Memory Safety

CS107 Additional Topics, 3/10/2023

Jerry Chen (with materials adapted from Will Crichton)

What is memory safety?

What is memory safety?

A memory safe program is one
that has no memory errors

What are examples of memory errors?

What are examples of memory errors?

® Buffer overflows

What are examples of memory errors?

® Buffer overflows

® |nvalid pointer

What are examples of memory errors?

® Buffer overflows
® |nvalid pointer

® Heap management

What are examples of memory errors?

® Buffer overflows
® |nvalid pointer
® Heap management

® Use after free

What are examples of memory errors?

® Buffer overflows

® |nvalid pointer

® Heap management
® Use after free

® Double frees

What are examples of memory errors?

® Buffer overflows

® |nvalid pointer

® Heap management
® Use after free
® Double frees

® Memory leaks (kind of)

What are examples of memory errors?

® Buffer overflows
® |nvalid pointer
® Heap management

® Use after free

But you've taken CS107 and know how to
® Double frees find and prevent these errors!

Real-world systems can’t possibly have
® I\/Iemory leaks (kind of) these problems, right?

Real-world systems can’t possibly have these problems, right?

Real-world systems can’t possibly have these problems, right?

70% of all Microsoft vulnerabilities are memory errors

100%
90%
80%

60%
50%

% of CVEs

40%
30%
20%
10%

0%

2006 2007 2008 2009 2010 201 2012 2013 2014 2015 2016 2017 2018
Patch Year

B Memory safety B Not memory safety

Microsoft Security Response Center. “A proactive approach to more secure code.” 2019

Real-world systems can’t possibly have these problems, right?

70% of severe security bugs in Google Chrome are memory errors

High+, impacting stable

Security-related assert

Use-after-free

36.1%

Other

A/ \\4 {‘: /o)

Other memory unsafety
32.9%

The Chromium Project. “Memory Safety.”

Real-world systems can’t possibly have these problems, right?

70% of severe security bugs in Google Chrome are memory errors

High+, impacting stable

Security-related assert

Other
23.9%

Other memory unsafety
39 QY

The Chromium Project. “Memory Safety.”

Real-world systems can’t possibly have these problems, right?

70% of severe security bugs in Google Chrome are memory errors

High+, impacting stable

Security-related assert

m— Over half of their memory errors
are use-after-frees!

Other
23.9%

Other memory unsafety
29 QY

The Chromium Project. “Memory Safety.”

Real-world systems can’t possibly have these problems, right?
90% of Android vulnerabilities are memory errors

Vulnerabilities by Cause

@ OOB Write
@ O0O0B Read
UAF
@ Int Overflow
@ Other
@ Incorrect Crypto
@ Uninitilized

Google Security Blog. “Queue the Hardening Enhancements.” 2019

Real-world systems can’t possibly have these problems, right?
90% of Android vulnerabilities are memory errors

Vulnerabilities by Cause

® ooswite Out-of-bound writes comprise nearly
@ 00B Read half of all Android security bugs!

UAF
@ Int Overflow
@ Other
@ Incorrect Crypto
@ Uninitilized

Google Security Blog. “Queue the Hardening Enhancements.” 2019

Real-world systems can’t possibly have these problems, right?

my laptop right as | was making the past few slides @

Real-world systems can’t possibly have these problems, right?

my laptop right as | was making the past few slides @

B Problem Report for macOS

Your computer was restarted because of a problem.

This report will be sent automatically to Apple.

Comments

Provide any steps necessary to reproduce the problem.

Problem Details and Svstem Confiauration

88: 0Ox00000000ffffffff
Debugger message: panic
Memory ID: Ox6
0S release type: User
0S version: 22D68
Kernel version: Darwin Kernel Version 22.3.0: Mon Jan 30 20:38:37 PST 2023;
root:xnu-8792.81.3~2/RELEASE_ARM64_T6000
Fileset Kernelcache UUID: F3FEF53E6EF68BF96EC17744BD660B18
Kernel UUID: 7A07282F-D9FA-3782-A45A-8F8BB52FD37D
Boot session UUID: F35B7835-783C-4BOD-9F44-881D9349AB25
iBoot version: iBoot-8419.80.7

Hide Details

Real-world systems can’t possibly have these problems, right?

my laptop right as | was making the past few slides @

B Problem Report for macOS

Your computer was restarted because of a problem.

