
1

This document is copyright (C) Stanford Computer Science and Nick Troccoli, licensed under
Creative Commons Attribution 2.5 License. All rights reserved.

Based on slides created by Cynthia Lee, Chris Gregg, Jerry Cain, Lisa Yan and others.
NOTICE RE UPLOADING TO WEBSITES: This content is protected and may not be shared,

uploaded, or distributed. (without expressed written permission)

CS107, Lecture 11
The Heap, Continued

Reading: K&R 5.6-5.9 or Essential C section 6 on
the heap

😷 masks recommended

2

CS107 Topic 3
How can we effectively manage all types of memory in our programs?

Why is answering this question important?
• Shows us how we can pass around data efficiently with pointers (last time)
• Introduces us to the heap and allocating memory that we manually manage

(today)
• Helps us better understand use-after-free vulnerabilities, a common bug

(today)

assign3: implement a function using resizable arrays to read lines of any length from
a file and write 2 programs using that function to print the last N lines of a file and print
just the unique lines of a file. These programs emulate the tail and uniq Unix
commands!

3

Learning Goals
• Learn about the differences between the stack and the heap and when to use

each one
• Become familiar with the malloc, calloc, realloc and free functions for

managing memory on the heap
• Understand use-after-free vulnerabilities and vulnerability disclosure

4

Lecture Plan
• Recap: The Heap So Far
• Freeing Memory
• Practice: Pig Latin + Valgrind
• Use-after-free bugs and vulnerability disclosure
• realloc

cp -r /afs/ir/class/cs107/lecture-code/lect11 .

5

The Heap
• The heap is a part of memory that you can

manage yourself.
• The heap is a part of memory below the stack

that you can manage yourself. Unlike the stack,
the memory only goes away when you delete it
yourself.
• Unlike the stack, the heap grows upwards as

more memory is allocated.

The heap is dynamic memory – memory that can
be allocated, resized, and freed during program
runtime.

6

Working with the heap
Working with the heap consists of 3 core steps:
1. Allocate memory with malloc/realloc/strdup/calloc
2. Assert heap pointer is not NULL
3. Free when done

The heap is dynamic memory, so you may encounter many runtime errors,
even if your code compiles!

7

malloc

void *malloc(size_t size);
To allocate memory on the heap, use the malloc function (“memory allocate”)
and specify the number of bytes you’d like.

• This function returns a pointer to the starting address of the new memory. It
doesn’t know or care whether it will be used as an array, a single block of
memory, etc.
• void *means a pointer to generic memory. You can set another pointer

equal to it without any casting.
• The memory is not cleared out before being allocated to you!
• If malloc returns NULL, then there wasn’t enough memory for this request.

8

Always assert with the heap
Let’s write a function that returns an array of the first len multiples of mult.

int *array_of_multiples(int mult, int len) {
int *arr = malloc(sizeof(int) * len);
assert(arr != NULL);
for (int i = 0; i < len; i++) {

arr[i] = mult * (i + 1);
}
return arr;

}

• If an allocation error occurs (e.g. out of heap memory!), malloc will return
NULL. This is an important case to check for robustness.
• assert will crash the program if the provided condition is false. A memory

allocation error is significant, and we should terminate the program.

1
2
3
4
5
6
7
8

9

Other heap allocations: calloc
void *calloc(size_t nmemb, size_t size);

calloc is like malloc that zeros out the memory for you—thanks, calloc!

• You might notice its interface is also a little different—it takes two parameters,
which are multiplied to calculate the number of bytes (nmemb * size).

• calloc is more expensive than malloc because it zeros out memory. Use only
when necessary!

// allocate and zero 20 ints
int *scores = calloc(20, sizeof(int));

// alternate (but slower)
int *scores = malloc(20 * sizeof(int));
for (int i = 0; i < 20; i++) scores[i] = 0;

10

Other heap allocations: strdup
char *strdup(char *s);

strdup is a convenience function that returns a null-terminated, heap-
allocated string with the provided text, instead of you having to malloc and
copy in the string yourself.

char *str = strdup("Hello, world!"); // on heap
str[0] = 'h';

You could imagine strdup might be implemented in
terms of malloc + strcpy.

