CS107, Lecture 12

Partiality, Generics and Void *

This document is copyright (C) Stanford Computer Science and Nick Troccoli, licensed under

(: :*) Creative Commons Attribution 2.5 License. All rights reserved.

U l I laS kS re CO I I I l I I e n d ed Based on slides created by Cynthia Lee,.Chris Gregg, Jerry Cain, Lisa Yan and others.

NOTICE RE UPLOADING TO WEBSITES: This content is protected and may not be shared, 1
uploaded, or distributed. (without expressed written permission)

CS107 Topic 4: How can we
use our knowledge of
memory and data
representation to write
code that works with any
data type?

CS107 Topic 4

How can we use our knowledge of memory and data representation to write
code that works with any data type?

Why is answering this question important?

* Writing code that works with any data type lets us write more generic,
reusable code while understanding potential pitfalls (today)

* Allows us to learn how to pass functions as parameters, a core concept in
many languages (next time)

assign4: implement your own version of the Is command, a function to generically
find and insert elements into a sorted array, and a program using that function to sort
the lines in a file like the sort command.

Learning Goals

* Learn about the potential harm from vulnerabilities, challenges to proper
disclosure of vulnerabilities, and how we weigh competing interests

* Learn how to write C code that works with any data type.

e Learn about how to use void * and avoid potential pitfalls.

Lecture Plan

* Disclosure and partiality
* Overview: Generics

* Generic Swap

* Generics Pitfalls

* Generic Array Swap

cp -r /afs/ir/class/cs107/lecture-code/lectl2 .

Lecture Plan

e Disclosure and partiality

* Overview: Generics
* Generic Swap

* Generics Pitfalls

* Generic Array Swap

cp -r /afs/ir/class/csl107/lecture-code/lectl2 .

What should someone do if they
find a vulnerability? How can we
incentivize responsible disclosure?

What’s the best way to disclose vulnerabilities?

* Full disclosure? Make vulnerabilities public as soon as they are found? Few
people now endorse this approach due to its drawbacks.

* Responsible disclosure? Privately alert software maker to fix in reasonable
amount of time before publicizing? Most common, and recommended by ACM
code of ethics.

* Various entities may want to financially reward people for finding and
reporting vulnerabilities.

* The US Federal Government is one of the largest discoverers and purchasers of
0-day vulnerabilities. It follows a “Vulnerability Equities Process” (VEP) to
determine which vulnerabilities to responsibly disclose and which to keep
secret and use for espionage or intelligence gathering.

How do we weigh competing
stakeholder interests here, such as
country vs. individual?

Partiality

Partiality holds that it is acceptable to give preferential treatment to some

people based on our relationships to them or shared group membership
with them.

Impartiality, involves “acting from a position that acknowledges that all

persons are ... equally entitled to fundamental conditions of well-being
and respect.”

11

Partiality

e \\\

//,/é_\

i
N

([[/ \\\\\\‘\;‘

{ | ! @Iy f,enti?:s S;t.?te ;orld

Degrees of Partiality

Partiality: preference
towards own family, friends,
and state is morally
acceptable or even required

Partial Cosmpolitanism: Universal Care: preference Impartial Benevolence:
limited preference towards towards family acceptable same moral responsibilities
own state acceptable but not towards state towards all people

13

Case Study: EternalBlue

2012-2017: NSA
secretly stores the
EternalBlue Microsoft

vulnerability and uses
it to spy on both US
and non-US citizens.

May 12, 2017:
EternalBlue is the basis
of the WannaCry and
other ransomware
attacks, leading to
downtime in critical

March 14, 2017:
Microsoft releases a
patch for the

early 2017: vulnerability. hospital and city
EternalBlue stolen by systems and over $1
hacker group the

ShadowBrokers. NSA billion of damages.

discloses EternalBlue
to Microsoft.

14

Microsoft’'s Argument

“[T]his attack provides yet another example of why the stockpiling of
vulnerabilities by governments is such a problem. ...

We need governments to consider the damage to civilians that comes from
hoarding these vulnerabilities and the use of these exploits.

This is one reason we called in February for a new “Digital Geneva Convention”
to govern these issues, including a new requirement for governments to report
vulnerabilities to vendors, rather than stockpile, sell, or exploit them.

And it’s why we’ve pledged our support for defending every customer
everywhere in the face of cyberattacks, regardless of their nationality.”