This report will be sent automatically to Apple.

Comments

Provide any steps necessary to reproduce the problem.

Problem Details and Svstem Confiauration

My laptop crashed because

of a use-after-free bug!
88: 0x00000000ffffffff

Debugger message: panic

Memory ID: Ox6

0S release type: User

0S version: 22D68

Kernel version: Darwin Kernel Version 22.3.0: Mon Jan 30 20:38:37 PST 2023;
root:xnu-8792.81.3~2/RELEASE_ARM64_T6000

Fileset Kernelcache UUID: F3FEF53E6EF68BF96EC17744BD660B18

Kernel UUID: 7A07282F-D9FA-3782-A45A-8F8BB52FD37D

Boot session UUID: F35B7835-783C-4BOD-9F44-881D9349AB25

iBoot version: iBoot-8419.80.7

Hide Details

What can attackers do with memory errors?

besides stealing money from an ATM

What can attackers do with memory errors?
EternalBlue and WannaCry (2017)

What can attackers do with memory errors?
EternalBlue and WannaCry (2017)

e EternalBlue: vulnerability found and kept secret by the NSA until it was
leaked in April 2017

What can attackers do with memory errors?
EternalBlue and WannaCry (2017)

e EternalBlue: vulnerability found and kept secret by the NSA until it was
leaked in April 2017

® WannaCry was a May 2017 ransomware attack using EternalBlue
® Shut down critical health services and infrastructure

® Fconomic damages on the order of $1 billion

What can attackers do with memory errors?
EternalBlue and WannaCry (2017)

e EternalBlue: vulnerability found and kept secret by the NSA until it was
leaked in April 2017

® WannaCry was a May 2017 ransomware attack using EternalBlue
® Shut down critical health services and infrastructure
® Fconomic damages on the order of $1 billion

® How? Integer overflow while determining much memory to allocate,
leading to a buffer overflow

What can attackers do with memory errors?
Heartbleed (2014)

What can attackers do with memory errors?
Heartbleed (2014)

® TLS (HTTPS): Internet protocol that keeps your internet activity private ana
secure

What can attackers do with memory errors?
Heartbleed (2014)

® TLS (HTTPS): Internet protocol that keeps your internet activity private ana
secure

® OpenSSL: open-sourced implementation of TLS

® "Heartbeat” mechanism where clients and servers periodically exchanged
messages

What can attackers do with memory errors?
Heartbleed (2014)

® TLS (HTTPS): Internet protocol that keeps your internet activity private ana
secure

® OpenSSL: open-sourced implementation of TLS

® "Heartbeat” mechanism where clients and servers periodically exchanged
messages

® Heartbleed vulnerability allowed attackers to read private data, including
potentially passwords

What can attackers do with memory errors?
Heartbleed (2014)

® TLS (HTTPS): Internet protocol that keeps your internet activity private ana
secure

® OpenSSL: open-sourced implementation of TLS

® "Heartbeat” mechanism where clients and servers periodically exchanged
messages

® Heartbleed vulnerability allowed attackers to read private data, including
potentially passwords

® How? Missing bounds check, leading to a buffer over-read

What can attackers do with memory errors?
Heartbleed (2014)

{) Heartbeat - Normal usage

Server, send me S
this 4 letter word | erver
if you are there: bird

Client "bird”)

./

What can attackers do with memory errors?
Heartbleed (2014)

{~) Heartbeat - Normal usage W Heartbeat — Malicious usage
Server, send me Server,sendme | Server
this 4 letter word Server this 500 letter bird. Server

Fyou are there: o wordifyouare | B Y " e
lient "bird" : there: "bird" .
C . User Client / User Carol wants
Alice wants 4 o to change ‘

letters: bird
password to

"password 123"...

What can attackers do with memory errors?
Heartbleed (2014)

G N E T Your guide to a better future
,

eeeeeeeee y

'Heartbleed’ bug undoes
Web encryption, reveals
Yahoo passwords

ENERGY

What Heartbleed Means for
Critical Infrastructure

After 'Catastrophic' Security Bug, the Internet
Needs a Password Reset

Security experts are calling Heartbleed, a bug in the internet’s infrastructure, the worse thing they’ve
seen in years. The bug is such problem, it may require what amounts to a massive password reset for the
internet at large.

Memory safety is difficult!

