CS107, Lecture 11
The Heap, Continued

Reading: K&R 5.6-5.9 or Essential C section 6 on
the heap

This document is copyright (C) Stanford Computer Science and Nick Troccoli, licensed under
(: 2 Creative Commons Attribution 2.5 License. All rights reserved.
‘u l I laS kS re CO I I I l I I e n d ed Based on slides created by Cynthia Lee,‘Chris Gregg, Jerry Cain, Lisa Yan and others.
NOTICE RE UPLOADING TO WEBSITES: This content is protected and may not be shared, 1
uploaded, or distributed. (without expressed written permission)

CS107 Topic 3

How can we effectively manage all types of memory in our programs?

Why is answering this question important?

* Shows us how we can pass around data efficiently with pointers (last time)

* Introduces us to the heap and allocating memory that we manually manage
(today)

* Helps us better understand use-after-free vulnerabilities, a common bug
(today)

assign3: implement a function using resizable arrays to read lines of any length from
a file and write 2 programs using that function to print the last N lines of a file and print

just the unique lines of a file. These programs emulate the tail and uniq Unix
commands!

2

Learning Goals

* Learn about the differences between the stack and the heap and when to use
each one

 Become familiar with the malloc, calloc, realloc and free functions for
managing memory on the heap

e Understand use-after-free vulnerabilities and vulnerability disclosure

Lecture Plan

* Recap: The Heap So Far

* Freeing Memory

* Practice: Pig Latin + Valgrind

» Use-after-free bugs and vulnerability disclosure

* realloc

cp -r /afs/ir/class/cs107/lecture-code/lectll .

The Heap

* The heap is a part of memory that you can
manage yourself.

* The heap is a part of memory below the stack
that you can manage yourself. Unlike the stack,
the memory only goes away when you delete it
yourself.

* Unlike the stack, the heap grows upwards as
more memory is allocated.

The heap is dynamic memory — memory that can
be allocated, resized, and freed during program
runtime.

Ox7ffffffff000 sMB

reserved

Ox7ffff7ffe000 | Shared library Sized for
text/data library

Grows on

demand
0x602010

0x600000 Global data Sized for

executable
Text
0x400000 (machine code)

Low addresses
deliberately unmapped

Working with the heap

Working with the heap consists of 3 core steps:
1. Allocate memory with malloc/realloc/strdup/calloc
2. Assert heap pointer is not NULL

3. Free when done

The heap is dynamic memory, so you may encounter many runtime errors,
even if your code compiles!

malloc

void *malloc(size t size);

To allocate memory on the heap, use the malloc function (“memory allocate”)
and specify the number of bytes you’d like.

 This function returns a pointer to the starting address of the new memory. It
doesn’t know or care whether it will be used as an array, a single block of
memory, etc.

* void *means a pointer to generic memory. You can set another pointer
equal to it without any casting.

* The memory is not cleared out before being allocated to you!
e f malloc returns NULL, then there wasn’t enough memory for this request.

Always assert with the heap

Let’s write a function that returns an array of the first len multiples of muilt.
1 int *array_of multiples(int mult, int len) {

2 int *arr = malloc(sizeof(int) * 1len);
[> 3 assert(arr != NULL);

4 for (int 1 = 0@; 1 < len; i++) {

5 arr[i] = mult * (1 + 1);

6 }

V4 return arr;

8 }

* If an allocation error occurs (e.g. out of heap memory!), malloc will return
NULL. This is an important case to check for robustness.

 assert will crash the program if the provided condition is false. A memory
allocation error is significant, and we should terminate the program.

Other heap allocations: calloc

void *calloc(size t nmemb, size t size);

calloc is like malloc that zeros out the memory for you—thanks, calloc!

* You might notice its interface is also a little different—it takes two parameters,

which are multiplied to calculate the number of bytes (nmemb * size).
// allocate and zero 20 ints
int *scores = calloc(20, sizeof(int));

// alternate (but slower)
int *scores = malloc(20 * sizeof(int));
for (int 1 = 0; 1 < 20; i++) scores[i] = 0O;

* calloc is more expensive than malloc because it zeros out memory. Use only
when necessary!