11

Lecture Plan
• Recap: The Heap So Far
• Freeing Memory
• Practice: Pig Latin + Valgrind
• Use-after-free bugs and vulnerability disclosure
• realloc

cp -r /afs/ir/class/cs107/lecture-code/lect11 .

12

Cleaning Up with free
void free(void *ptr);

• If we allocated memory on the heap and no longer need it, it is our
responsibility to free it.
• To do this, use the free command and pass in the starting address on the

heap for the memory you no longer need.
• Example:

char *bytes = malloc(4);
…
free(bytes);

13

Free
void free(void *ptr);

When you free an allocation, you are freeing up what it points to. You are not
freeing the pointer itself. You can still use the pointer to point to something
else.

char *str = strdup("hello");
...
free(str);
str = strdup("hi");

14

free details
Even if you have multiple pointers to the
same block of memory, each memory
block should only be freed once.

You must free the address you
received in the previous allocation
call; you cannot free just part of a
previous allocation.

char *bytes = malloc(4);
char *ptr = bytes;
…
free(bytes);
…
free(ptr); ❌Memory at this

address was already
freed!

char *bytes = malloc(4);
char *ptr = malloc(10);
…
free(bytes);
…
free(ptr + 1);

✅

❌

✅

15

Cleaning Up
You may need to free memory allocated by other functions if that function
expects the caller to handle memory cleanup.

char *str = strdup("Hello!");
…
free(str); // our responsibility to free!

16

Memory Leaks
A memory leak is when you do not free memory you previously allocated.

char *str = strdup("hello");
...
str = strdup("hi"); // memory leak! Lost previous str

17

Memory Leaks
A memory leak is when you do not free memory you previously allocated.
• Your program should be responsible for cleaning up any memory it allocates

but no longer needs.
• If you never free any memory and allocate an extremely large amount, you

may run out of memory in the heap!
• However, memory leaks rarely (if ever) cause crashes.
• We recommend not to worry about freeing memory until your program is

written. Then, go back and free memory as appropriate.
• Valgrind is a very helpful tool for finding memory leaks!

18

Lecture Plan
• Recap: The Heap So Far
• Freeing Memory
• Practice: Pig Latin + Valgrind
• Use-after-free bugs and vulnerability disclosure
• realloc

cp -r /afs/ir/class/cs107/lecture-code/lect11 .

19

Example: Pig Latin
Let’s write a program that can convert text to Pig Latin! Simplified Pig Latin
rules:
• If the word starts with a vowel, append “way”: apple -> appleway
• Otherwise, move all starting consonants to the end and append “ay”: bridge ->

idgebray

We want to write a function char *pig_latin(const char *in) that returns the Pig
Latin version of the given string.
• Good use case for heap allocation – array size is unknown until we convert it to

Pig Latin! We’ll create and return a heap-allocated string.
• The caller must free the string when it is done.

20

Example: Pig Latin
We will also see an example of how to uncover memory leaks using Valgrind.

valgrind --leak-check=full --show-leak-kinds=all [program info here]

21

Demo: Pig Latin + Valgrind

pig_latin.c

22

Lecture Plan
• Recap: The Heap So Far
• Freeing Memory
• Practice: Pig Latin + Valgrind
• Use-after-free bugs and vulnerability disclosure
• realloc

cp -r /afs/ir/class/cs107/lecture-code/lect11 .

23

Use-After-Free
“Use-After-Free” is a bug where you continue to use heap memory after you
have freed it.

This is possible because free() doesn’t change the pointer passed in, it just frees
the memory it points to.

char *bytes = malloc(4);
char *ptr = bytes;
…
free(bytes);
…
strncpy(ptr, argv[1], 3); ❌ Memory at this address was

already freed, but now we are
using it!

We freed bytes but did not
set ptr to NULL

24

Use-After-Free
• What happens when we have a use-after-free bug? Undefined Behavior / a

memory error!
• Maybe the memory still has its original contents?
• Maybe the memory is used to store some other heap data now?

• Use-after-free is not just a functionality issue; it can cause a range of
unintended behavior, including accessing/modifying memory you shouldn’t be
able to access

It’s our job as programmers to find and fix use-after-free and other bugs not
just for the functional correctness of our programs, but to protect people who
use and interact with our code.