Buggy Vectorin C

Struct Definition

// Vec 1s short for "vector", a common term for a resizable array.
// For simplicity, our vector type can only hold ints.

typedef struct {

int *xdata; // Polnter to our array on the heap

1nt length; // How many elements are 1n our array

int capacity; // How many elements our array can hold

} Vec:

Buggy Vectorin C

What's wrong here?

Vec xvec create() {
Vec vec;
vec.data = malloc(sizeof(int));
vec.length = 0;
vec.capacity = 1;

return &vec;

Buggy Vector in C

What's wrong here?

Our Vec is stack-allocated!

Vec xvec_create() A We return a pointer, but that pointer will be invalid

vec vec; . : because the stack-allocated Vec will be destroyed when
vec.data = malloc(sizeof(int)); o funct
vec.length = 0: the tunction returns.

vec.capacity = 1;

return &vec;

Buggy Vector in C

What's wrong here?

Our Vec is stack-allocated!
We return a pointer, but that pointer will be invalid

because the stack-allocated Vec will be destroyed when
the function returns.

Vec *kvec create() {
Vec *vec = malloc(sizeof(Vec)):
vec—->data = malloc(sizeof(int));
vec—>length = 0;
vec—>capaclity = 1;

return vec;

Buggy Vector in C

What's wrong here?

vold vec_push(Vec *xvec, int n) {
// Double the capacity of our vector if it is full

if (vec—->length == vec->capacity) {
vec—>data = realloc(vec—->data, vec—->capacity *x 2);
assert(vec—->data != NULL):

vec—>capaclty x= 2:

¥

// Append the element to the end of our vector
vec—>datalvec—>1length] = n;
vec—>length++;

Buggy Vector in C

What's wrong here?

vold vec_push(Vec *xvec, int n) {
// Double the capacity of our vector if it is full

if (vec—->length == vec->capacity) {
vec—>data = realloc(vec—->data, vec—->capacity *x 2);
assert(vec—->data != NULL):

vec—>capaclty x= 2:

¥

// Append the element to the end of our vector
vec—>datalvec—>1length] = n;

vec—>length++;
+ Not realloc’ing with the correct size!

realloc requires the number of bytes, not elements
Multiply by sizeof(int)

Buggy Vectorin C

What's wrong here?

void main() {
Vec xvec = vec create():
vec_push(vec, 107):
int *n = &vec—->datal9]:

vec_push(vec, 111);
printf("%d\n", *n);

free(vec):

Buggy Vectorin C

What's wrong here?

void main() {
Vec xvec = vec create():
vec_push(vec, 107):
int *n = &vec—->datal9]:

vec_push(vec, 111);
printf("%d\n", *n);

free(vec);
S

1. Memory Leak: need to free vec->data first

Buggy Vectorin C

What's wrong here?

volid main() {
Vec xvec = vec create():

vec_push(vec, 107); . .]
int *n = &vec->datal9]: 2. Is it safe to dereference the n pointer here~

vec_push(vec, 111);
printf("%d\n", *n);

free(vec);
S

1. Memory Leak: need to free vec->data first

Buggy Vectorin C

What's wrong here?

volid main() {
Vec xvec = vec create():

vec_push(vec, 107); .)) . —
int *n = &vec—>datal[0]: 2. Is it safe to dereference the n pointer here~

h(111) - No! vec_push() will resize the data array by calling
\Igli-cizﬁg:i?"%\dlsﬁﬁ «n) '. realloc(). This can invalidate the pointer to old memory!

free(vec);
S

1. Memory Leak: need to free vec->data first

C/C++ are inherently unsafe

C/C++ are inherently unsafe

C/C++ are inherently unsafe

e Extremely powerful
® | ow-level systems programming
® Manual memory management

® Casting and reinterpreting raw bytes

C/C++ are inherently unsafe

e Extremely powerful

® | ow-level systems programming

® Manual memory management

® Casting and reinterpreting raw bytes
e Extremely dangerous

® | ow-level systems programming

® Manual memory management

® Casting and reinterpreting raw bytes

Memory safe languages

Memory safe languages

Run-time memory safety

Memory safe languages

Run-time memory safety

® There are many higher-level languages, such as Java, Python, and Go, that guarantee memory safety at
run-time

Memory safe languages

Run-time memory safety

® There are many higher-level languages, such as Java, Python, and Go, that guarantee memory safety at
run-time

