CS 107 Final Review Session

Slides adapted from Hannah Zhang and Ricardo Iglesias :)

Disclaimer

« Jopics presented here are not exhaustive
« Exam is cumulative with a focus on post-midterm material
« Review will focus on post-midterm:

« Binary + bitwise operators

Generics

Assembly + stack layout

Heap allocation

Optimization
Ethics

Pre-midterm topics

To review on your own

« Signed vs unsigned; two's complement circle
« Strings
e Why are they represented as char *?

e What's the point of the null terminating character?

e How would you implement strlen() yourself? What would happen without a
null terminator?

« Familiarize yourself w/ string functions (ref sheet provided)
« Stack arrays
« Converted to pointers when passed as parameters

« NOT pointers themselves: sizeof() and & (address) behave
differently

Pre-midterm topics

To review on your own

« Parameters are passed by value/copy in C
« Pointer parameters let you change things outside a function
e Why does scan_token() use a char ** in assign3?
e Why does scandir() take a triple pointer in assign4?
« Stack vs heap memory
e When is each type of memory allocated/deallocated?

e Why do we need to heap-allocate anything at all?

Bits and Bytes

Bits and bytes

Bitwise operators

« NOT (~), AND (&), OR (]), XOR (*), and shifting (<<, >>)

« Conceptually:

« Turn a single bit on?

« Turn a single bit off?

« Bit masks: useful for manipulating multiple bits at once

« Turn certain bits on?
« Turn certain bits off?
e |solate certain bits?

 Flip certain bits?

Bits and bytes

Bit shifts

 Left shift: multiplying by powers of 2
e X<<N=Xx*2n

 Right shift: dividing by powers of 2
e X>>n=Xx/[2n"

« Bit shift behavior for signed vs unsigned?

Generics

Generics

void *, memcpy, and memmove

- void s: a pointer to any type of data

e Manipulating generic memory:
e memcpy(void *xdst, void xsrc, size_t nbytes)

e memmove(volid *xdst, void xsrc, size_t nbytes)

e Use memmove if src/dst might overlap (e.g., shifting a chunk of
an array forward/back)

Generics

void * pitfalls

« Can't dereference a void *! Need to know true pointer type and
cast

« Can'tindex into an array!

« Givenavoid *xarr to an array of elements that are width bytes,
how can you access the 1th element?

Generics

Writing functions that work for any type

 |dea: a generic function needs to know where to find the data and
how much data to expect

e Where the datais: void * pointer to the data

e How much data there is: size of the data type (and the number of
elements if working with arrays)

e« What if we need to know something specific to the data type?

e Pass in a callback function that knows how to handle it, and the
generic function can just call this function

o« Example: comparison functions for qsort/bsearch/binsert

Generics

Practice: generic map function

The map function applies a provided function to each element in a
generic array:

void map(void xarr, int n, size_t width, void (*xfn)(void x)) {

}

// Example usage:

int arr[] = {1, 2, 3};

On your own: how would you implement the add_one callback?

map(arr, 3, sizeof(int), add_one) vold add_one(void *x)

// now arr holds {2, 3, 4}

Assembly

Assembly

« X86-64 reference sheet is your best friend (will be provided)

« Registers: computer must load data into registers in order to do
computation

« Most common special-purpose registers you'll see:

« %rsp: stack pointer register; stores address of the end of the
current function’s stack frame

e Stack arrays and other stack variables referenced via %rsp
o %rdi, %rsi, %rdx, %rcx: 1st, 2nd, 3rd, 4th parameter registers

« %rax: return value register

Assembly

mov vs lea and indirect addressing

o |f aregister %reg contains an address A, than most of the time:
« oreg=A
e (%reg) =memory @ A
« D(%reg) =memory @ A+D
e« D(%reg,B,C)=memory @ (A+D + (B*C))

« Parentheses generally indicates a dereference except when used
with lea

 |ea calculates the memory address but does not dereference

« Useful for pointer (and regular) arithmetic

Assembly

Condition Flags

Processor stores flags that instructions set automatically

CF = carry flag. Set to 1 if previous operation led to a carry

« Used for unsigned arithmetic

OF = overflow flag. Set to 1 if previous operation overflowed

» Used for signed arithmetic

/F = zero flag: Set to 1 if previous result was zero

SF = sign flag: Set to 1 if the MSB/sign bit of the previous result was one

Assembly

Control flow pattern: if/else

check condition
Jump to [IfBody] 1f condition true
[Elsel:
<If false statements>
Jump to [EndIf]
[IfBody]:
<If true statements>
[EndITf]

Assembly

Control flow pattern: loop

[Initialize] (e.g., i1nt 1 = 0)
[Test]:
Check OPPOSITE of loop condition
Jump to [LoopEnd] if true
[LoopBody]:
<statements>
<Update> (e.g., 1++)
Jump to [Test]
[LoopEnd]:

everything else

Assembly

Reverse-engineering tips

« Sketch out the overall control flow
 |dentify where the program is jumping around and section off blocks of code that
run together
« Look for things you know:

 [f you see a standard library function being called, you should know what
parameters the function expects. If you see a call to strcat(), that tells you that %rdi
and %rsi need to store char * values!

It sometimes helps to work backwards

« [f you care about the function’s return value, then check whether %rax is updated
right before the function returns and follow the breadcrumbs

Heap Allocator

Heap Allocator

General Concepts

« Throughput: how fast can the allocator serve requests?

 Utilization: how efficiently can the allocator use the segment space?
« Fragmentation: external vs internal

- External fragmentation: a lot of free memory but split across many small free
blocks —> can't service a single large request

« Internal fragmentation: more space is allocated for a used block than necessary
(e.g., padding)

Heap Allocator

Design considerations

- Maintain list of free blocks so we can reuse them in the future
e Implicit:

e 8-byte header with payload size + state (used vs free)

e Traverse both free and used blocks when servicing requests
o Explicit:

e 8-byte header with payload size + state (used vs free)

e Free blocks tracked in linked list with pointers stored in payload
o What's the benefit of this?
 What are the downsides? (think about fragmentation)

e Coalescing: what's the point?

Heap Allocator

Design considerations

o First-fit vs best-fit tradeoffs?

« Explicit free list order:

o Address-order?

 Size order?

« No/random order?

Optimization

Optimization

« Constant folding: compiler can precompute constant values,
including constant arithmetic and sizeof()

« Common subexpression elimination: compiler can avoid
recalculating the same result multiple times

e Strength reduction: avoid multiplying/dividing by using shifts and
adds instead (see Lab 5)

 Dead code elimination: if a piece of code can never be reached,
the compiler can just remove it

e Code motion: rearrange code for better performance

e Loop unrolling: avoid expensive conditions and jumps by copy-
pasting the loop body

Ethics

 Full disclosure vs responsible disclosure (Lecture 12)

“:‘_

image alt text: a series of concentric

. Degrees of partiality (Lecture 12): / / -
s N \\
® artla Ity (/ \ \\ \ circles representing groupsofpeople

C;: Va"}vy féends strte world demonstrate partiality/preference.
The inner-most circle represents the

i Dartia CosmOpOIitanism self, followed by family, friends, and
\ \ Ead / / / f state in that order. The outer-most
. circle is the rest of the world.
Universal care \\\\ —/ /

Impartial benevolence
Privacy and trust
Privacy as control of information, autonomy, social good, and trust

« Trust models: who is trusted/distrusted? centralized or
distributed?