25

Use-After Free as a Vulnerability
• Use After Free Vulnerabilities in CVE database
• Use-after-free in Chrome (2020)
• Google’s attempts to reduce Chrome use-after-free vulnerabilities (2021)
• Use-after-free in iOS (2020)
• Google 2023 Chrome fixes include use-after-free vulnerability and heap buffer

overflow (2023)

http://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=use+after+free
http://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=use+after+free
https://security.googleblog.com/2021/09/an-update-on-memory-safety-in-chrome.html
https://googleprojectzero.github.io/0days-in-the-wild/0day-RCAs/2019/CVE-2019-7286.html
https://www.forbes.com/sites/daveywinder/2023/01/11/google-kickstarts-2023-with-17-chrome-security-vulnerability-updates-for-windows-mac--linux/?sh=1ec297a06524
https://www.forbes.com/sites/daveywinder/2023/01/11/google-kickstarts-2023-with-17-chrome-security-vulnerability-updates-for-windows-mac--linux/?sh=1ec297a06524

26

What should someone do if they
find a vulnerability? How can we

incentivize responsible disclosure?

27

Disclosure
Various roles in this process: users (those at risk), makers (e.g., software
company), security researchers (who found the vulnerability), bad actors (who
wish to exploit the issue to harm users), etc.
• Users want to be protected with secure software
• Makers want to make their software secure and not have it exploited – they

probably want to have time to fix vulnerabilities before they are made public
• Security researchers want their issues to be fixed and be rewarded for finding

them
• Bad actors want to learn about vulnerabilities before they are patched

28

Full Disclosure
One approach is to make vulnerabilities public as soon as they are found.
Vulnerabilities unknown to the software maker before release are called “zero-
day vulnerabilities” because they “have 0 days to fix the problem”.
• puts pressure on the maker to fix it quickly
• discloses the vulnerability to the public as soon as it’s found
• Leaves users vulnerable until the maker releases a patch

Few people now endorse this approach due to its drawbacks.

29

Responsible Disclosure
Another approach is to privately alert the software maker to the vulnerability
to fix it in a reasonable amount of time before publicizing the vulnerability.
This is called “responsible disclosure”:
• Contacts the makers of the software
• Informs them about the vulnerability
• Negotiates a reasonable timeline for a patch or fix
• Considers a deadline extension if necessary
time passes while the developers fix the bug
• Works with the developers to add the vulnerability to CVE Details

https://www.cvedetails.com/ , from which it is added to the National
Vulnerability Database https://nvd.nist.gov/

https://www.cvedetails.com/
https://nvd.nist.gov/

30

Responsible Disclosure
Responsible disclosure is the most common approach, and it is recommended
by the ACM code of ethics:

Responsible disclosure is the approach more consistent with the ACM Code of Ethics. By
keeping the existence of the vulnerability secret for a longer amount of time, it reduces the
chance of harm to others (Principle 1.2). It also supports more robust patching (Principles 2.1,
2.9, and 3.6), as the company can take more time to develop the patch and confirm that it will
not induce unintended consequences. Full disclosure puts individuals at risk of harm sooner,
and those harms may be irreversible and onerous (contravening Principles 1.2 and 3.1). As
such, full disclosure should the exception and should only be used when attempts at
responsible disclosure have failed. Furthermore, the individual committing to the full
disclosure needs to consider carefully the risks that they are imposing on others and be willing
to accept the moral and possibly legal consequences (Principles 2.3 and 2.5).

31

Vulnerability Commercialization
Various entities may want to financially reward people for finding and reporting
vulnerabilities:
• Software makers want to know about vulnerabilities in their software
• Other entities want to know about unpatched vulnerabilities to exploit them

32

Bug Bounty Programs
Many companies now offer “Bug Bounties,” or rewards for responsible
disclosure.

Good Version of a bug bounty process:
• Responsible disclosure process is followed
• Company is buying information & time to fix the bug
Bad version of a bug bounty process:
• Company does not fix the bug or notify the public.
• Not knowing what vulnerabilities exist makes it harder for users to calibrate

trust
• Company is effectively buying silence

33

Vulnerabilities Equities Process
The US federal government is one of the largest discoverers and purchasers of 0-
day vulnerabilities.

It follows a “Vulnerabilities Equities Process” (VEP) to determine which
vulnerabilities to responsibly disclose and which to keep secret and use for
espionage or intelligence gathering.