® Run-time checks: crash the program it a memory error is ever detected

Memory safe languages

Run-time memory safety

® There are many higher-level languages, such as Java, Python, and Go, that guarantee memory safety at
run-time

® Run-time checks: crash the program it a memory error is ever detected

® [ndex out-of-bounds

Memory safe languages

Run-time memory safety

® There are many higher-level languages, such as Java, Python, and Go, that guarantee memory safety at
run-time
® Run-time checks: crash the program it a memory error is ever detected
® |ndex out-of-bounds

® Type mismatches

Memory safe languages

Run-time memory safety

® There are many higher-level languages, such as Java, Python, and Go, that guarantee memory safety at
run-time
® Run-time checks: crash the program it a memory error is ever detected
® |ndex out-of-bounds
® Type mismatches

® |nvalid pointer dereferences

Memory safe languages

Run-time memory safety

® There are many higher-level languages, such as Java, Python, and Go, that guarantee memory safety at
run-time
® Run-time checks: crash the program it a memory error is ever detected
® |ndex out-of-bounds
® Type mismatches

® |nvalid pointer dereferences

e Garbage collection: memory management is abstracted away by the language

Memory safe languages

Run-time memory safety

® There are many higher-level languages, such as Java, Python, and Go, that guarantee memory safety at
run-time
® Run-time checks: crash the program it a memory error is ever detected
® |ndex out-of-bounds
® Type mismatches

® |nvalid pointer dereferences

e Garbage collection: memory management is abstracted away by the language

® As a program executes, it periodically sweeps through and reclaims memory that was previously
allocated but no longer used

Memory safe languages

Run-time memory safety

® There are many higher-level languages, such as Java, Python, and Go, that guarantee memory safety at
run-time
® Run-time checks: crash the program it a memory error is ever detected
® |ndex out-of-bounds
® Type mismatches

® |nvalid pointer dereferences

e Garbage collection: memory management is abstracted away by the language

® As a program executes, it periodically sweeps through and reclaims memory that was previously
allocated but no longer used

¢ As the programmer, you never have to worry about memory errors!

Memory safe languages

Run-time memory safety

® There are many higher-level languages, such as Java, Python, and Go, that guarantee memory safety at
run-time
® Run-time checks: crash the program it a memory error is ever detected
® |ndex out-of-bounds
® Type mismatches

® |nvalid pointer dereferences

e Garbage collection: memory management is abstracted away by the language

® As a program executes, it periodically sweeps through and reclaims memory that was previously
allocated but no longer used

¢ As the programmer, you never have to worry about memory errors!

® Sometimes at the cost of performance...

Memory safe languages

Cost of runtime safety

This graph shows a couple performance metrics for one of Discord’s core
services to keep track of what messages a user has read (lower is better)

Jesse Howarth. “Why Discord is Switching from Go to Rust.” 2020.

Memory safe languages

Cost of runtime safety

This graph shows a couple performance metrics for one of Discord’s core
services to keep track of what messages a user has read (lower is better)

Each of the spikes represents the garbage collector running every couple minutes!
Can we achieve memory safety without sacrificing performance?

Jesse Howarth. “Why Discord is Switching from Go to Rust.” 2020.

Memory safe languages

Cost of runtime safety

This graph shows a couple performance metrics for one of Discord’s core
services to keep track of what messages a user has read (lower is better)

1l |
N r \ l' \ ﬁ "'\ "‘ | * /«'\ ﬁ\ 'l. | p "\r‘f\~ \

20 J e \\V,_,J| \',-v"-" L,-_) \f-a\J' . } L/\] |“‘~J ‘ _,J L/ | ‘
A ANRNANR AN
Z,lNJJ ’..vﬁ.J R | W | R | S | I | ﬁ L L’L J 1._4.\. JL l‘ L. ‘,' IW,_

100 10:0 101 10:15 10X 025 10 {) 005 10" 10

Each of the spikes represents the garbage collector running every couple minutes!
Can we achieve memory safety without sacrificing performance?

Jesse Howarth. “Why Discord is Switching from Go to Rust.” 2020.