Full post here

15

https://blogs.microsoft.com/on-the-issues/2017/05/14/need-urgent-collective-action-keep-people-safe-online-lessons-last-weeks-cyberattack/

Critical Questions

* Do we have specia
If so, what would t

* If intentionally exp

obligations to our own country and to protect our people?
Nis mean?

oiting a vulnerability is wrong when done by a private

citizen, is it equally wrong when done by the government?

e Should | be loyal to my country, a citizen of the world, or both?

* When should | give preference to my family members and when should | strive
to treat all equally?

What you choose matters — the moral obligations you take on constitute who

you are.

16

Revisiting EternalBlue

Federal Government Microsoft

N)

Partiality: preference
towards own family, friends,

Partial Cosmpolitanism: Universal Care: preference Impartial Benevolence:
limited preference towards towards family acceptable same moral responsibilities

and state is morally own state acceptable but not towards state towards all people

acceptable or even required

17

Partiality Takeaways

* Understanding partiality helps us understand how we balance cases of
competing interests and where we may personally fall on this spectrum.

* In order to evaluate situations, it’s critical to understand the good and the bad
that may come of it (e.g. EternalBlue). Better understanding privacy and
privacy concerns is critical to this! (more later)

18

Lecture Plan

* Disclosure and partiality
* Overview: Generics

* Generic Swap
* Generics Pitfalls
* Generic Array Swap

cp -r /afs/ir/class/cs107/lecture-code/lectl2 .

19

* We always strive to write code that is as general-purpose as possible.

* Generic code reduces code duplication and means you can make
improvements and fix bugs in one place rather than many.

* Generics is used throughout C for functions to sort any array, search any array,
free arbitrary memory, and more.

* How can we write generic code in C?

20

Lecture Plan

* Disclosure and partiality
 Overview: Generics
 Generic Swap

* Generics Pitfalls
* Generic Array Swap

cp -r /afs/ir/class/cs107/lecture-code/lectl2 .

21

You’'re asked to write a function that swaps two numbers.

void swap_int(int *a, int *b) {
int temp = *a;
*a *b;
*b = temp;

int main(int argc, char *argv[]) {
int x = 2;

int y = 5;

swap_int(&x, &y);

// want x = 5, y = 2

printf("x = %d, y = %d\n", X, y);
return 0;

22

You’'re asked to write a function that swaps two numbers.

void swap_int(int *a, int *b) {
int temp = *a;

int

*a
*b

temp;

main(int argc, char *argv[]) {

int x = 2;
int y = 5;

swap_int(&x, &y);

// want X
printf("x
return 0;

5, ¥y = 2
%d, y = %d\n", X, y);

Address Value
() X Oxffla 2
main
y oxffle

23

Stack
Address Value

You’'re asked to write a function that swaps two numbers.

void swap_int(int *a, int *b) { : X Oxffla
int temp = *aj; main() y Oxffl1e
*3 = *p;
*b = temp; b oxf18

) swap_int()[a oxfle

int main(int argc, char *argv[]) {
int x = 2;

int y = 5;

swap_int(&x, &y);

// want x = 5, y = 2

printf("x = %d, y = %d\n", X, y);
return 0;

24

You’'re asked to write a function that swaps two numbers.

void swap_int(int *a, int *b) {
int temp = *a;
*a *b;
*b = temp;

¥

int main(int argc, char *argv[]) {
int x = 2;
int y = 5;
swap_int(&x, &y);
// want x = 5, y = 2
printf("x = %d, y = %d\n", x, y);
return 0;

main() {

swap_int()

e

Address

Value

X Oxffla

y

b
a
temp

oxff1le

Oxf18
Oxf10
OxfOc

25

You’'re asked to write a function that swaps two numbers.

void swap_int(int *a, int *b) {
int temp = *a;
*a = *b;
*b = temp;

}

int main(int argc, char *argv[]) {
int x = 2;
int y = 5;
swap_int(&x, &y);
// want x = 5, y = 2
printf("x = %d, y = %d\n", x, y);
return 0;

main() {

swap_int()

e

Address

Value

X Oxffla

y

b
a
temp

oxff1le

Oxf18
Oxf10
OxfOc

26

You’'re asked to write a function that swaps two numbers.

void swap_int(int *a, int *b) {
int temp = *a;
*a *b;
*b = temp;

¥

int main(int argc, char *argv[]) {
int x = 2;
int y = 5;
swap_int(&x, &y);
// want x = 5, y = 2
printf("x = %d, y = %d\n", x, y);
return 0;

main() {

swap_int()

e

Address

Value

X Oxffla

y

b
a
temp

oxff1le

Oxf18
Oxf10
OxfOc

27

Stack
Address Value

You’'re asked to write a function that swaps two numbers.

