
1

This document is copyright (C) Stanford Computer Science and Nick Troccoli, licensed under
Creative Commons Attribution 2.5 License. All rights reserved.

Based on slides created by Cynthia Lee, Chris Gregg, Jerry Cain, Lisa Yan and others.
NOTICE RE UPLOADING TO WEBSITES: This content is protected and may not be shared,

uploaded, or distributed. (without expressed written permission)

CS107, Lecture 12
Partiality, Generics and Void *

😷 masks recommended

2

CS107 Topic 4: How can we
use our knowledge of

memory and data
representation to write

code that works with any
data type?

3

CS107 Topic 4
How can we use our knowledge of memory and data representation to write
code that works with any data type?

Why is answering this question important?
• Writing code that works with any data type lets us write more generic,

reusable code while understanding potential pitfalls (today)
• Allows us to learn how to pass functions as parameters, a core concept in

many languages (next time)

assign4: implement your own version of the ls command, a function to generically
find and insert elements into a sorted array, and a program using that function to sort
the lines in a file like the sort command.

4

Learning Goals
• Learn about the potential harm from vulnerabilities, challenges to proper

disclosure of vulnerabilities, and how we weigh competing interests
• Learn how to write C code that works with any data type.
• Learn about how to use void * and avoid potential pitfalls.

5

Lecture Plan
• Disclosure and partiality
• Overview: Generics
• Generic Swap
• Generics Pitfalls
• Generic Array Swap

cp -r /afs/ir/class/cs107/lecture-code/lect12 .

6

Lecture Plan
• Disclosure and partiality
• Overview: Generics
• Generic Swap
• Generics Pitfalls
• Generic Array Swap

cp -r /afs/ir/class/cs107/lecture-code/lect12 .

7

What should someone do if they
find a vulnerability? How can we

incentivize responsible disclosure?

8

Disclosure
What’s the best way to disclose vulnerabilities?
• Full disclosure? Make vulnerabilities public as soon as they are found? Few

people now endorse this approach due to its drawbacks.
• Responsible disclosure? Privately alert software maker to fix in reasonable

amount of time before publicizing? Most common, and recommended by ACM
code of ethics.

9

Disclosure
• Various entities may want to financially reward people for finding and

reporting vulnerabilities.
• The US Federal Government is one of the largest discoverers and purchasers of

0-day vulnerabilities. It follows a “Vulnerability Equities Process” (VEP) to
determine which vulnerabilities to responsibly disclose and which to keep
secret and use for espionage or intelligence gathering.

10

How do we weigh competing
stakeholder interests here, such as

country vs. individual?

11

Partiality
Partiality holds that it is acceptable to give preferential treatment to some
people based on our relationships to them or shared group membership
with them.
Impartiality, involves “acting from a position that acknowledges that all
persons are ... equally entitled to fundamental conditions of well-being
and respect.”

12

Partiality

self family friends state world

13

Partiality: preference
towards own family, friends,

and state is morally
acceptable or even required

Partial Cosmpolitanism:
limited preference towards

own state acceptable

Universal Care: preference
towards family acceptable

but not towards state

Impartial Benevolence:
same moral responsibilities

towards all people

Degrees of Partiality

14

Case Study: EternalBlue

2012-2017: NSA
secretly stores the
EternalBlue Microsoft
vulnerability and uses
it to spy on both US
and non-US citizens.

early 2017:
EternalBlue stolen by
hacker group the
ShadowBrokers. NSA
discloses EternalBlue
to Microsoft.

March 14, 2017:
Microsoft releases a
patch for the
vulnerability.

May 12, 2017:
EternalBlue is the basis
of the WannaCry and
other ransomware
attacks, leading to
downtime in critical
hospital and city
systems and over $1
billion of damages.

15

Microsoft’s Argument
“[T]his attack provides yet another example of why the stockpiling of
vulnerabilities by governments is such a problem. ...
We need governments to consider the damage to civilians that comes from
hoarding these vulnerabilities and the use of these exploits.
This is one reason we called in February for a new “Digital Geneva Convention”
to govern these issues, including a new requirement for governments to report
vulnerabilities to vendors, rather than stockpile, sell, or exploit them.
And it’s why we’ve pledged our support for defending every customer
everywhere in the face of cyberattacks, regardless of their nationality.”

Full post here

https://blogs.microsoft.com/on-the-issues/2017/05/14/need-urgent-collective-action-keep-people-safe-online-lessons-last-weeks-cyberattack/

16

Critical Questions
• Do we have special obligations to our own country and to protect our people?

If so, what would this mean?
• If intentionally exploiting a vulnerability is wrong when done by a private

citizen, is it equally wrong when done by the government?
• Should I be loyal to my country, a citizen of the world, or both?
• When should I give preference to my family members and when should I strive

to treat all equally?

What you choose matters – the moral obligations you take on constitute who
you are.

17

Partiality: preference
towards own family, friends,

and state is morally
acceptable or even required

Partial Cosmpolitanism:
limited preference towards

own state acceptable

Universal Care: preference
towards family acceptable

but not towards state

Impartial Benevolence:
same moral responsibilities

towards all people

Revisiting EternalBlue

MicrosoftFederal Government

18

Partiality Takeaways
• Understanding partiality helps us understand how we balance cases of

competing interests and where we may personally fall on this spectrum.
• In order to evaluate situations, it’s critical to understand the good and the bad

that may come of it (e.g. EternalBlue). Better understanding privacy and
privacy concerns is critical to this! (more later)

19

Lecture Plan
• Disclosure and partiality
• Overview: Generics
• Generic Swap
• Generics Pitfalls
• Generic Array Swap

cp -r /afs/ir/class/cs107/lecture-code/lect12 .

20

Generics
• We always strive to write code that is as general-purpose as possible.
• Generic code reduces code duplication and means you can make

improvements and fix bugs in one place rather than many.
• Generics is used throughout C for functions to sort any array, search any array,

free arbitrary memory, and more.
• How can we write generic code in C?