Memory safe languages

Compile-time memory safety: Rust

Memory safe languages

Compile-time memory safety: Rust

® Safety is encoded directly into the syntax and grammar of the language

Memory safe languages

Compile-time memory safety: Rust

® Safety is encoded directly into the syntax and grammar of the language

® The compiler can verity whether code is sate to run before even trying to
translate it to assembly for the computer to run

Memory safe languages

Compile-time memory safety: Rust

® Safety is encoded directly into the syntax and grammar of the language

® The compiler can verity whether code is sate to run before even trying to
translate it to assembly for the computer to run

¢ Minimal run-time cost: memory management and safety is handled at
compile-time

Memory safe languages

Compile-time memory safety: Rust

® Safety is encoded directly into the syntax and grammar of the language

® The compiler can verity whether code is sate to run before even trying to
translate it to assembly for the computer to run

¢ Minimal run-time cost: memory management and safety is handled at
compile-time

® Comparable performance to C++ with none of the potential bugs!

Memory safe languages

Compile-time memory safety: Rust

® Safety is encoded directly into the syntax and grammar of the language

® The compiler can verity whether code is sate to run before even trying to
translate it to assembly for the computer to run

¢ Minimal run-time cost: memory management and safety is handled at
compile-time

® Comparable performance to C++ with none of the potential bugs!

® Growing consensus that Rust should be the language of choice when
building new pertormance- and safety-critical applications

Memory safe languages

Compile-time memory safety: Rust

® Safety is encoded directly into the syntax and grammar of the language

® The compiler can verity whether code is sate to run before even trying to
translate it to assembly for the computer to run

¢ Minimal run-time cost: memory management and safety is handled at
compile-time

® Comparable performance to C++ with none of the potential bugs!

® Growing consensus that Rust should be the language of choice when

s

building new performance- and satety-critical applications

Rust Ownership Model

Rust adopts a unique approach to memory management known as ownership

Rust Ownership Model

Rust adopts a unique approach to memory management known as ownership

® Fach value in memory has a variable called its owner

Rust Ownership Model

Rust adopts a unique approach to memory management known as ownership
® Fach value in memory has a variable called its owner

® Avalue can only have one owner at a time

Rust Ownership Model

Rust adopts a unique approach to memory management known as ownership
® Fach value in memory has a variable called its owner
® Avalue can only have one owner at a time

® \When the owner goes out of scope, the value is “dropped” (deallocated)

Rust Ownership Model

{
let s1: String = String::from("Hello");
println! ("{}", s1):;

}

Output:

Hello

Rust Ownership Model

{ Stack Heap

let s1: String = String::from("Hello");
println! ("{}", s1):;

Output:
Hello

Rust Ownership Model

{ Stack Heap
let s1: String = String::from("Hello");
println! ("{}", s1):; H
I
e
1
1
0
Output:

Hello

Rust Ownership Model

{ Stack Heap
let s1: String = String::from("Hello");)
println! ("{}", sl1); S H
¥
e
1
1
0
Output:

Hello

Rust Ownership Model

{ Stack Heap
let s1: String = String::from("Hello"); ownership
; I I .
println!("1}", sl1); S] |m—
l
e
1
1
0
Output:

Hello

Rust Ownership Model

{ Stack Heap
let sl1: String = String::from("Hello"); ownership
println! ("{}", s1); s |==————d H

s

\ a
Compiler sees end of scope and 1

drops s1 to deallocate the string.
Hooray for no memory leaks!

Output:
Hello

Rust Ownership Model

Preventing use-after-free

{
let s1: String = String::from("Hello");
drop(sl);
println!("{}", sl1);

Rust Ownership Model

Preventing use-after-free

{
let s1: String = String::from("Hello");
drop(sl);
println!("{}", sl1);

- - - - - —

error[EO382]: borrow of moved Vélue: sl
-=> Src/main.rs:5:24

3 let s1: String = String::from("Hello");

—— move occurs because sl has type "String , which does not implement the "Copy trait
4 drop(sl);

-— value moved here

5 println!("{}", s1);

~* value borrowed here after move

Rust Ownership Model

This code won’t compile!

{
let s1: String = String::from(”Hello");
let s2: String =
println! ("{}", sl1);
println! ("{}", s2);

Rust Ownership Model

This code won’t compile!

1

let s1: String = String::from(”Hello");
let s2: String = si;

println! ("{}", sl1);

println! ("{}", s2);

error[E0382]: borrow of moved value: sl

3

4

5

-=> Src/main.rs:5:24

let s1: String = String::from("Hello");
—— move occurs because sl has type "String , which does not implement the "Copy trait
let s2: String = s1;
-— value moved here
println!("{}", sl1);
~* value borrowed here after move

Rust Ownership Model

This code won’t compile!