void swap_int(int *a, int *b) { : X Oxffla
int temp = *aj; main() y Oxffl1e
3 = *b;
*b = temp;

int main(int argc, char *argv[]) {
int x = 2;

int y = 5;

swap_int(&x, &y);

// want x = 5, y = 2

printf("x = %d, y = %d\n", X, y);
return 0;

28

“Oh, when I said 'numbers’
I meant shorts, not ints.”

void swap_short(short *a, short *b) {
short temp = *a;

temp;

*a
*b

¥

main() {

int main(int argc, char *argv[]) {

short x
short y =

2;
5;

swap_short()

swap_short(&x, &y);

// want X
printf("x
return 0;

5, ¥y = 2
%d, y = %d\n", X, y);

e

Address

Stack
Value

X
y

b
a
temp

oxff12
oxff1le

Oxf18
Oxf10
OxfOe

2

30

“You know what, I goofed.

We're going to use strings.

Could you write something
to swap those?”

N7
- wr |
A

= 4

void swap string(char **a, char **b) {

char *temp = *a; Address Value

*a = *b; .
*b = temp; main() {: X ©Oxffl18 OXcC
} y Oxffl oxe
int main(int argc, char *argv[]) { - oxf\ '\o'
char *x = "2%; oxel 5
char *y = "5"; DATA SEGMENT oxd o'
swap_string(&x, &y),
// want X = 5, y = 2
printf("x = %s, y = %s\n", X, V); -
return 0;

32

void swap string(char **a, char **b) {

int

char *temp = *a;
*a = *Db;
*b = temp;

main(int argc, char *argv[]) {

Char‘ *X — ||2||;
Char‘ *y — ||5n,

swap_string(&x, &y),

// want x = 5, y =
printf("x = %s, y
return 0;

= %S\n"J X, y)3

swap_string() {:

Address Value

DATA SEGMENT

33

void swap string(char **a, char **b) {
char *temp = *a;

Address Value

¥a = *b: §
— . X ©Oxff18 5)'¢e
*b = temp; main ()
} y Oxfflof, exe
int main(int argc, char *argv[]) { b oxfi
cEar IX = ngnf swap_string() a oxfi
char 7y = temp 0xfes
swap_string(&x, &y), —
// want x = 5, y = o ——
printf("x = %s, y = %s\n", X, Y); 9% i
return 0; oxef] 'S5’
} DATA SEGMENT oxd | T\e
OXC ‘2
o 34

void swap string(char **a, char **b) {
char *temp = *a;
*a = *b;
*b = temp;

¥

int main(int argc, char
char *x = "2";
char *y = "5";
swap_string(&x, &y),
// want x = 5, y =
printf("x = %s, y
return 0;

Address Value
. X ©Oxffl18 Oxe
main()
[y Oxffl oxe
*argv[]) A b oxf1
swap_string() a oxfie
 temp oxfes
= %S\n", X, y); Oxf \@
oxe 'S5’
DATA SEGMENT oxd | e
OXC ‘2"

35

void swap string(char **a, char **b) {
char *temp = *a;

*a
*b

temp;

¥

int main(int argc, char
char *x = "2";
char *y = "5";
swap_string(&x, &y),
// want x = 5, y =
printf("x = %s, y
return 0;

*argv[]) { b oxf1d
swap_string() a oxfie
 temp oxfes

= %S\n", X, ¥Y);

Address Value

. X ©Oxffl18 Oxe
main()

y 0xfflg

e

DATA SEGMENT

36

void swap string(char **a, char **b) {
char *temp = *a;

*a = *b;
*b = temp;
}
int main(int argc, char *argv[]) {
char *x = "2";
Char‘ *y — ll5ll.

swap_string(&x, &y),

// want x = 5, y =

printf("x = %s, y = %s\n", X, Y);
return 0;

Address Value

. X oxffigl Oxe
main()

y Oxffl OXcC
[oxf '\9'
Pxe 'S5’
DATA SEGMENT oxd| "\@'
@XcC ‘2"

37

“"Awesome! Thanks. We
also have 20 custom struct
types. Could you write

swap for those too?”

00
&S$'#%

What if we could write one function to swap two values of any single type?

void swap_int(int *a, int *b) { .. }

void swap float(float *a, float *b) { .. }
void swap size t(size t *a, size t *b) { .. }
void swap _double(double *a, double *b) { .. }

void swap string(char **a, char **b) { .. }

void swap _mystruct(mystruct *a, mystruct *b) { .. }

39

Generic Swap

void swap_int(int *a, int *b) {
int temp = *a;
*a *b;
*b = temp;

¥

void swap_short(short *a, short *b) {
short temp = *a;
*a *b;
*b = temp;

¥

void swap string(char **a, char **b) {
char *temp = *a;
*a *b;
*b = temp;

Generic Swap

void swap int(int *a, int *b) {
int temp = *a;
temp;

*3
*b
}

void swap_short(short *a, short *b) {
short temp = *a;
*a *b;
*b = temp;

¥

void swap_string(char **a, char **b) {
char *temp = *a;
*a *b;
*b = temp;

All 3:

Take pointers to values to
swap

Create temporary storage to
store one of the values
Move data at b into where a
points

Move data in temporary
storage into where b points

41

Generic Swap

void swap(pointer to datal, pointer to data2) {
store a copy of datal in temporary storage
copy data2 to location of datal
copy data in temporary storage to location of data2

42

Generic Swap

void swap(pointer to datal, pointer to data2) {
store a copy of datal in temporary storage
copy data2 to location of datal
copy data in temporary storage to location of data2

int temp = *datalptr; 4 bytes

short temp = *datalptr; 2 bytes

char *temp = *datalptr; 8 bytes

Problem: each type may need a different size temp!
43

Generic Swap

void swap(pointer to datal, pointer to data2) {
store a copy of datal in temporary storage
copy data2 to location of datal
copy data in temporary storage to location of data2

*datalPtr = *data2ptr; 4 bytes

*datalPtr = *data2ptr; 2 bytes

*datalPtr

*data2ptr; 8 bytes

Problem: each type needs to copy a different amount of data!
44

Generic Swap

void swap(pointer to datal, pointer to data2) {
store a copy of datal in temporary storage
copy data2 to location of datal
copy data in temporary storage to location of data2

}
*data2ptr = temp; 4 bytes
*data2ptr = temp; 2 bytes
*data2ptr = temp; 8 bytes

Problem: each type needs to copy a different amount of data!

45

C knows the size of temp,

and knows how many bytes

to copy, because of the
variable types.

Is there a way to make a
version that doesn't care
about the variable types?

Generic Swap

void swap(pointer to datal, pointer to data2) {
store a copy of datal in temporary storage
copy data2 to location of datal
copy data in temporary storage to location of data2

48

Generic Swap

void swap(pointer to datal, pointer to data2) {
store a copy of datal in temporary storage
copy data2 to location of datal
copy data in temporary storage to location of data2

49

Generic Swap

void swap(void *datalptr, void *dataz2ptr) {
store a copy of datal in temporary storage
copy data2 to location of datal
copy data in temporary storage to location of data2

50

Generic Swap

void swap(void *datalptr, void *data2ptr) {
// store a copy of datal in temporary storage
// copy data2 to location of datal
// copy data in temporary storage to location of data2

51

Generic Swap

void swap(void *datalptr, void *data2ptr) {
// store a copy of datal in temporary storage
// copy data2 to location of datal
// copy data in temporary storage to location of data2

If we don’t know the data type, we don’t know
how many bytes it is. Let’s take that as another
parameter.

52

Generic Swap

void swap(void *datalptr, void *data2ptr, size t nbytes) {
// store a copy of datal in temporary storage
// copy data2 to location of datal
// copy data in temporary storage to location of data2

If we don’t know the data type, we don’t know
how many bytes it is. Let’s take that as another
parameter.

53

Generic Swap

void swap(void *datalptr, void *data2ptr, size t nbytes) {
// store a copy of datal in temporary storage
// copy data2 to location of datal
// copy data in temporary storage to location of data2

Let’s start by making space to store the temporary
value. How can we make nbytes of temp space?

54

Generic Swap

void swap(void *datalptr, void *data2ptr, size t nbytes) {
void temp; ???
// store a copy of datal in temporary storage
// copy data2 to location of datal
// copy data in temporary storage to location of data2

Let’s start by making space to store the temporary
value. How can we make nbytes of temp space?

55

Generic Swap

void swap(void *datalptr, void *data2ptr, size t nbytes) {
char temp[nbytes];
// store a copy of datal in temporary storage
// copy data2 to location of datal
// copy data in temporary storage to location of data2

temp is nbytes of memory,
since each char is 1 byte!

56

Generic Swap

void swap(void *datalptr, void *data2ptr, size t nbytes) {
char temp[nbytes];
// store a copy of datal in temporary storage
// copy data2 to location of datal
// copy data in temporary storage to location of data2

Now, how can we copy in what
datalptr points to into temp?

