
Slides adapted from Hannah Zhang and Ricardo Iglesias :)

CS 107 Final Review Session

• Topics presented here are not exhaustive

• Exam is cumulative with a focus on post-midterm material

• Review will focus on post-midterm:

• Binary + bitwise operators

• Generics

• Assembly + stack layout

• Heap allocation

• Optimization

• Ethics

Disclaimer

• Signed vs unsigned; two’s complement circle

• Strings

• Why are they represented as char *?

• What’s the point of the null terminating character?

• How would you implement strlen() yourself? What would happen without a

null terminator?

• Familiarize yourself w/ string functions (ref sheet provided)

• Stack arrays

• Converted to pointers when passed as parameters

• NOT pointers themselves: sizeof() and & (address) behave
differently

To review on your own
Pre-midterm topics

• Parameters are passed by value/copy in C

• Pointer parameters let you change things outside a function

• Why does scan_token() use a char ** in assign3?

• Why does scandir() take a triple pointer in assign4?

• Stack vs heap memory

• When is each type of memory allocated/deallocated?

• Why do we need to heap-allocate anything at all?

To review on your own
Pre-midterm topics

Bits and Bytes

• NOT (~), AND (&), OR (|), XOR (^), and shifting (<<, >>)

• Conceptually:

• Turn a single bit on?

• Turn a single bit off?

• Bit masks: useful for manipulating multiple bits at once

• Turn certain bits on?

• Turn certain bits off?

• Isolate certain bits?

• Flip certain bits?

Bitwise operators
Bits and bytes

• Left shift: multiplying by powers of 2

• x << n = x * 2n

• Right shift: dividing by powers of 2

• x >> n = x / 2n

• Bit shift behavior for signed vs unsigned?

Bit shifts
Bits and bytes

Generics

• void *: a pointer to any type of data

• Manipulating generic memory:

• memcpy(void *dst, void *src, size_t nbytes)

• memmove(void *dst, void *src, size_t nbytes)

• Use memmove if src/dst might overlap (e.g., shifting a chunk of
an array forward/back)

void *, memcpy, and memmove
Generics

• Can’t dereference a void *! Need to know true pointer type and
cast

• Can’t index into an array!

• Given a void *arr to an array of elements that are width bytes,
how can you access the ith element?

void * pitfalls
Generics

• Idea: a generic function needs to know where to find the data and
how much data to expect

• Where the data is: void * pointer to the data

• How much data there is: size of the data type (and the number of
elements if working with arrays)

• What if we need to know something specific to the data type?

• Pass in a callback function that knows how to handle it, and the
generic function can just call this function

• Example: comparison functions for qsort/bsearch/binsert

Writing functions that work for any type
Generics

The map function applies a provided function to each element in a
generic array:

Practice: generic map function
Generics

void map(void *arr, int n, size_t width, void (*fn)(void *)) {

}

// Example usage:

int arr[] = {1, 2, 3};

map(arr, 3, sizeof(int), add_one)

// now arr holds {2, 3, 4}

On your own: how would you implement the add_one callback?

void add_one(void *x)

Assembly

• x86-64 reference sheet is your best friend (will be provided)

• Registers: computer must load data into registers in order to do
computation

• Most common special-purpose registers you’ll see:

• %rsp: stack pointer register; stores address of the end of the
current function’s stack frame

• Stack arrays and other stack variables referenced via %rsp

• %rdi, %rsi, %rdx, %rcx: 1st, 2nd, 3rd, 4th parameter registers

• %rax: return value register

Assembly

• If a register %reg contains an address A, than most of the time:

• %reg = A

• (%reg) = memory @ A

• D(%reg) = memory @ A + D

• D(%reg, B, C) = memory @ (A + D + (B * C))

• Parentheses generally indicates a dereference except when used
with lea

• lea calculates the memory address but does not dereference

• Useful for pointer (and regular) arithmetic

mov vs lea and indirect addressing
Assembly

• Processor stores flags that instructions set automatically

• CF = carry flag. Set to 1 if previous operation led to a carry

• Used for unsigned arithmetic

• OF = overflow flag. Set to 1 if previous operation overflowed

• Used for signed arithmetic

• ZF = zero flag: Set to 1 if previous result was zero

• SF = sign flag: Set to 1 if the MSB/sign bit of the previous result was one

Condition Flags
Assembly

check condition

Jump to [IfBody] if condition true

[Else]:

<If false statements>

Jump to [EndIf]

[IfBody]:

<If true statements>

[EndIf]

Control flow pattern: if/else
Assembly

[Initialize] (e.g., int i = 0)

[Test]:

Check OPPOSITE of loop condition

Jump to [LoopEnd] if true

[LoopBody]:

<statements>

<Update> (e.g., i++)

Jump to [Test]

[LoopEnd]:

everything else

Control flow pattern: loop
Assembly

• Sketch out the overall control flow

• Identify where the program is jumping around and section off blocks of code that

run together

• Look for things you know:

• If you see a standard library function being called, you should know what

parameters the function expects. If you see a call to strcat(), that tells you that %rdi
and %rsi need to store char * values!

• It sometimes helps to work backwards

• If you care about the function’s return value, then check whether %rax is updated

right before the function returns and follow the breadcrumbs

Reverse-engineering tips
Assembly

Heap Allocator

• Throughput: how fast can the allocator serve requests?

• Utilization: how efficiently can the allocator use the segment space?

• Fragmentation: external vs internal

• External fragmentation: a lot of free memory but split across many small free

blocks —> can’t service a single large request

• Internal fragmentation: more space is allocated for a used block than necessary
(e.g., padding)

General Concepts
Heap Allocator

• Maintain list of free blocks so we can reuse them in the future

• Implicit:

• 8-byte header with payload size + state (used vs free)

• Traverse both free and used blocks when servicing requests

• Explicit:

• 8-byte header with payload size + state (used vs free)

• Free blocks tracked in linked list with pointers stored in payload

• What’s the benefit of this?

• What are the downsides? (think about fragmentation)

• Coalescing: what’s the point?

Design considerations
Heap Allocator

• First-fit vs best-fit tradeoffs?

• Explicit free list order:

• Address-order?

• Size order?

• No/random order?

Design considerations
Heap Allocator

Optimization

• Constant folding: compiler can precompute constant values,
including constant arithmetic and sizeof()

• Common subexpression elimination: compiler can avoid
recalculating the same result multiple times

• Strength reduction: avoid multiplying/dividing by using shifts and
adds instead (see Lab 5)

• Dead code elimination: if a piece of code can never be reached,
the compiler can just remove it

• Code motion: rearrange code for better performance

• Loop unrolling: avoid expensive conditions and jumps by copy-
pasting the loop body

Optimization

Ethics

• Full disclosure vs responsible disclosure (Lecture 12)

• Degrees of partiality (Lecture 12):

• Partiality

• Partial cosmopolitanism

• Universal care

• Impartial benevolence

• Privacy and trust

• Privacy as control of information, autonomy, social good, and trust

• Trust models: who is trusted/distrusted? centralized or
distributed?

Ethics

image alt text: a series of concentric
circles representing groups of people
towards whom one might
demonstrate partiality/preference.
The inner-most circle represents the
self, followed by family, friends, and
state in that order. The outer-most
circle is the rest of the world.