21

Lecture Plan
• Disclosure and partiality
• Overview: Generics
• Generic Swap
• Generics Pitfalls
• Generic Array Swap

cp -r /afs/ir/class/cs107/lecture-code/lect12 .

22

You’re asked to write a function that swaps two numbers.

void swap_int(int *a, int *b) {
int temp = *a;
*a = *b;
*b = temp;

}

int main(int argc, char *argv[]) {
int x = 2;
int y = 5;
swap_int(&x, &y);
// want x = 5, y = 2
printf("x = %d, y = %d\n", x, y);
return 0;

}

Swap

23

You’re asked to write a function that swaps two numbers.

void swap_int(int *a, int *b) {
int temp = *a;
*a = *b;
*b = temp;

}

int main(int argc, char *argv[]) {
int x = 2;
int y = 5;
swap_int(&x, &y);
// want x = 5, y = 2
printf("x = %d, y = %d\n", x, y);
return 0;

}

Swap
Stack

Address Value
…

0xff14 2
0xff10 5

…

x
main()

y

24

You’re asked to write a function that swaps two numbers.

void swap_int(int *a, int *b) {
int temp = *a;
*a = *b;
*b = temp;

}

int main(int argc, char *argv[]) {
int x = 2;
int y = 5;
swap_int(&x, &y);
// want x = 5, y = 2
printf("x = %d, y = %d\n", x, y);
return 0;

}

Swap
Stack

Address Value
…

0xff14 2
0xff10 5

…

0xf18 0xff10
0xf10 0xff14

…

x

b

main()

swap_int()

y

a

25

You’re asked to write a function that swaps two numbers.

void swap_int(int *a, int *b) {
int temp = *a;
*a = *b;
*b = temp;

}

int main(int argc, char *argv[]) {
int x = 2;
int y = 5;
swap_int(&x, &y);
// want x = 5, y = 2
printf("x = %d, y = %d\n", x, y);
return 0;

}

Swap
Stack

Address Value
…

0xff14 2
0xff10 5

…

0xf18 0xff10
0xf10 0xff14
0xf0c 2

…

x

b

main()

swap_int()

y

a
temp

26

You’re asked to write a function that swaps two numbers.

void swap_int(int *a, int *b) {
int temp = *a;
*a = *b;
*b = temp;

}

int main(int argc, char *argv[]) {
int x = 2;
int y = 5;
swap_int(&x, &y);
// want x = 5, y = 2
printf("x = %d, y = %d\n", x, y);
return 0;

}

Swap
Stack

Address Value
…

0xff14 5
0xff10 5

…

0xf18 0xff10
0xf10 0xff14
0xf0c 2

…

x

b

main()

swap_int()

y

a
temp

27

You’re asked to write a function that swaps two numbers.

void swap_int(int *a, int *b) {
int temp = *a;
*a = *b;
*b = temp;

}

int main(int argc, char *argv[]) {
int x = 2;
int y = 5;
swap_int(&x, &y);
// want x = 5, y = 2
printf("x = %d, y = %d\n", x, y);
return 0;

}

Swap
Stack

Address Value
…

0xff14 5
0xff10 2

…

0xf18 0xff10
0xf10 0xff14
0xf0c 2

…

x

b

main()

swap_int()

y

a
temp

28

You’re asked to write a function that swaps two numbers.

void swap_int(int *a, int *b) {
int temp = *a;
*a = *b;
*b = temp;

}

int main(int argc, char *argv[]) {
int x = 2;
int y = 5;
swap_int(&x, &y);
// want x = 5, y = 2
printf("x = %d, y = %d\n", x, y);
return 0;

}

Swap
Stack

Address Value
…

0xff14 5
0xff10 2

…

x
main()

y

29

“Oh, when I said ’numbers’
I meant shorts, not ints.”

😑

30

void swap_short(short *a, short *b) {
short temp = *a;
*a = *b;
*b = temp;

}

int main(int argc, char *argv[]) {
short x = 2;
short y = 5;
swap_short(&x, &y);
// want x = 5, y = 2
printf("x = %d, y = %d\n", x, y);
return 0;

}

Swap
Stack

Address Value
…

0xff12 2
0xff10 5

…

0xf18 0xff10
0xf10 0xff12
0xf0e 2

…

x

b

main()

swap_short()

y

a
temp

31

“You know what, I goofed.
We’re going to use strings.
Could you write something

to swap those?”

😤

32

void swap_string(char **a, char **b) {
char *temp = *a;
*a = *b;
*b = temp;

}

int main(int argc, char *argv[]) {
char *x = "2";
char *y = "5";
swap_string(&x, &y);
// want x = 5, y = 2
printf("x = %s, y = %s\n", x, y);
return 0;

}

Swap

Address Value
…

0xff18 0xc
0xff10 0xe

…

0xf '\0'
0xe '5'
0xd '\0'
0xc '2'

…

x
main()

y

DATA SEGMENT

33

void swap_string(char **a, char **b) {
char *temp = *a;
*a = *b;
*b = temp;

}

int main(int argc, char *argv[]) {
char *x = "2";
char *y = "5";
swap_string(&x, &y);
// want x = 5, y = 2
printf("x = %s, y = %s\n", x, y);
return 0;

}

Swap

Address Value
…

0xff18 0xc
0xff10 0xe

…

0xf18 0xff10
0xf10 0xff18

…

0xf '\0'
0xe '5'
0xd '\0'
0xc '2'

…

x

b

main()

swap_string()

y

a

DATA SEGMENT

34

void swap_string(char **a, char **b) {
char *temp = *a;
*a = *b;
*b = temp;

}

int main(int argc, char *argv[]) {
char *x = "2";
char *y = "5";
swap_string(&x, &y);
// want x = 5, y = 2
printf("x = %s, y = %s\n", x, y);
return 0;

}

Swap

Address Value
…

0xff18 0xc
0xff10 0xe

…

0xf18 0xff10
0xf10 0xff18
0xf08 0xc

…

0xf '\0'
0xe '5'
0xd '\0'
0xc '2'

…

x

b

main()

swap_string()

y

a
temp

DATA SEGMENT

35

void swap_string(char **a, char **b) {
char *temp = *a;
*a = *b;
*b = temp;

}

int main(int argc, char *argv[]) {
char *x = "2";
char *y = "5";
swap_string(&x, &y);
// want x = 5, y = 2
printf("x = %s, y = %s\n", x, y);
return 0;

}

Swap

Address Value
…

0xff18 0xe
0xff10 0xe

…

0xf18 0xff10
0xf10 0xff18
0xf08 0xc

…

0xf '\0'
0xe '5'
0xd '\0'
0xc '2'

…

x

b

main()

swap_string()

y

a
temp

DATA SEGMENT

36

void swap_string(char **a, char **b) {
char *temp = *a;
*a = *b;
*b = temp;

}

int main(int argc, char *argv[]) {
char *x = "2";
char *y = "5";
swap_string(&x, &y);
// want x = 5, y = 2
printf("x = %s, y = %s\n", x, y);
return 0;

}

Swap

Address Value
…

0xff18 0xe
0xff10 0xc

…

0xf18 0xff10
0xf10 0xff18
0xf08 0xc

…

0xf '\0'
0xe '5'
0xd '\0'
0xc '2'

…

x

b

main()

swap_string()

y

a
temp

DATA SEGMENT

37

void swap_string(char **a, char **b) {
char *temp = *a;
*a = *b;
*b = temp;

}

int main(int argc, char *argv[]) {
char *x = "2";
char *y = "5";
swap_string(&x, &y);
// want x = 5, y = 2
printf("x = %s, y = %s\n", x, y);
return 0;

}

Swap

Address Value
…

0xff18 0xe
0xff10 0xc

…

0xf '\0'
0xe '5'
0xd '\0'
0xc '2'

…

x
main()

y

DATA SEGMENT

38

“Awesome! Thanks. We
also have 20 custom struct

types. Could you write
swap for those too?”

🤬

39

Generic Swap
What if we could write one function to swap two values of any single type?

void swap_int(int *a, int *b) { … }
void swap_float(float *a, float *b) { … }
void swap_size_t(size_t *a, size_t *b) { … }
void swap_double(double *a, double *b) { … }
void swap_string(char **a, char **b) { … }
void swap_mystruct(mystruct *a, mystruct *b) { … }
…

40

void swap_int(int *a, int *b) {
int temp = *a;
*a = *b;
*b = temp;

}

void swap_short(short *a, short *b) {
short temp = *a;
*a = *b;
*b = temp;

}

void swap_string(char **a, char **b) {
char *temp = *a;
*a = *b;
*b = temp;

}

Generic Swap

41

void swap_int(int *a, int *b) {
int temp = *a;
*a = *b;
*b = temp;

}

void swap_short(short *a, short *b) {
short temp = *a;
*a = *b;
*b = temp;

}

void swap_string(char **a, char **b) {
char *temp = *a;
*a = *b;
*b = temp;

}

Generic Swap
All 3:
• Take pointers to values to

swap
• Create temporary storage to

store one of the values
• Move data at b into where a

points
• Move data in temporary

storage into where b points

42

void swap(pointer to data1, pointer to data2) {
store a copy of data1 in temporary storage
copy data2 to location of data1
copy data in temporary storage to location of data2

}

Generic Swap

43

void swap(pointer to data1, pointer to data2) {
store a copy of data1 in temporary storage
copy data2 to location of data1
copy data in temporary storage to location of data2

}

4 bytes

2 bytes

8 bytes

Problem: each type may need a different size temp!

Generic Swap

int temp = *data1ptr;

short temp = *data1ptr;

char *temp = *data1ptr;

44

void swap(pointer to data1, pointer to data2) {
store a copy of data1 in temporary storage
copy data2 to location of data1
copy data in temporary storage to location of data2

}

4 bytes

2 bytes

8 bytes

Problem: each type needs to copy a different amount of data!

Generic Swap

*data1Ptr = *data2ptr;

*data1Ptr = *data2ptr;

*data1Ptr = *data2ptr;

45

void swap(pointer to data1, pointer to data2) {
store a copy of data1 in temporary storage
copy data2 to location of data1
copy data in temporary storage to location of data2

}

4 bytes

2 bytes

8 bytes

Problem: each type needs to copy a different amount of data!

Generic Swap

*data2ptr = temp;

*data2ptr = temp;

*data2ptr = temp;

46

C knows the size of temp,
and knows how many bytes

to copy, because of the
variable types.

47

Is there a way to make a
version that doesn’t care
about the variable types?

48

void swap(pointer to data1, pointer to data2) {
store a copy of data1 in temporary storage
copy data2 to location of data1
copy data in temporary storage to location of data2

}

Generic Swap

49

void swap(pointer to data1, pointer to data2) {
store a copy of data1 in temporary storage
copy data2 to location of data1
copy data in temporary storage to location of data2

}

Generic Swap

50

void swap(void *data1ptr, void *data2ptr) {
store a copy of data1 in temporary storage
copy data2 to location of data1
copy data in temporary storage to location of data2

}

Generic Swap

51

void swap(void *data1ptr, void *data2ptr) {
// store a copy of data1 in temporary storage
// copy data2 to location of data1
// copy data in temporary storage to location of data2

}

Generic Swap

52

void swap(void *data1ptr, void *data2ptr) {
// store a copy of data1 in temporary storage
// copy data2 to location of data1
// copy data in temporary storage to location of data2

}

Generic Swap

If we don’t know the data type, we don’t know
how many bytes it is. Let’s take that as another
parameter.

53

void swap(void *data1ptr, void *data2ptr, size_t nbytes) {
// store a copy of data1 in temporary storage
// copy data2 to location of data1
// copy data in temporary storage to location of data2

}

Generic Swap

If we don’t know the data type, we don’t know
how many bytes it is. Let’s take that as another
parameter.

54

void swap(void *data1ptr, void *data2ptr, size_t nbytes) {
// store a copy of data1 in temporary storage
// copy data2 to location of data1
// copy data in temporary storage to location of data2

}

Generic Swap

Let’s start by making space to store the temporary
value. How can we make nbytes of temp space?

55

void swap(void *data1ptr, void *data2ptr, size_t nbytes) {
void temp; ???
// store a copy of data1 in temporary storage
// copy data2 to location of data1
// copy data in temporary storage to location of data2

}

Generic Swap

Let’s start by making space to store the temporary
value. How can we make nbytes of temp space?

56

void swap(void *data1ptr, void *data2ptr, size_t nbytes) {
char temp[nbytes];
// store a copy of data1 in temporary storage
// copy data2 to location of data1
// copy data in temporary storage to location of data2

}

Generic Swap

temp is nbytes of memory,
since each char is 1 byte!

57

void swap(void *data1ptr, void *data2ptr, size_t nbytes) {
char temp[nbytes];
// store a copy of data1 in temporary storage
// copy data2 to location of data1
// copy data in temporary storage to location of data2

}

Generic Swap

Now, how can we copy in what
data1ptr points to into temp?

58

void swap(void *data1ptr, void *data2ptr, size_t nbytes) {
char temp[nbytes];
// store a copy of data1 in temporary storage
temp = *data1ptr; ???
// copy data2 to location of data1
// copy data in temporary storage to location of data2

}

Generic Swap

Now, how can we copy in what
data1ptr points to into temp?

59

void swap(void *data1ptr, void *data2ptr, size_t nbytes) {
char temp[nbytes];
// store a copy of data1 in temporary storage
temp = *data1ptr; ???
// copy data2 to location of data1
// copy data in temporary storage to location of data2

}

Generic Swap

We can’t dereference a void * (or set an array
equal to something). C doesn’t know what it
points to! Therefore, it doesn’t know how many
bytes there it should be looking at.

60

memcpy
memcpy is a function that copies a specified amount of bytes at one address to
another address.

void *memcpy(void *dest, const void *src, size_t n);

It copies the next n bytes that src points to to the location contained in dest. (It
also returns dest). It does not support regions of memory that overlap.

int x = 5;
int y = 4;
memcpy(&x, &y, sizeof(x)); // like x = y

memcpy must take pointers to the bytes to work with to
know where they live and where they should be copied to.

61

memmove
memmove is the same as memcpy, but supports overlapping regions of
memory. (Unlike its name implies, it still “copies”).

void *memmove(void *dest, const void *src, size_t n);

It copies the next n bytes that src points to to the location contained in dest. (It
also returns dest).

62

memmove
When might memmove be useful?

1 2 3 4 5 6 7

4 5 6 7 5 6 7

63

void swap(void *data1ptr, void *data2ptr, size_t nbytes) {
char temp[nbytes];
// store a copy of data1 in temporary storage
temp = *data1ptr; ???
// copy data2 to location of data1
// copy data in temporary storage to location of data2

}

Generic Swap

We can’t dereference a void *. C doesn’t know
what it points to! Therefore, it doesn’t know how
many bytes there it should be looking at.

64

void swap(void *data1ptr, void *data2ptr, size_t nbytes) {
char temp[nbytes];
// store a copy of data1 in temporary storage
temp = *data1ptr; ???
// copy data2 to location of data1
// copy data in temporary storage to location of data2

}

Generic Swap

How can memcpy or memmove help us here? (Assume data to be swapped
is not overlapping). Respond with your thoughts on PollEv:
pollev.com/cs107 or text CS107 to 22333 once to join.

void *memcpy(void *dest, const void *src, size_t n);
void *memmove(void *dest, const void *src, size_t n);

65

void swap(void *data1ptr, void *data2ptr, size_t nbytes) {
char temp[nbytes];
// store a copy of data1 in temporary storage
memcpy(temp, data1ptr, nbytes);
// copy data2 to location of data1
// copy data in temporary storage to location of data2

}

Generic Swap

66

void swap(void *data1ptr, void *data2ptr, size_t nbytes) {
char temp[nbytes];
// store a copy of data1 in temporary storage
memcpy(temp, data1ptr, nbytes);
// copy data2 to location of data1
// copy data in temporary storage to location of data2

}

Generic Swap

We can copy the bytes ourselves into temp! This
is equivalent to temp = *data1ptr in non-generic
versions, but this works for any type of any size.

67

void swap(void *data1ptr, void *data2ptr, size_t nbytes) {
char temp[nbytes];
// store a copy of data1 in temporary storage
memcpy(temp, data1ptr, nbytes);
// copy data2 to location of data1
// copy data in temporary storage to location of data2

}

Generic Swap

How can we copy data2 to the location of data1?

68

void swap(void *data1ptr, void *data2ptr, size_t nbytes) {
char temp[nbytes];
// store a copy of data1 in temporary storage
memcpy(temp, data1ptr, nbytes);
// copy data2 to location of data1
*data1ptr = *data2ptr; ???
// copy data in temporary storage to location of data2

}

Generic Swap

How can we copy data2 to the location of data1?

69

void swap(void *data1ptr, void *data2ptr, size_t nbytes) {
char temp[nbytes];
// store a copy of data1 in temporary storage
memcpy(temp, data1ptr, nbytes);
// copy data2 to location of data1
memcpy(data1ptr, data2ptr, nbytes);
// copy data in temporary storage to location of data2

}

Generic Swap

How can we copy data2 to the location of data1?
memcpy!

70

void swap(void *data1ptr, void *data2ptr, size_t nbytes) {
char temp[nbytes];
// store a copy of data1 in temporary storage
memcpy(temp, data1ptr, nbytes);
// copy data2 to location of data1
memcpy(data1ptr, data2ptr, nbytes);
// copy data in temporary storage to location of data2

}

Generic Swap

How can we copy temp’s data to the location of
data2?

71

void swap(void *data1ptr, void *data2ptr, size_t nbytes) {
char temp[nbytes];
// store a copy of data1 in temporary storage
memcpy(temp, data1ptr, nbytes);
// copy data2 to location of data1
memcpy(data1ptr, data2ptr, nbytes);
// copy data in temporary storage to location of data2
memcpy(data2ptr, temp, nbytes);

}

Generic Swap

How can we copy temp’s data to the location of
data2? memcpy!