VEP claimed in 2017 that 90% of vulnerabilities are disclosed, but it is not clear
what the impact or scope of the un-disclosed 10% of vulnerabilities are.

More reading here and here

https://obamawhitehouse.archives.gov/blog/2014/04/28/heartbleed-understanding-when-we-disclose-cyber-vulnerabilities
https://www.wired.com/story/vulnerability-equity-process-charter-transparency-concerns/?utm_source=WIR_REG_GATE

34

Concerns with VEP
• Lack of transparency: little oversight as to whether the “bias towards

responsible disclosure” is consistently upheld
• Harm of omission: withholding the opportunity to fix the vulnerability means

that another actor could re-discover and use it
• Risk of stockpiling: Other people can hack into the stored 0-days and use them,

as in the “Shadowbrokers” attack which led to serious ransomware attacks on
hospitals and transportation systems
• Intended use: NSA’s intended use of vulnerabilities may be concerning, as in

PRISM surveillance program.

35

Lecture Plan
• Recap: The Heap So Far
• Freeing Memory
• Practice: Pig Latin + Valgrind
• Use-after-free bugs and vulnerability disclosure
• realloc

cp -r /afs/ir/class/cs107/lecture-code/lect11 .

36

realloc

void *realloc(void *ptr, size_t size);

• The realloc function takes an existing allocation pointer and enlarges to a new
requested size. It returns the new pointer.
• If there is enough space after the existing memory block on the heap for the

new size, realloc simply adds that space to the allocation.
• If there is not enough space, realloc moves the memory to a larger location,

frees the old memory for you, and returns a pointer to the new location.

37

realloc
char *str = strdup("Hello");
assert(str != NULL);
…

// want to make str longer to hold "Hello world!"
char *addition = " world!";
str = realloc(str, strlen(str) + strlen(addition) + 1);
assert(str != NULL);

strcat(str, addition);
printf("%s", str);
free(str);

38

realloc
• realloc only accepts pointers that were previously returned by malloc/etc.
• Make sure to not pass pointers to the middle of heap-allocated memory.
• Make sure to not pass pointers to stack memory.

39

Cleaning Up with free and realloc

You only need to free the new memory coming out of realloc—the previous
(smaller) one was already reclaimed by realloc.

char *str = strdup("Hello");
assert(str != NULL);
…
// want to make str longer to hold "Hello world!"
char *addition = " world!";
str = realloc(str, strlen(str) + strlen(addition) + 1);
assert(str != NULL);
strcat(str, addition);
printf("%s", str);
free(str);

40

Stack and Heap
• Generally, unless a situation requires dynamic allocation, stack allocation is

preferred. Often both techniques are used together in a program.
• Heap allocation is a necessity when:

• you have a very large allocation that could blow out the stack
• you need to control the memory lifetime, or memory must persist outside of a function

call
• you need to resize memory after its initial allocation

41

assign3
assign3: implement a function using resizable arrays to read lines of any length
from a file and write 2 programs using that function to print the last N lines of a
file and print just the unique lines of a file. These programs emulate the tail and
uniq Unix commands!

42

Structs
A struct is a way to define a new variable type that is a group of other variables.

struct date { // declaring a struct type
int month;
int day; // members of each date structure

};
…

struct date today; // construct structure instances
today.month = 1;
today.day = 28;

struct date new_years_eve = {12, 31}; // shorter initializer syntax

43

Structs
Wrap the struct definition in a typedef to avoid having to include the word
struct every time you make a new variable of that type.

typedef struct date {
int month;
int day;

} date;
…

date today;
today.month = 1;
today.day = 28;

date new_years_eve = {12, 31};

44

Structs
If you pass a struct as a parameter, like for other parameters, C passes a copy of
the entire struct.

void advance_day(date d) {
d.day++;

}

int main(int argc, char *argv[]) {
date my_date = {1, 28};
advance_day(my_date);
printf("%d", my_date.day); // 28
return 0;

}

45

Structs
If you pass a struct as a parameter, like for other parameters, C passes a copy of
the entire struct. Use a pointer to modify a specific instance.

void advance_day(date *d) {
(*d).day++;

}

int main(int argc, char *argv[]) {
date my_date = {1, 28};
advance_day(&my_date);
printf("%d", my_date.day); // 29
return 0;