1

let s1: String = String::from("”Hello");
let s2: Strin g S1; €—— Values are “moved"” by default:
println (L1 ’ s1) . ownership is transferred to s2

println! ("{}", s2):

error[E0382]: borrow of moved value: sl

3

4

5

-=> Src/main.rs:5:24

let s1: String = String::from("Hello");
—— move occurs because sl has type "String , which does not implement the "Copy trait
let s2: String = s1;
-— value moved here
println!("{}", sl1);
~* value borrowed here after move

Rust Ownership Model

This code won’t compile!

1

let s1: String = String::from("”Hello"); Stack

let s2: Striﬂg S1; €—— Values are “moved"” by default:
p]:'j_nt In!t("{}" ’ s1) . ownership is transferred to s2

println! ("{}", s2):

error[E0382]: borrow of moved value: sl

3

4

5

-=> Src/main.rs:5:24

let s1: String = String::from("Hello");
—— move occurs because sl has type "String , which does not implement the "Copy trait
let s2: String = s1;
-— value moved here
println!("{}", sl1);
~* value borrowed here after move

Heap

Rust Ownership Model

This code won’t compile!

{
: : tack Hea
let s1: String = String::from("”Hello"); Stac P
let s2: String = S]; €—— Values are "moved” by default:
println' (u{}u Sl) . ownership is transferred to s2 H
. / /
println! ("{}", s2);
e
l
1
1
O
error[E0382]: borrow of moved value: sl
—=> src/main.rs:5:24
3 let s1: String = String::from("Hello");
—— move occurs because sl has type "String , which does not implement the "Copy trait
4 let s2: String = s1;

-- value moved here
5 println! ("{}", sl1);
~” value borrowed here after move

Rust Ownership Model

This code won’t compile!

{
: : tack Hea
let s1: String = String::from("”Hello"); Stac P
let s2: String = S]; €—— Values are "moved” by default: ownership
println' (n{}n s1): ownership is transferred to s2 S] |m— H
. I I
println! ("{}", s2);
} e
1
1
O
error[E0382]: borrow of moved value: sl
—=> src/main.rs:5:24
3 let s1: String = String::from("Hello");
-— move occurs because sl has type String , which does not implement the "Copy trait
4 let s2: String = s1;

-- value moved here
5 println! ("{}", sl1);
~” value borrowed here after move

Rust Ownership Model

This code won’t compile!

{
: : k Hea
let s1: String = String::from("”Hello"); Stac P
let s2: String = S]; €—— Values are "moved” by default: ownership
println' (n{}n s1): ownership is transferred to s2 S] |m— H
. I I
println! ("{}", s2);
} e
S2
1
1
O
error[E0382]: borrow of moved value: sl
—=> src/main.rs:5:24
3 let s1: String = String::from("Hello");
-— move occurs because sl has type String , which does not implement the "Copy trait
4 let s2: String = s1;

-- value moved here
5 println! ("{}", sl1);
~” value borrowed here after move

Rust Ownership Model

This code won’t compile!

{
: : tack Hea
let s1: String = String::from("”Hello"); Stac P
let s2: String = S]; €—— Values are "moved” by default:
println' (u{}u Sl) . ownership is transferred to s2 sl H
. I I
println! ("{}", s2);
e
l
S2
1
1
O
error[E0382]: borrow of moved value: sl
—=> src/main.rs:5:24
3 let s1: String = String::from("Hello");
-— move occurs because sl has type String , which does not implement the "Copy trait
4 let s2: String = s1;

-- value moved here
5 println! ("{}", sl1);
~” value borrowed here after move

Rust Ownership Model

This code won’t compile!
1

: : Hea
let s1: String = String::from("Hello"); Stack P
let s2: Strin g =S 1 ; €4—— Values are “moved” by default:
println | (] { } I Sl) . ownership is transferred to s2 sl H
’ I I
println! ("{}", s2); .
}—
The compiler drops both s1 and s2. Without the S2
ownership restriction, that would be a double free! 1

error[E0382]: borrow of moved value: sl
-=> Src/main.rs:5:24

3 let s1: String = String::from("Hello");
—— move occurs because sl has type "String , which does not implement the "Copy trait
4 let s2: String = s1;