72

void swap(void *data1ptr, void *data2ptr, size_t nbytes) {
char temp[nbytes];
// store a copy of data1 in temporary storage
memcpy(temp, data1ptr, nbytes);
// copy data2 to location of data1
memcpy(data1ptr, data2ptr, nbytes);
// copy data in temporary storage to location of data2
memcpy(data2ptr, temp, nbytes);

}

Generic Swap

int x = 2;
int y = 5;
swap(&x, &y, sizeof(x));

73

void swap(void *data1ptr, void *data2ptr, size_t nbytes) {
char temp[nbytes];
// store a copy of data1 in temporary storage
memcpy(temp, data1ptr, nbytes);
// copy data2 to location of data1
memcpy(data1ptr, data2ptr, nbytes);
// copy data in temporary storage to location of data2
memcpy(data2ptr, temp, nbytes);

}

Generic Swap

short x = 2;
short y = 5;
swap(&x, &y, sizeof(x));

74

void swap(void *data1ptr, void *data2ptr, size_t nbytes) {
char temp[nbytes];
// store a copy of data1 in temporary storage
memcpy(temp, data1ptr, nbytes);
// copy data2 to location of data1
memcpy(data1ptr, data2ptr, nbytes);
// copy data in temporary storage to location of data2
memcpy(data2ptr, temp, nbytes);

}

Generic Swap

char *x = "2";
char *y = "5";
swap(&x, &y, sizeof(x));

75

void swap(void *data1ptr, void *data2ptr, size_t nbytes) {
char temp[nbytes];
// store a copy of data1 in temporary storage
memcpy(temp, data1ptr, nbytes);
// copy data2 to location of data1
memcpy(data1ptr, data2ptr, nbytes);
// copy data in temporary storage to location of data2
memcpy(data2ptr, temp, nbytes);

}

Generic Swap

mystruct x = {…};
mystruct y = {…};
swap(&x, &y, sizeof(x));

76

C Generics
• We can use void * and memcpy to handle memory as generic bytes.
• If we are given where the data of importance is, and how big it is, we can

handle it!

void swap(void *data1ptr, void *data2ptr, size_t nbytes) {
char temp[nbytes];
memcpy(temp, data1ptr, nbytes);
memcpy(data1ptr, data2ptr, nbytes);
memcpy(data2ptr, temp, nbytes);

}

78

Lecture Plan
• Disclosure and partiality
• Overview: Generics
• Generic Swap
• Generics Pitfalls
• Generic Array Swap

cp -r /afs/ir/class/cs107/lecture-code/lect12 .

79

Void * Pitfalls
• void *s are powerful, but dangerous - C cannot do as much checking!
• E.g. with int, C would never let you swap half of an int. With void *s, this can

happen! (How? Let’s find out!)

80

Demo: Void *s Gone Wrong

swap.c

81

Void *Pitfalls
Void * has more room for error because it manipulates arbitrary bytes without
knowing what they represent. This can result in some strange memory
Frankensteins!

http://i.ytimg.com/vi/10gPoYjq3EA/hqdefault.jpg

82

Lecture Plan
• Disclosure and partiality
• Overview: Generics
• Generic Swap
• Generics Pitfalls
• Generic Array Swap

cp -r /afs/ir/class/cs107/lecture-code/lect12 .

83

Swap Ends
You’re asked to write a function that swaps the first and last elements in an
array of numbers.

void swap_ends_int(int *arr, size_t nelems) {
int tmp = arr[0];
arr[0] = arr[nelems – 1];
arr[nelems – 1] = tmp;

}

int main(int argc, char *argv[]) {
int nums[] = {5, 2, 3, 4, 1};
size_t nelems = sizeof(nums) / sizeof(nums[0]);
swap_ends_int(nums, nelems);
// want nums[0] = 1, nums[4] = 5
printf("nums[0] = %d, nums[4] = %d\n", nums[0], nums[4]);
return 0;

}

Wait – we just wrote a generic
swap function. Let’s use that!

84

Swap Ends
You’re asked to write a function that swaps the first and last elements in an
array of numbers.

void swap_ends_int(int *arr, size_t nelems) {
swap(arr, arr + nelems – 1, sizeof(*arr));

}

int main(int argc, char *argv[]) {
int nums[] = {5, 2, 3, 4, 1};
size_t nelems = sizeof(nums) / sizeof(nums[0]);
swap_ends_int(nums, nelems);
// want nums[0] = 1, nums[4] = 5
printf("nums[0] = %d, nums[4] = %d\n", nums[0], nums[4]);
return 0;

}

Wait – we just wrote a generic
swap function. Let’s use that!

85

Swap Ends
Let’s write out what some other versions would look like (just in case).

void swap_ends_int(int *arr, size_t nelems) {
swap(arr, arr + nelems – 1, sizeof(*arr));

}

void swap_ends_short(short *arr, size_t nelems) {
swap(arr, arr + nelems – 1, sizeof(*arr));

}

void swap_ends_string(char **arr, size_t nelems) {
swap(arr, arr + nelems – 1, sizeof(*arr));

}

void swap_ends_float(float *arr, size_t nelems) {
swap(arr, arr + nelems – 1, sizeof(*arr));

}

The code seems to be the
same regardless of the type!

86

Swap Ends
Let’s write a version of swap_ends that works for any type of array.

void swap_ends(void *arr, size_t nelems) {
swap(arr, arr + nelems – 1, sizeof(*arr));

}

Is this generic? Does this work?

Unfortunately not. Firs,t we no longer know the
element size. Second, pointer arithmetic depends
on the type of data being pointed to. With a void *,
we lose that information!

87

Swap Ends
Let’s write a version of swap_ends that works for any type of array.

void swap_ends(void *arr, size_t nelems) {
swap(arr, arr + nelems – 1, sizeof(*arr));

}

Is this generic? Does this work?