}

46

Structs
The arrow operator lets you access the field of a struct pointed to by a pointer.

void advance_day(date *d) {
d->day++; // equivalent to (*d).day++;

}

int main(int argc, char *argv[]) {
date my_date = {1, 28};
advance_day(&my_date);
printf("%d", my_date.day); // 29
return 0;

}

47

Structs
C allows you to return structs from functions as well. It returns whatever is
contained within the struct.

date create_new_years_date() {
date d = {1, 1};
return d; // or return (date){1, 1};

}

int main(int argc, char *argv[]) {
date my_date = create_new_years_date();
printf("%d", my_date.day); // 1
return 0;

}

48

Structs
sizeof gives you the entire size of a struct, which is the sum of the sizes of all its
contents.

typedef struct date {
int month;
int day;

} date;

int main(int argc, char *argv[]) {
int size = sizeof(date); // 8
return 0;

}

49

Arrays of Structs
You can create arrays of structs just like any other variable type.

typedef struct my_struct {
int x;
char c;

} my_struct;

…

my_struct array_of_structs[5];

50

Arrays of Structs
To initialize an entry of the array, you must use this special syntax to confirm the
type to C.

typedef struct my_struct {
int x;
char c;

} my_struct;

…

my_struct array_of_structs[5];
array_of_structs[0] = (my_struct){0, 'A'};

51

Arrays of Structs
You can also set each field individually.

typedef struct my_struct {
int x;
char c;

} my_struct;

…
my_struct array_of_structs[5];
array_of_structs[0].x = 2;
array_of_structs[0].c = 'A';

52

Recap
• Recap: The Heap So Far
• Freeing Memory
• Practice: Pig Latin + Valgrind
• Use-after-free bugs and vulnerability

disclosure
• realloc

Next time: C Generics

Lecture 11 takeaway: We
can allocate memory on
the heap to manage it
ourselves. We manipulate
heap memory via pointers.
There are many
opportunities for errors,
some of which can lead to
vulnerabilities! (that should
be properly disclosed).

53

Extra Practice

54

char *str = strdup("Hello");
assert(str != NULL);
char *ptr = str + 1;
for (int i = 0; i < 5; i++) {
int *num = malloc(sizeof(int));
*num = i;
printf("%s %d\n", ptr, *num);

}
printf("%s\n", str);

Goodbye, Free Memory
Where/how should we free memory below so that all memory is freed properly?

🤔

1
2
3
4
5
6
7
8
9

Recommendation: Don’t
worry about putting in frees
until after you’re finished
with functionality.
Memory leaks will rarely
crash your CS107 programs.

55

char *str = strdup("Hello");
assert(str != NULL);
char *ptr = str + 1;
for (int i = 0; i < 5; i++) {
int *num = malloc(sizeof(int));
*num = i;
printf("%s %d\n", ptr, *num);
free(num);

}
printf("%s\n", str);
free(str);

Goodbye, Free Memory
Where/how should we free memory below so that all memory is freed properly?

1
2
3
4
5
6
7
8
9
10
11

Recommendation: Don’t
worry about putting in frees
until after you’re finished
with functionality.
Memory leaks will rarely
crash your CS107 programs.

56

strcat_extend
Write a function that takes in a heap-allocated str1, enlarges it, and concatenates
str2 onto it.

char *strcat_extend(char *heap_str, const char *concat_str) {
(_________________(1)__________________);
heap_str = realloc(___(2A)___,___(2B)___);
(_________________(3)__________________);
strcat(___(3A)___, ___(3B)___);
return heapstr;

}

1
2
3
4
5
6
7 char *str = strdup("Hello ");

str = strcat_extend(str, "world!");
printf("%s\n", str);
free(str);

Example usage:

57

strcat_extend
Write a function that takes in a heap-allocated str1, enlarges it, and concatenates
str2 onto it.

char *strcat_extend(char *heap_str, const char *concat_str) {
int new_length = strlen(heap_str) + strlen(concat_str) + 1;
heap_str = realloc(heap_str, new_length);
assert(heap_str != NULL);
strcat(heap_str, concat_str);
return heapstr;

}

1
2
3
4
5
6
7 char *str = strdup("Hello ");

str = strcat_extend(str, "world!");
printf("%s\n", str);
free(str);

Example usage:

