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A memory safe program is one 
that has no memory errors 
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The Chromium Project. “Memory Safety.”

Over half of their memory errors 
are use-after-frees!
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Real-world systems can’t possibly have these problems, right?
90% of Android vulnerabilities are memory errors

Google Security Blog. “Queue the Hardening Enhancements.” 2019

Out-of-bound writes comprise nearly 
half of all Android security bugs!
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Real-world systems can’t possibly have these problems, right?
my laptop right as I was making the past few slides 😭

My laptop crashed because 
of a use-after-free bug!
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What can attackers do with memory errors?
EternalBlue and WannaCry (2017)

• EternalBlue: vulnerability found and kept secret by the NSA until it was 
leaked in April 2017

• WannaCry was a May 2017 ransomware attack using EternalBlue


• Shut down critical health services and infrastructure


• Economic damages on the order of $1 billion

• How? Integer overflow while determining much memory to allocate, 
leading to a buffer overflow
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What can attackers do with memory errors?
Heartbleed (2014)

• TLS (HTTPS): Internet protocol that keeps your internet activity private and 
secure

• OpenSSL: open-sourced implementation of TLS


• “Heartbeat” mechanism where clients and servers periodically exchanged 
messages

• Heartbleed vulnerability allowed attackers to read private data, including 
potentially passwords

• How? Missing bounds check, leading to a buffer over-read
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What can attackers do with memory errors?
Heartbleed (2014)



Memory safety is difficult!



Buggy Vector in C
Struct Definition

// Vec is short for "vector", a common term for a resizable array.

// For simplicity, our vector type can only hold ints.

typedef struct {

    int *data;    // Pointer to our array on the heap

    int length;   // How many elements are in our array

    int capacity; // How many elements our array can hold

} Vec;
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What’s wrong here?

Vec *vec_create() {

    Vec vec;

    vec.data = malloc(sizeof(int));

    vec.length = 0;

    vec.capacity = 1;


    return &vec;

}




Buggy Vector in C
What’s wrong here?

Vec *vec_create() {

    Vec vec;

    vec.data = malloc(sizeof(int));

    vec.length = 0;

    vec.capacity = 1;


    return &vec;

}


Our Vec is stack-allocated!

We return a pointer, but that pointer will be invalid 
because the stack-allocated Vec will be destroyed when 
the function returns.



Buggy Vector in C
What’s wrong here?

Vec *vec_create() {

    Vec vec;

    vec.data = malloc(sizeof(int));

    vec.length = 0;

    vec.capacity = 1;


    return &vec;

}


Our Vec is stack-allocated!

We return a pointer, but that pointer will be invalid 
because the stack-allocated Vec will be destroyed when 
the function returns.

Vec *vec_create() {

    Vec *vec = malloc(sizeof(Vec));

    vec->data = malloc(sizeof(int));

    vec->length = 0;

    vec->capacity = 1;


    return vec;

}




Buggy Vector in C
What’s wrong here?

void vec_push(Vec *vec, int n) {

    // Double the capacity of our vector if it is full

    if (vec->length == vec->capacity) {

        vec->data = realloc(vec->data, vec->capacity * 2);

        assert(vec->data != NULL);


        vec->capacity *= 2;

    }


    // Append the element to the end of our vector

    vec->data[vec->length] = n;

    vec->length++;

}




Buggy Vector in C
What’s wrong here?

Not realloc’ing with the correct size!

realloc requires the number of bytes, not elements

Multiply by sizeof(int)

void vec_push(Vec *vec, int n) {

    // Double the capacity of our vector if it is full

    if (vec->length == vec->capacity) {

        vec->data = realloc(vec->data, vec->capacity * 2);

        assert(vec->data != NULL);


        vec->capacity *= 2;

    }


    // Append the element to the end of our vector

    vec->data[vec->length] = n;

    vec->length++;

}
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Buggy Vector in C
What’s wrong here?

void main() {

    Vec *vec = vec_create();

    vec_push(vec, 107);

    int *n = &vec->data[0];


    vec_push(vec, 111);

    printf("%d\n", *n);


    free(vec);

}


2. Is it safe to dereference the n pointer here?

No! vec_push() will resize the data array by calling 
realloc(). This can invalidate the pointer to old memory!

1. Memory Leak: need to free vec->data first
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• Extremely dangerous


• Low-level systems programming


• Manual memory management


• Casting and reinterpreting raw bytes
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Run-time memory safety

• There are many higher-level languages, such as Java, Python, and Go, that guarantee memory safety at 
run-time

• Run-time checks: crash the program if a memory error is ever detected

• Index out-of-bounds

• Type mismatches

• Invalid pointer dereferences

• Garbage collection: memory management is abstracted away by the language

• As a program executes, it periodically sweeps through and reclaims memory that was previously 
allocated but no longer used

• As the programmer, you never have to worry about memory errors!

• Sometimes at the cost of performance…
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This graph shows a couple performance metrics for one of Discord’s core 
services to keep track of what messages a user has read (lower is better)

Jesse Howarth. “Why Discord is Switching from Go to Rust.” 2020.
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Rust Ownership Model

Rust adopts a unique approach to memory management known as ownership

• Each value in memory has a variable called its owner

• A value can only have one owner at a time

• When the owner goes out of scope, the value is “dropped” (deallocated)
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Rust Ownership Model

{

    let s1: String = String::from("Hello");

    println!("{}", s1);

}
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HeapStack
ownership

Compiler sees end of scope and 
drops s1 to deallocate the string. 
Hooray for no memory leaks!

Output:

Hello
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Rust Ownership Model
This code won’t compile!
{

    let s1: String = String::from(“Hello");

    let s2: String = s1;

    println!("{}", s1);

    println!("{}", s2);

}
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s2 ownership

Values are “moved” by default:

ownership is transferred to s2

The compiler drops both s1 and s2. Without the 
ownership restriction, that would be a double free!
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s2 is now invalidated!

Similar to the vector resize/realloc 
bug, but this time the compiler tells us



Additional Resources

• Interested in security and/or how memory errors can actually be exploited? 
Take CS155!


• Want to learn more Rust?


• The Rust book online


• CS110L used to be offered, but the materials are still available at 
cs110L.stanford.edu


• Curious about programming languages? CS242 and CS343D

http://cs110L.stanford.edu