Unfortunately not. First, we no longer know the
element size. Second, pointer arithmetic depends
on the type of data being pointed to. With a void *,
we lose that information!

88

Swap Ends
Let’s write a version of swap_ends that works for any type of array.

void swap_ends(void *arr, size_t nelems) {
swap(arr, arr + nelems – 1, sizeof(*arr));

}

We need to know the element size, so
let’s add a parameter.

89

Swap Ends
Let’s write a version of swap_ends that works for any type of array.

void swap_ends(void *arr, size_t nelems, size_t elem_bytes) {
swap(arr, arr + nelems – 1, elem_bytes);

}

We need to know the element size, so
let’s add a parameter.

90

Pointer Arithmetic
arr + nelems – 1

Let’s say nelems = 4. How many bytes beyond arr is this?

If it’s an array of…
Int?

91

Pointer Arithmetic
arr + nelems – 1

Let’s say nelems = 4. How many bytes beyond arr is this?

If it’s an array of…
Int: adds 3 places to arr, and 3 * sizeof(int) = 12 bytes

92

Pointer Arithmetic
arr + nelems – 1

Let’s say nelems = 4. How many bytes beyond arr is this?

If it’s an array of…
Int: adds 3 places to arr, and 3 * sizeof(int) = 12 bytes
Short?

93

Pointer Arithmetic
arr + nelems – 1

Let’s say nelems = 4. How many bytes beyond arr is this?

If it’s an array of…
Int: adds 3 places to arr, and 3 * sizeof(int) = 12 bytes
Short: adds 3 places to arr, and 3 * sizeof(short) = 6 bytes

94

Pointer Arithmetic
arr + nelems – 1

Let’s say nelems = 4. How many bytes beyond arr is this?

If it’s an array of…
Int: adds 3 places to arr, and 3 * sizeof(int) = 12 bytes
Short: adds 3 places to arr, and 3 * sizeof(short) = 6 bytes
Char *: adds 3 places to arr, and 3 * sizeof(char *) = 24 bytes

In each case, we need to know the element size to do the arithmetic.

95

Swap Ends
Let’s write a version of swap_ends that works for any type of array.

void swap_ends(void *arr, size_t nelems, size_t elem_bytes) {
swap(arr, arr + nelems – 1, elem_bytes);

}

How many bytes past arr should we go to
get to the last element?

(nelems – 1) * elem_bytes

96

Swap Ends
Let’s write a version of swap_ends that works for any type of array.

void swap_ends(void *arr, size_t nelems, size_t elem_bytes) {
swap(arr, arr + (nelems – 1) * elem_bytes, elem_bytes);

}

How many bytes past arr should we go to
get to the last element?

(nelems – 1) * elem_bytes

97

Swap Ends
Let’s write a version of swap_ends that works for any type of array.

void swap_ends(void *arr, size_t nelems, size_t elem_bytes) {
swap(arr, arr + (nelems – 1) * elem_bytes, elem_bytes);

}

But C still can’t do arithmetic with a
void*. We need to tell it to not worry
about it, and just add bytes. How can we
do this?

98

Swap Ends
Let’s write a version of swap_ends that works for any type of array.

void swap_ends(void *arr, size_t nelems, size_t elem_bytes) {
swap(arr, (char *)arr + (nelems – 1) * elem_bytes, elem_bytes);

}

But C still can’t do arithmetic with a
void*. We need to tell it to not worry
about it, and just add bytes. How can we
do this?

char * pointers already add bytes!

99

Swap Ends
You’re asked to write a function that swaps the first and last elements in an
array of numbers. Well, now it can swap for an array of anything!

void swap_ends(void *arr, size_t nelems, size_t elem_bytes) {
swap(arr, (char *)arr + (nelems – 1) * elem_bytes, elem_bytes);

}

int nums[] = {5, 2, 3, 4, 1};
size_t nelems = sizeof(nums) / sizeof(nums[0]);
swap_ends(nums, nelems, sizeof(nums[0]));

100

Swap Ends
You’re asked to write a function that swaps the first and last elements in an
array of numbers. Well, now it can swap for an array of anything!

void swap_ends(void *arr, size_t nelems, size_t elem_bytes) {
swap(arr, (char *)arr + (nelems – 1) * elem_bytes, elem_bytes);

}

short nums[] = {5, 2, 3, 4, 1};
size_t nelems = sizeof(nums) / sizeof(nums[0]);
swap_ends(nums, nelems, sizeof(nums[0]));

101

Swap Ends
You’re asked to write a function that swaps the first and last elements in an
array of numbers. Well, now it can swap for an array of anything!

void swap_ends(void *arr, size_t nelems, size_t elem_bytes) {
swap(arr, (char *)arr + (nelems – 1) * elem_bytes, elem_bytes);

}

char *strs[] = {"Hi", "Hello", "Howdy"};
size_t nelems = sizeof(strs) / sizeof(strs[0]);
swap_ends(strs, nelems, sizeof(strs[0]));

102

Swap Ends
You’re asked to write a function that swaps the first and last elements in an
array of numbers. Well, now it can swap for an array of anything!

void swap_ends(void *arr, size_t nelems, size_t elem_bytes) {
swap(arr, (char *)arr + (nelems – 1) * elem_bytes, elem_bytes);

}

mystruct structs[] = …;
size_t nelems = …;
swap_ends(structs, nelems, sizeof(structs[0]));

103

Recap
• void * is a variable type that represents a generic pointer “to something”.
• We cannot perform pointer arithmetic with or dereference a void *.
• We can use memcpy or memmove to copy data from one memory location to

another.
• To do pointer arithmetic with a void *, we must first cast it to a char *.
• void * and generics are powerful but dangerous because of the lack of type

checking, so we must be extra careful when working with generic memory.

104

Recap
• Disclosure and partiality
• Overview: Generics
• Generic Swap
• Generics Pitfalls
• Generic Array Swap

Next time: More Generics, and Function Pointers

Lecture 8 takeaway: Partiality helps us
better understand competing interests
such as with vulnerability disclosure.
We can use void *, memcpy and
memmove to manipulate data even if
we don’t know its type. We can cast
void *s to perform pointer arithmetic.
void *s have no type checking, so we
must be vigilant!