-- value moved here
5 println! ("{}", sl1);
~” value borrowed here after move

Rust Ownership Model

Borrowing

{
let s1: String = String::from("Hello");
let s2: &String = &s1;
println! ("{}", sl1);
println! ("{}", s2);

Output:

Hello
Hello

Rust Ownership Model

Borrowing

{
let sl1: String = String::from("Hello");
let s2: &String = &Sl; 4— s2 "borrows"” a reference to s1
println! ("{}", sl1);
println! ("{}", s2);

Output:

Hello
Hello

Rust Ownership Model

Borrowing

{ Stack Heap

let sl1: String = String::from("Hello");

let s2: &String = &Sl; 4— s2 "borrows"” a reference to s1
println! ("{}", sl1);

println! ("{}", s2);

Output:

Hello
Hello

Rust Ownership Model

Borrowing
1
let s1: String = String::from("Hello"); Stack Heap
let s2: &String = &Sl;4—sZ"borrows"areferencetos1
println! ("{}", s1); H
println! ("{}", s2);
} e
1
1
0
Output:
Hello

Hello

Rust Ownership Model

Borrowing
{
let s1: String = String::from("Hello"); Stack Heap
let s2: &String = &S1; €4 s2"borrows" areference to s1 ownership
println! ("{}", s1); S] |m——p H
println!("{}", s2);
} e
1
1
0
Output:
Hello

Hello

Rust Ownership Model

Borrowing
{
let s1: String = String::from("Hello"); Stack Heap
let s2: &String = &S1; €4 s2"borrows" areference to s1 ownership
println! ("{}", s1); S] |m——p H
println!("{}", s2);
} e
S2
1
1
0
Output:
Hello

Hello

Rust Ownership Model

Borrowing
{
let s1: String = String::from("Hello"); Stack Heap
let s2: &String = &S1; €4 s2"borrows" areference to s1 ownership
println! ("{}", s1); sl _: H
println! ("{}", s2); ,ﬂ”('
} oﬁ"e “0“‘5 e
52 ”;o‘(o\ﬂ 1
1
0

Output:

Hello
Hello

Rust Ownership Model

This code won’t compile!

{
let mut s1: String = String::from("Hello");

let s2: &String = &s1;

sl = String::from(“"World");
println! ("{}", s1);
println! ("{}", s2);

Rust Ownership Model

This code won’t compile!

1

let mut s1: String = String::from("Hello");
let s2: &String = &s1;

sl = String::from(“World");

println! ("{}", sl1);

println! ("{}", s2);

error[E0506]: cannot assign to ‘sl because it is borrowed
-=> src/main.rs:5:9

4 let s2: &String = &sl;
——— borrow of sl occurs here
5 sl = String::from("Hello");
~~ assignment to borrowed “sl° occurs here
G println!("{}", s1);
7 println! ("{}", s2);

-- borrow later used here

Rust Ownership Model

This code won’t compile!

1

let mut s1: String = String::from("Hello");
let s2: &String = &s1;

sl = String::from(“World");

println! ("{}", sl1);

println! ("{}", s2);

error[E0506]: cannot assign to ‘sl because it is borrowed
-=> src/main.rs:5:9

4 let s2: &String = &sl;
——— borrow of sl occurs here
5 sl = String::from("Hello");
~~ assignment to borrowed sl occurs here
5 println!("{}", sl1);
7 println!("{}", s2);

-- borrow later used here

Stack

Heap

Rust Ownership Model

This code won’t compile!

1

let mut s1: String = String::from("Hello");
let s2: &String = &s1;

sl = String::from(“World");

println! ("{}", sl1);

println! ("{}", s2);

error[E0506]: cannot assign to ‘sl because it is borrowed

4
5

6
7

-=> Src/main.rs:5:9

let s2: &String = &sl;
——— borrow of sl occurs here
sl = String::from("Hello");
~~ assignment to borrowed sl occurs here
println!("{}", sl1);
println!("{}", s2);
—— borrow later used here

Stack

Heap

Rust Ownership Model

This code won’t compile!

