapStack
ownership

s2 ownership

Values are “moved” by default:

ownership is transferred to s2



Rust Ownership Model
This code won’t compile!
{

    let s1: String = String::from(“Hello");

    let s2: String = s1;

    println!("{}", s1);

    println!("{}", s2);

}


H

e

l

l

o

s1

HeapStack
ownership

s2 ownership

Values are “moved” by default:

ownership is transferred to s2

The compiler drops both s1 and s2. Without the 
ownership restriction, that would be a double free!



Rust Ownership Model
Borrowing
{

    let s1: String = String::from("Hello");

    let s2: &String = &s1;

    println!("{}", s1);

    println!("{}", s2);

}


Output:

Hello

Hello



Rust Ownership Model
Borrowing
{

    let s1: String = String::from("Hello");

    let s2: &String = &s1;

    println!("{}", s1);

    println!("{}", s2);

}


s2 “borrows” a reference to s1

Output:

Hello

Hello



Rust Ownership Model
Borrowing
{

    let s1: String = String::from("Hello");

    let s2: &String = &s1;

    println!("{}", s1);

    println!("{}", s2);

}


HeapStack
s2 “borrows” a reference to s1

Output:

Hello

Hello



Rust Ownership Model
Borrowing
{

    let s1: String = String::from("Hello");

    let s2: &String = &s1;

    println!("{}", s1);

    println!("{}", s2);

}


H

e

l

l

o

HeapStack
s2 “borrows” a reference to s1

Output:

Hello

Hello



Rust Ownership Model
Borrowing
{

    let s1: String = String::from("Hello");

    let s2: &String = &s1;

    println!("{}", s1);

    println!("{}", s2);

}


H

e

l

l

o

s1

HeapStack
ownerships2 “borrows” a reference to s1

Output:

Hello

Hello



Rust Ownership Model
Borrowing
{

    let s1: String = String::from("Hello");

    let s2: &String = &s1;

    println!("{}", s1);

    println!("{}", s2);

}


H

e

l

l

o

s1

HeapStack
ownership

s2

s2 “borrows” a reference to s1

Output:

Hello

Hello



Rust Ownership Model
Borrowing
{

    let s1: String = String::from("Hello");

    let s2: &String = &s1;

    println!("{}", s1);

    println!("{}", s2);

}


H

e

l

l

o

s1

HeapStack
ownership

s2 borrowed from s1

s2 “borrows” a reference to s1

Output:

Hello

Hello



Rust Ownership Model
This code won’t compile!
{

    let mut s1: String = String::from("Hello");

    let s2: &String = &s1;

    s1 = String::from(“World");

    println!("{}", s1);

    println!("{}", s2);

}




Rust Ownership Model
This code won’t compile!
{

    let mut s1: String = String::from("Hello");

    let s2: &String = &s1;

    s1 = String::from(“World");

    println!("{}", s1);

    println!("{}", s2);

}




Rust Ownership Model
This code won’t compile!
{

    let mut s1: String = String::from("Hello");

    let s2: &String = &s1;

    s1 = String::from(“World");

    println!("{}", s1);

    println!("{}", s2);

}


HeapStack



Rust Ownership Model
This code won’t compile!
{

    let mut s1: String = String::from("Hello");

    let s2: &String = &s1;

    s1 = String::from(“World");

    println!("{}", s1);

    println!("{}", s2);

}


H

e

l

l

o

HeapStack



Rust Ownership Model
This code won’t compile!
{

    let mut s1: String = String::from("Hello");

    let s2: &String = &s1;

    s1 = String::from(“World");

    println!("{}", s1);

    println!("{}", s2);

}


H

e

l

l

o

s1

HeapStack

ownership



Rust Ownership Model
This code won’t compile!
{

    let mut s1: String = String::from("Hello");

    let s2: &String = &s1;

    s1 = String::from(“World");

    println!("{}", s1);

    println!("{}", s2);

}


H

e

l

l

o

s1

HeapStack

ownership

s2



Rust Ownership Model
This code won’t compile!
{

    let mut s1: String = String::from("Hello");

    let s2: &String = &s1;

    s1 = String::from(“World");

    println!("{}", s1);

    println!("{}", s2);

}


H

e

l

l

o

s1

HeapStack

ownership

s2 borrowed from s1



Rust Ownership Model
This code won’t compile!
{

    let mut s1: String = String::from("Hello");

    let s2: &String = &s1;

    s1 = String::from(“World");

    println!("{}", s1);

    println!("{}", s2);

}


H

e

l

l

o

s1

HeapStack

ownership

s2 borrowed from s1

W
o
r
l
d



Rust Ownership Model
This code won’t compile!
{

    let mut s1: String = String::from("Hello");

    let s2: &String = &s1;

    s1 = String::from(“World");

    println!("{}", s1);

    println!("{}", s2);

}


H

e

l

l

o

s1

HeapStack

s2 borrowed from s1

W
o
r
l
d

ownersh
ip



Rust Ownership Model
This code won’t compile!
{

    let mut s1: String = String::from("Hello");

    let s2: &String = &s1;

    s1 = String::from(“World");

    println!("{}", s1);

    println!("{}", s2);

}


H

e

l

l

o

s1

HeapStack

s2 borrowed from s1

W
o
r
l
d

ownersh
ip



Rust Ownership Model
This code won’t compile!
{

    let mut s1: String = String::from("Hello");

    let s2: &String = &s1;

    s1 = String::from(“World");

    println!("{}", s1);

    println!("{}", s2);

}


H

e

l

l

o

s1

HeapStack

s2 borrowed from s1

W
o
r
l
d

ownersh
ip

s2 is now invalidated!

Similar to the vector resize/realloc 
bug, but this time the compiler tells us



Additional Resources

• Interested in security and/or how memory errors can actually be exploited? 
Take CS155!


• Want to learn more Rust?


• The Rust book online


• CS110L used to be offered, but the materials are still available at 
cs110L.stanford.edu


• Curious about programming languages? CS242 and CS343D

http://cs110L.stanford.edu