105

Overflow Slides

106

Tips: C to English
• Translate C into English (function/variable declarations):

https://cdecl.org/
• Pointer arithmetic: (char *) cast means byte address.

What is the value of elt in the below (intentionally convoluted) code?

int arr[] = {1, 2, 3, 4};
void *ptr = arr;
int elt = *(int *)((char *) ptr + sizeof(int));

🤔
Code clarity: Consider breaking the last
line into two lines! (1) pointer
arithmetic, (2) int cast + dereference.

https://cdecl.org/

107

Exercise: Array Rotation
Exercise: You’re asked to provide an implementation for a function called
rotate with the following prototype:

void rotate(void *front, void *separator, void *end);

The expectation is that front is the base address of an array, end is the past-
the-end address of the array, and separator is the address of some element
in between. rotate moves all elements in between front and separator
to the end of the array, and all elements between separator and end move
to the front.

rotate.c

108

Exercise: Array Rotation

1 2 3 4 5 6 7 8 9 10

4 5 6 7 8 9 10 1 2 3

front separator end

int array[7] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
rotate(array, array + 3, array + 10);

Before:

After:

109

Exercise: Array Rotation
Exercise: Implement rotate to generate the provided output.

int main(int argc, char *argv[]) {
int array[10] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
print_int_array(array, 10); // intuit implementation J
rotate(array, array + 5, array + 10);
print_int_array(array, 10);
rotate(array, array + 1, array + 10);
print_int_array(array, 10);
rotate(array + 4, array + 5, array + 6);
print_int_array(array, 10);
return 0;

}

Output:
myth52:~/lect8$./rotate
Array: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
Array: 6, 7, 8, 9, 10, 1, 2, 3, 4, 5
Array: 7, 8, 9, 10, 1, 2, 3, 4, 5, 6
Array: 7, 8, 9, 10, 2, 1, 3, 4, 5, 6
myth52:~/lect8$

110

1 2 3 4 5 6 7 8 9 10

front separator end

4 5 6 7 8 9 10 8 9 10

front separator end

Before
rotate:

Before
last step:

1 2 3temp

The inner workings of rotate

111

Exercise: Array Rotation
Exercise: A properly implemented rotate will prompt the following program to
generate the provided output.
And here’s that properly implemented function!

void rotate(void *front, void *separator, void *end) {
int width = (char *)end - (char *)front;
int prefix_width = (char *)separator - (char *)front;
int suffix_width = width - prefix_width;

char temp[prefix_width];
memcpy(temp, front, prefix_width);
memmove(front, separator, suffix_width);
memcpy((char *)end - prefix_width, temp, prefix_width);

}

112

Stacks
• C generics are particularly powerful in helping us create generic data

structures.
• Let’s see how we might go about making a generic Stack in C.

cp -r /afs/ir/class/cs107/lecture-code/lect12 .

113

Refresher: Stacks
• A Stack is a data structure representing a

stack of things.
• Objects can be pushed on top of or

popped from the top of the stack.
• Only the top of the stack can be accessed;

no other objects in the stack are visible.
• Main operations:

• push(value): add an element to the top of
the stack

• pop(): remove and return the top element in
the stack

• peek(): return (but do not remove) the top
element in the stack

stack

top 31
2

bottom 10

pop, peekpush

114

A stack is often implemented using a linked list internally.
• "bottom" = tail of linked list
• "top" = head of linked list (why not the other way around?)

Stack<int> s;
s.push(42);
s.push(-3);
s.push(17);

Problem: C is not object-oriented! We can’t call methods on variables.

17 -3 42

front

Refresher: Stacks

115

Demo: Int Stack

int_stack.c

116

What modifications are
necessary to make a

generic stack?

117

Stack Structs
typedef struct int_node {

struct int_node *next;
int data;

} int_node;

typedef struct int_stack {
int nelems;
int_node *top;

} int_stack;

How might we modify the Stack data
representation itself to be generic?

118

Stack Structs
typedef struct int_node {

struct int_node *next;
int data;

} int_node;

typedef struct int_stack {
int nelems;
int_node *top;

} int_stack;

Problem: each node can no longer store the
data itself, because it could be any size!

119

Generic Stack Structs
typedef struct int_node {

struct int_node *next;
void *data;

} int_node;

typedef struct stack {
int nelems;
int elem_size_bytes;
node *top;

} stack;
Solution: each node stores a pointer, which is
always 8 bytes, to the data somewhere else. We
must also store the data size in the Stack struct.

120

Stack Functions
• int_stack_create(): creates a new stack on the heap and returns a

pointer to it
• int_stack_push(int_stack *s, int data): pushes data onto the

stack
• int_stack_pop(int_stack *s): pops and returns topmost stack element

121

int_stack_create
int_stack *int_stack_create() {

int_stack *s = malloc(sizeof(int_stack));
s->nelems = 0;
s->top = NULL;
return s;

}
How might we modify this function to be
generic?

From previous slide:
typedef struct stack {

int nelems;
int elem_size_bytes;
node *top;

} stack;

122

Generic stack_create
stack *stack_create(int elem_size_bytes) {

stack *s = malloc(sizeof(stack));
s->nelems = 0;
s->top = NULL;
s->elem_size_bytes = elem_size_bytes;
return s;

}

123

int_stack_push
void int_stack_push(int_stack *s, int data) {

int_node *new_node = malloc(sizeof(int_node));
new_node->data = data;

new_node->next = s->top;
s->top = new_node;
s->nelems++;

}

How might we modify this function to be
generic?

From previous slide:
typedef struct stack {

int nelems;
int elem_size_bytes;
node *top;

} stack;

typedef struct node {
struct node *next;
void *data;

} node;

124

Generic stack_push
void int_stack_push(int_stack *s, int data) {

int_node *new_node = malloc(sizeof(int_node));
new_node->data = data;

new_node->next = s->top;
s->top = new_node;
s->nelems++;

}

Problem 1: we can no longer pass the data itself
as a parameter, because it could be any size!