Other heap allocations: strdup

char *strdup(char *s);

strdup is a convenience function that returns a null-terminated, heap-
allocated string with the provided text, instead of you having to malloc and

copy in the string yourself.

char *str = strdup("Hello, world!"); // on heap
str[@] = 'h';

You could imagine strdup might be implemented in
terms of malloc + strcpy.

10

Lecture Plan

* Recap: The Heap So Far

* Freeing Memory

* Practice: Pig Latin + Valgrind

» Use-after-free bugs and vulnerability disclosure

* realloc

cp -r /afs/ir/class/cs107/lecture-code/lectll .

11

Cleaning Up with free

void free(void *ptr);

* If we allocated memory on the heap and no longer need it, it is our
responsibility to free it.

* To do this, use the free command and pass in the starting address on the
heap for the memory you no longer need.

* Example:
char *bytes = malloc(4);

free(bytes);

12

void free(void *ptr);

When you free an allocation, you are freeing up what it points to. You are not

freeing the pointer itself. You can still use the pointer to point to something
else.

char *str = strdup("hello");

free(str);
strdup("hi");

str

13

free detalls

Even if you have multiple pointers to the You must free the address you
same block of memory, each memory received in the previous allocation
block should only be freed once. call; you cannot free just part of a

previous allocation.

char *bytes = malloc(4); char *bytes = malloc(4);
char *ptr = bytes; char *ptr = malloc(10);
free(bytes); <] free(bytes); <]
free(ptr); <{A[X Memory at this free(ptr + 1); <3

address was already
freed!

14

Cleaning Up

You may need to free memory allocated by other functions if that function
expects the caller to handle memory cleanup.

char *str = strdup("Hello!");

free(str); // our responsibility to free!

15

Memory Leaks

A memory leak is when you do not free memory you previously allocated.

char *str = strdup("hello");

str = strdup("hi"); // memory leak! Lost previous str

16

Memory Leaks

A memory leak is when you do not free memory you previously allocated.

* Your program should be responsible for cleaning up any memory it allocates
but no longer needs.

* If you never free any memory and allocate an extremely large amount, you
may run out of memory in the heap!

e However, memory leaks rarely (if ever) cause crashes.

* We recommend not to worry about freeing memory until your program is
written. Then, go back and free memory as appropriate.

 Valgrind is a very helpful tool for finding memory leaks!

17

Lecture Plan

* Recap: The Heap So Far

* Freeing Memory

* Practice: Pig Latin + Valgrind

» Use-after-free bugs and vulnerability disclosure

* realloc

cp -r /afs/ir/class/cs107/lecture-code/lectll .

18

Example: Pig Latin

Let’s write a program that can convert text to Pig Latin! Simplified Pig Latin
rules:

* If the word starts with a vowel, append “way”: apple -> appleway

e Otherwise, move all starting consonants to the end and append “ay”: bridge ->
idgebray

We want to write a function char *pig_latin(const char *in) that returns the Pig
Latin version of the given string.

* Good use case for heap allocation — array size is unknown until we convert it to
Pig Latin! We'll create and return a heap-allocated string.

* The caller must free the string when it is done.

19

Example: Pig Latin

We will also see an example of how to uncover memory leaks using Valgrind.

valgrind --leak-check=full --show-leak-kinds=all [program info here]

20

Demo: Pig Latin + Valgrind

pig latin.c

Lecture Plan

* Recap: The Heap So Far

* Freeing Memory

* Practice: Pig Latin + Valgrind

e Use-after-free bugs and vulnerability disclosure

* realloc

cp -r /afs/ir/class/cs107/lecture-code/lectll .

22

Use-After-Free

“Use-After-Free” is a bug where you continue to use heap memory after you
have freed it.

char *bytes = malloc(4);
char *ptr = bytes;

. (I We freed bytes but did not
free(bytes); set ptr to NULL

strncpy(ptr, argv[1l], 3); X Memory at this address was
already freed, but now we are
using it!

This is possible because free() doesn’t change the pointer passed in, it just frees
the memory it points to.

23

Use-After-Free

* What happens when we have a use-after-free bug? Undefined Behavior / a
memory error!

* Maybe the memory still has its original contents?
* Maybe the memory is used to store some other heap data now?