1

let mut s1: String = String::from("Hello");
let s2: &String = &s1;

sl = String::from(“World");

println! ("{}", sl1);

println! ("{}", s2);

error[E0506]: cannot assign to ‘sl because it is borrowed

4
5

6
7

-=> Src/main.rs:5:9

let s2: &String = &sl;
——— borrow of sl occurs here
sl = String::from("Hello");
~~ assignment to borrowed sl occurs here
println!("{}", s1);
println!("{}", s2);
—— borrow later used here

Stack

sl

ownership

—_—

Heap

Rust Ownership Model

This code won’t compile!

1

let mut s1: String = String::from("Hello");
let s2: &String = &s1;

sl = String::from(“World");

println! ("{}", sl1);

println! ("{}", s2);

error[E0506]: cannot assign to ‘sl because it is borrowed

4
5

6
7

-=> Src/main.rs:5:9

let s2: &String = &sl;
——— borrow of sl occurs here
sl = String::from("Hello");
~~ assignment to borrowed sl occurs here
println!("{}", s1);
println!("{}", s2);
—— borrow later used here

Stack

ownership
S]] |m—
S2

Heap

Rust Ownership Model

This code won’t compile!

1

let mut s1: String = String::from("Hello");
let s2: &String = &s1;

sl = String::from(“World");

println! ("{}", sl1);

println! ("{}", s2);

error[E0506]: cannot assign to ‘sl because it is borrowed
-=> src/main.rs:5:9

4 let s2: &String = &sl;
——— borrow of sl occurs here
5 sl = String::from("Hello");
~~ assignment to borrowed sl occurs here
println!("{}", s1);
println!("{}", s2);

—— borrow later used here

~ O

Stack

ownership

S] |m—

S2 |-

Heap

Rust Ownership Model

This code won’t compile!

1

let mut s1: String = String::from("Hello");
let s2: &String = &s1;

sl = String::from(“World");

println! ("{}", sl1);

println! ("{}", s2);

error[E@506]: cannot assign to “sl' because it is borrowed
-=> src/main.rs:5:9

4 let s2: &String = &sl;
——— borrow of sl occurs here
5 sl = String::from("Hello");
~~ assignment to borrowed sl occurs here
println!("{}", s1);
println!("{}", s2);

—— borrow later used here

~ O

Stack

ownership

S] |m—

S2 |-

Heap

O~ HK| 0| =

Rust Ownership Model

This code won’t compile!

1

let mut s1: String = String::from("Hello");
let s2: &String = &s1;

sl = String::from(“World");

println! ("{}", sl1);

println! ("{}", s2);

error[E@506]: cannot assign to “sl' because it is borrowed
-=> src/main.rs:5:9

4 let s2: &String = &sl;
——— borrow of sl occurs here
5 sl = String::from("Hello");
~~ assignment to borrowed sl occurs here
println!("{}", s1);
println!("{}", s2);

—— borrow later used here

~ O

Stack

sl

S2 |-

Heap

O~ HK| 0| =

Rust Ownership Model

This code won’t compile!

1

let mut s1: String = String::from("Hello");
let s2: &String = &s1;

sl = String::from(“World");

println! ("{}", sl1);

println! ("{}", s2);

error[E@506]: cannot assign to “sl' because it is borrowed
-=> src/main.rs:5:9

4 let s2: &String = &sl;
——— borrow of sl occurs here
5 sl = String::from("Hello");
~~ assignment to borrowed sl occurs here
println!("{}", s1);
println!("{}", s2);

—— borrow later used here

~ O

Stack

sl

S2 |-

Heap

O~ HK| 0| =

Rust Ownership Model

This code won’t compile!

1

let mut s1: String = String::from("Hello");
let s2: &String = &s1;

sl = String::from(“World");

println! ("{}", sl1);

println! ("{}", s2);

error[E0506]: cannot assign to ‘sl because it is borrowed
-=> src/main.rs:5:9

4 let s2: &String = &sl;
——— borrow of sl occurs here
5 sl = String::from("Hello");
~~ assignment to borrowed sl occurs here
println!("{}", s1);
println!("{}", s2);

—— borrow later used here

~ O

Stack

sl

52 "bo(

s2 is now invalidated!
Similar to the vector resize/realloc
bug, but this time the compiler tells us

Heap

O~ HK| 0| =

Additional Resources

® |nterested in security and/or how memory errors can actually be exploited?
Take CS155!

® \\Vant to learn more Rust?
® The Rust book online

® CS110L used to be offered, but the materials are still available at
cs110L.stantford.edu

® Curious about programming languages? CS242 and CS5343D

http://cs110L.stanford.edu