125

Generic stack_push
void int_stack_push(int_stack *s, const void *data) {

int_node *new_node = malloc(sizeof(int_node));
new_node->data = data;

new_node->next = s->top;
s->top = new_node;
s->nelems++;

}

Solution 1: pass a pointer to the
data as a parameter instead.

126

Generic stack_push
void int_stack_push(int_stack *s, const void *data) {

int_node *new_node = malloc(sizeof(int_node));
new_node->data = data;

new_node->next = s->top;
s->top = new_node;
s->nelems++;

}
Problem 2: we cannot copy the existing data
pointer into new_node. The data structure must
manage its own copy that exists for its entire
lifetime. The provided copy may go away!

127

Generic stack_push
int main() {

stack *int_stack = stack_create(sizeof(int));
add_one(int_stack);
// now stack stores pointer to invalid memory for 7!

}

void add_one(stack *s) {
int num = 7;
stack_push(s, &num);

}

128

Generic stack_push
void stack_push(stack *s, const void *data) {

node *new_node = malloc(sizeof(node));
new_node->data = malloc(s->elem_size_bytes);
memcpy(new_node->data, data, s->elem_size_bytes);

new_node->next = s->top;
s->top = new_node;
s->nelems++;

}
Solution 2: make a heap-allocated copy
of the data that the node points to.

129

int_stack_pop
int int_stack_pop(int_stack *s) {

if (s->nelems == 0) {
error(1, 0, "Cannot pop from empty stack");

}
int_node *n = s->top;
int value = n->data;

s->top = n->next;

free(n);
s->nelems--;

return value;
}

How might we modify this function to be
generic?

From previous slide:
typedef struct stack {

int nelems;
int elem_size_bytes;
node *top;

} stack;

typedef struct node {
struct node *next;
void *data;

} node;

130

Generic stack_pop
int int_stack_pop(int_stack *s) {

if (s->nelems == 0) {
error(1, 0, "Cannot pop from empty stack");

}
int_node *n = s->top;
int value = n->data;

s->top = n->next;

free(n);
s->nelems--;

return value;
}

Problem: we can no longer return the
data itself, because it could be any size!

131

Generic stack_pop
void *int_stack_pop(int_stack *s) {

if (s->nelems == 0) {
error(1, 0, "Cannot pop from empty stack");

}
int_node *n = s->top;
void *value = n->data;

s->top = n->next;

free(n);
s->nelems--;

return value;
}

While it’s possible to return the heap
address of the element, this means the
client would be responsible for freeing it.
Ideally, the data structure should manage
its own memory here.

132

Generic stack_pop
void stack_pop(stack *s, void *addr) {

if (s->nelems == 0) {
error(1, 0, "Cannot pop from empty stack");

}
node *n = s->top;
memcpy(addr, n->data, s->elem_size_bytes);
s->top = n->next;

free(n->data);
free(n);
s->nelems--;

}
Solution: have the caller pass a memory
location as a parameter and copy the data
to that location.

133

Using Generic Stack
int_stack *intstack = int_stack_create();
for (int i = 0; i < TEST_STACK_SIZE; i++) {

int_stack_push(intstack, i);
}

We must now pass the address of an element to push
onto the stack, rather than the element itself.

134

Using Generic Stack
stack *intstack = stack_create(sizeof(int));
for (int i = 0; i < TEST_STACK_SIZE; i++) {

stack_push(intstack, &i);
}

We must now pass the address of an element to push
onto the stack, rather than the element itself.

135

Using Generic Stack
int_stack *intstack = int_stack_create();
int_stack_push(intstack, 7);

We must now pass the address of an element to push
onto the stack, rather than the element itself.

136

Using Generic Stack
stack *intstack = stack_create(sizeof(int));
int num = 7;
stack_push(intstack, &num);

We must now pass the address of an element to push
onto the stack, rather than the element itself.

137

Using Generic Stack
// Pop off all elements
while (intstack->nelems > 0) {

printf("%d\n", int_stack_pop(intstack));
}

We must now pass the address of where we would
like to store the popped element, rather than getting
it directly as a return value.

138

Using Generic Stack
// Pop off all elements
int popped_int;
while (intstack->nelems > 0) {

int_stack_pop(intstack, &popped_int);
printf("%d\n", popped_int);

}

We must now pass the address of where we would
like to store the popped element, rather than getting
it directly as a return value.

139

Demo: Generic Stack

generic_stack.c

140

Generic stack_create
stack *stack_create(int elem_size_bytes) {

stack *s = malloc(sizeof(stack));
s->nelems = 0;
s->top = NULL;
s->elem_size_bytes = elem_size_bytes;
return s;

}

...

stack *numStack = stack_create(sizeof(int));

typedef struct stack {
int nelems;
int elem_size_bytes;
node *top;

} stack;

typedef struct node {
struct node *next;
void *data;

} node;

Stack Heap

141

Generic stack_push
void stack_push(stack *s, const void *data) {

node *new_node = malloc(sizeof(node));
new_node->data = malloc(s->elem_size_bytes);
memcpy(new_node->data,

data, s->elem_size_bytes);
new_node->next = s->top;
s->top = new_node;
s->nelems++;

}
...
int x = 2;
stack_push(numStack, &2);

typedef struct stack {
int nelems;
int elem_size_bytes;
node *top;

} stack;

typedef struct node {
struct node *next;
void *data;

} node;

Stack Heap

142

Generic stack_pop
void stack_pop(stack *s, void *addr) {

node *n = s->top;
memcpy(addr, n->data,

s->elem_size_bytes);
s->top = n->next;
free(n->data);
free(n);
s->nelems--;

}
...
int num;
stack_pop(numStack, &num);
printf("%d\n", num);
typedef struct stack {

int nelems;
int elem_size_bytes;
node *top;

} stack;

typedef struct node {
struct node *next;
void *data;

} node;

Stack Heap