» Use-after-free is not just a functionality issue; it can cause a range of
unintended behavior, including accessing/modifying memory you shouldn’t be
able to access

It’s our job as programmers to find and fix use-after-free and other bugs not
just for the functional correctness of our programs, but to protect people who
use and interact with our code.

24

Use-After Free as a Vulnerability

* Use After Free Vulnerabilities in CVE database

e Use-after-free in Chrome (2020)

* Google’s attempts to reduce Chrome use-after-free vulnerabilities (2021)
e Use-after-free in iOS (2020)

* Google 2023 Chrome fixes include use-after-free vulnerability and heap buffer
overflow (2023)

25

http://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=use+after+free
http://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=use+after+free
https://security.googleblog.com/2021/09/an-update-on-memory-safety-in-chrome.html
https://googleprojectzero.github.io/0days-in-the-wild/0day-RCAs/2019/CVE-2019-7286.html
https://www.forbes.com/sites/daveywinder/2023/01/11/google-kickstarts-2023-with-17-chrome-security-vulnerability-updates-for-windows-mac--linux/?sh=1ec297a06524
https://www.forbes.com/sites/daveywinder/2023/01/11/google-kickstarts-2023-with-17-chrome-security-vulnerability-updates-for-windows-mac--linux/?sh=1ec297a06524

What should someone do if they
find a vulnerability? How can we
incentivize responsible disclosure?

Various roles in this process: users (those at risk), makers (e.g., software
company), security researchers (who found the vulnerability), bad actors (who
wish to exploit the issue to harm users), etc.

e Users want to be protected with secure software

* Makers want to make their software secure and not have it exploited — they
probably want to have time to fix vulnerabilities before they are made public

 Security researchers want their issues to be fixed and be rewarded for finding
them

* Bad actors want to learn about vulnerabilities before they are patched

27

Full Disclosure

One approach is to make vulnerabilities public as soon as they are found.
Vulnerabilities unknown to the software maker before release are called “zero-
day vulnerabilities” because they “have 0 days to fix the problem”.

* puts pressure on the maker to fix it quickly
e discloses the vulnerability to the public as soon as it’s found
* Leaves users vulnerable until the maker releases a patch

Few people now endorse this approach due to its drawbacks.

28

Responsible Disclosure

Another approach is to privately alert the software maker to the vulnerability

to fix it in a reasonable amount of time before publicizing the vulnerability.
This is called “responsible disclosure”:

e Contacts the makers of the software

* Informs them about the vulnerability

* Negotiates a reasonable timeline for a patch or fix
* Considers a deadline extension if necessary

time passes while the developers fix the bug

* Works with the developers to add the vulnerability to CVE Details
https://www.cvedetails.com/ , from which it is added to the National
Vulnerability Database https://nvd.nist.gov/

29

https://www.cvedetails.com/
https://nvd.nist.gov/

Responsible Disclosure

Responsible disclosure is the most common approach, and it is recommended
by the ACM code of ethics:

Responsible disclosure is the approach more consistent with the ACM Code of Ethics. By
keeping the existence of the vulnerability secret for a longer amount of time, it reduces the
chance of harm to others (Principle 1.2). It also supports more robust patching (Principles 2.1,
2.9, and 3.6), as the company can take more time to develop the patch and confirm that it will
not induce unintended consequences. Full disclosure puts individuals at risk of harm sooner,
and those harms may be irreversible and onerous (contravening Principles 1.2 and 3.1). As
such, full disclosure should the exception and should only be used when attempts at
responsible disclosure have failed. Furthermore, the individual committing to the full
disclosure needs to consider carefully the risks that they are imposing on others and be willing
to accept the moral and possibly legal consequences (Principles 2.3 and 2.5).

30

Vulnerability Commercialization

Various entities may want to financially reward people for finding and reporting
vulnerabilities:

e Software makers want to know about vulnerabilities in their software

* Other entities want to know about unpatched vulnerabilities to exploit them

31

Bug Bounty Programs

Many companies now offer “Bug Bounties,” or rewards for responsible
disclosure.

Good Version of a bug bounty process:

* Responsible disclosure process is followed
 Company is buying information & time to fix the bug
Bad version of a bug bounty process:

 Company does not fix the bug or notify the public.

* Not knowing what vulnerabilities exist makes it harder for users to calibrate
trust

 Company is effectively buying silence
32

Vulnerabilities Equities Process

The US federal government is one of the largest discoverers and purchasers of O-
day vulnerabilities.

It follows a “Vulnerabilities Equities Process” (VEP) to determine which
vulnerabilities to responsibly disclose and which to keep secret and use for
espionage or intelligence gathering.

VEP claimed in 2017 that 90% of vulnerabilities are disclosed, but it is not clear
what the impact or scope of the un-disclosed 10% of vulnerabilities are.

More reading here and here

33

https://obamawhitehouse.archives.gov/blog/2014/04/28/heartbleed-understanding-when-we-disclose-cyber-vulnerabilities
https://www.wired.com/story/vulnerability-equity-process-charter-transparency-concerns/?utm_source=WIR_REG_GATE

Concerns with VEP

 Lack of transparency: little oversight as to whether the “bias towards
responsible disclosure” is consistently upheld

* Harm of omission: withholding the opportunity to fix the vulnerability means
that another actor could re-discover and use it

* Risk of stockpiling: Other people can hack into the stored 0-days and use them,
as in the “Shadowbrokers” attack which led to serious ransomware attacks on
hospitals and transportation systems

* Intended use: NSA’s intended use of vulnerabilities may be concerning, as in
PRISM surveillance program.

34

Lecture Plan

* Recap: The Heap So Far

* Freeing Memory

* Practice: Pig Latin + Valgrind

» Use-after-free bugs and vulnerability disclosure

* realloc

cp -r /afs/ir/class/cs107/lecture-code/lectll .

35

realloc

void *realloc(void *ptr, size t size);
* The realloc function takes an existing allocation pointer and enlarges to a new
requested size. It returns the new pointer.

* If there is enough space after the existing memory block on the heap for the
new size, realloc simply adds that space to the allocation.

* If there is not enough space, realloc moves the memory to a larger location,
frees the old memory for you, and returns a pointer to the new location.

36

char *str = strdup("Hello");
assert(str != NULL);

// want to make str longer to hold "Hello world!"
char *addition = " world!";
str = realloc(str, strlen(str) + strlen(addition) + 1);

assert(str != NULL);

strcat(str, addition);
printf("%s", str);
free(str);

37

* realloc only accepts pointers that were previously returned by malloc/etc.

* Make sure to not pass pointers to the middle of heap-allocated memory.

* Make sure to not pass pointers to stack memory.

38

Cleaning Up with free and realloc

You only need to free the new memory coming out of realloc—the previous
(smaller) one was already reclaimed by realloc.

char *str = strdup("Hello");
assert(str != NULL);

// want to make str longer to hold "Hello world!"

char *addition = " world!";

str = realloc(str, strlen(str) + strlen(addition) + 1);
assert(str != NULL);

strcat(str, addition);

printf("%s", str);

free(str);

39

Stack and Heap

* Generally, unless a situation requires dynamic allocation, stack allocation is
preferred. Often both techniques are used together in a program.

* Heap allocation is a necessity when:

* you have a very large allocation that could blow out the stack

* you need to control the memory lifetime, or memory must persist outside of a function
call

* you need to resize memory after its initial allocation

40

assign3: implement a function using resizable arrays to read lines of any length
from a file and write 2 programs using that function to print the last N lines of a
file and print just the unique lines of a file. These programs emulate the tail and

uniq Unix commands!

41

A struct is a way to define a new variable type that is a group of other variables.

struct date { // declaring a struct type
int month;
int day; // members of each date structure
}s
struct date today; // construct structure instances

today.month = 1;
today.day = 28;

struct date new_years eve

{12, 31}; // shorter initializer syntax

42

Wrap the struct definition in a typedef to avoid having to include the word
struct every time you make a new variable of that type.

typedef struct date {

int month;
int day;
} date;

date today;
today.month = 1;
today.day = 28;

date new_years eve

= {12, 31};

43

If you pass a struct as a parameter, like for other parameters, C passes a copy of
the entire struct.

void advance day(date d) {
d.day++;
}

int main(int argc, char *argv[]) {
date my date = {1, 28};
advance day(my date);
printf("%d", my date.day); // 28
return 0;

44

If you pass a struct as a parameter, like for other parameters, C passes a copy of
the entire struct. Use a pointer to modify a specific instance.

void advance day(date *d) {
(*d).day++;
}

int main(int argc, char *argv[]) {
date my date = {1, 28};
advance day(&my date);
printf("%d", my date.day); // 29
return 0;

45

The arrow operator lets you access the field of a struct pointed to by a pointer.

void advance day(date *d) {
d->day++; // equivalent to (*d).day++;
}

int main(int argc, char *argv[]) {
date my date = {1, 28};
advance day(&my date);
printf("%d", my date.day); // 29
return 0;

46

C allows you to return structs from functions as well. It returns whatever is
contained within the struct.

date create new years date() {

date d = {1, 1};

return d; // or return (date){1, 1};
}

int main(int argc, char *argv[]) {
date my date = create new_years date();
printf("%d", my date.day); // 1
return 0;

47

sizeof gives you the entire size of a struct, which is the sum of the sizes of all its
contents.

typedef struct date {
int month;
int day;
} date;

int main(int argc, char *argv[]) {
int size = sizeof(date); // 8
return 0;

48

Arrays of Structs

You can create arrays of structs just like any other variable type.

typedef struct my struct {
int Xx;
char c;

} my struct;

my struct array_ of structs[5];

49

Arrays of Structs

To initialize an entry of the array, you must use this special syntax to confirm the
type to C.

typedef struct my struct {
int Xx;
char c;

} my struct;

my_ struct array_of_structs[5];
array_of structs[@] = (my_struct){e, 'A'};

50

Arrays of Structs

You can also set each field individually.

typedef struct my struct {
int Xx;
char c;

} my struct;

my struct array of structs[5];
array_of structs[0].x = 2;
array_of structs[@0].c = 'A’;

51

* Recap: The Heap So Far Lecture 11 takeaway: We

* Freeing Memory can allocate memory on

* Practice: Pig Latin + Valgrind the heap to manage it

* Use-after-free bugs and vulnerability ourselves. We manipulate

disclosure heap memory via pointers.

* realloc There are many
opportunities for errors,

Next time: C Generics some of which can lead to
vulnerabilities! (that should
be properly disclosed).

52

Extra Practice

Goodbye, Free Memory

Where/how should we free memory below so that all memory is freed properly?

Recommendation: Don’t
1 char *str = strdup("Hello"); worry about putting in frees
2 assert(str != NULL); until after you’re finished
3 char *ptr = str + 1; with functionality.
4 for (int 1 = 0; 1 < 5; i++) { Memory leaks will rarely
5 int *num = malloc(sizeof(int)); |crashyour CS107 programs.
6 *num = 1;
7 printf("%s %d\n", ptr, *num);
8 }
9 printf("%s\n", str);

Goodbye, Free Memory

Where/how should we free memory below so that all memory is freed properly?

Recommendation: Don’t

1 char *str = strdup("Hello"); worry about putting in frees
2 assert(str != NULL); until after you’re finished
3 char *ptr = str + 1; with functionality.

4 for (int 1 = 0; 1 < 5; i++) { Memory leaks will rarely
5 int *num = malloc(sizeof(int)); |crashyour CS107 programs.
6 *num = 1;

7 printf("%s %d\n", ptr, *num);

8 free(num);

9 }
10 printf("%s\n", str);
11 free(str);

55

strcat extend

Write a function that takes in a heap-allocated strl, enlarges it, and concatenates
str2 onto it.

1 char *strcat _extend(char *heap str, const char *concat str) {

((1))
heap str = realloc(_ (2A) , (2B));
((3))

strcat(__ (3A) (3B)),
return heapstr;

Example usage:
} char *str = strdup("Hello ");
str = strcat_extend(str, "world!");
printf("%s\n", str);
free(str);

N O vl B WN

56

strcat extend

Write a function that takes in a heap-allocated strl, enlarges it, and concatenates
str2 onto it.

1 char *strcat _extend(char *heap str, const char *concat str) {
int new _length = strlen(heap _str) + strlen(concat_str) + 1;
heap str = realloc(heap_str, new_length);

assert(heap_str != NULL);
strcat(heap str, concat str);

return heapstr;
Example usage:

} char *str = strdup("Hello ");

str = strcat_extend(str, "world!");
printf("%s\n", str);

free(str);

N O vl B WN

57