57

Generic Swap

void swap(void *datalptr, void *data2ptr, size t nbytes) {
char temp[nbytes];
// store a copy of datal in temporary storage
temp = *datalptr; ??°?
// copy data2 to location of datal
// copy data in temporary storage to location of data2

Now, how can we copy in what
datalptr points to into temp?

58

Generic Swap

void swap(void *datalptr, void *data2ptr, size t nbytes) {
char temp[nbytes];
// store a copy of datal in temporary storage
temp = *datalptr; ??°?
// copy data2 to location of datal
// copy data in temporary storage to location of data2

We can’t dereference a void * (or set an array
equal to something). C doesn’t know what it
points to! Therefore, it doesn’t know how many
bytes there it should be looking at.

59

memcpy is a function that copies a specified amount of bytes at one address to
another address.

void *memcpy(void *dest, const void *src, size t n);

It copies the next n bytes that src points to to the location contained in dest. (It
also returns dest). It does not support regions of memory that overlap.

memcpy must take pointers to the bytes to work with to

nt x = 5; know where they live and where they should be copied to.

int y = 4;
memcpy (&x, &y, sizeof(x)); // like x =y

60

memmove is the same as memcpy, but supports overlapping regions of
memory. (Unlike its name implies, it still “copies”).

void *memmove(void *dest, const void *src, size t n);

It copies the next n bytes that src points to to the location contained in dest. (It
also returns dest).

61

When might memmove be useful?

1 2 3 4 5 6 7/

62

Generic Swap

void swap(void *datalptr, void *data2ptr, size t nbytes) {
char temp[nbytes];
// store a copy of datal in temporary storage
temp = *datalptr; ??°?
// copy data2 to location of datal
// copy data in temporary storage to location of data2

We can’t dereference a void *. C doesn’t know
what it points to! Therefore, it doesn’t know how
many bytes there it should be looking at.

63

Generic Swap

void swap(void *datalptr, void *data2ptr, size t nbytes) {
char temp[nbytes];
// store a copy of datal in temporary storage
temp = *datalptr; ???
// copy data2 to location of datal
// copy data in temporary storage to location of data2

How can memcpy or memmove help us here? (Assume data to be swapped

is not overlapping). Respond with your thoughts on PollEv:
pollev.com/cs107 or text CS107 to 22333 once to join.

void *memcpy(void *dest, const void *src, size t n);
void *memmove(void *dest, const void *src, size t n);

64

Generic Swap

void swap(void *datalptr, void *data2ptr, size t nbytes) {
char temp[nbytes];
// store a copy of datal in temporary storage
memcpy(temp, datalptr, nbytes);
// copy data2 to location of datal
// copy data in temporary storage to location of data2

65

Generic Swap

void swap(void *datalptr, void *data2ptr, size t nbytes) {
char temp[nbytes];
// store a copy of datal in temporary storage
memcpy(temp, datalptr, nbytes);
// copy data2 to location of datal
// copy data in temporary storage to location of data2

We can copy the bytes ourselves into temp! This
is equivalent to temp = *datalptr in non-generic
versions, but this works for any type of any size.

66

Generic Swap

void swap(void *datalptr, void *data2ptr, size t nbytes) {
char temp[nbytes];
// store a copy of datal in temporary storage
memcpy (temp, datalptr, nbytes);
// copy data2 to location of datal
// copy data in temporary storage to location of data2

How can we copy data2 to the location of datal?

67

Generic Swap

void swap(void *datalptr, void *data2ptr, size t nbytes) {
char temp[nbytes];
// store a copy of datal in temporary storage
memcpy (temp, datalptr, nbytes);
// copy data2 to location of datal
*datalptr = *data2ptr; ???
// copy data in temporary storage to location of data2

How can we copy data2 to the location of datal?

68

Generic Swap

void swap(void *datalptr, void *data2ptr, size t nbytes) {
char temp[nbytes];
// store a copy of datal in temporary storage
memcpy (temp, datalptr, nbytes);
// copy data2 to location of datal
memcpy(datalptr, data2ptr, nbytes);
// copy data in temporary storage to location of data2

How can we copy data2 to the location of datal?
memcpy!

69

Generic Swap

void swap(void *datalptr, void *data2ptr, size t nbytes) {
char temp[nbytes];
// store a copy of datal in temporary storage
memcpy (temp, datalptr, nbytes);
// copy data2 to location of datal
memcpy (datalptr, data2ptr, nbytes);
// copy data in temporary storage to location of data2

How can we copy temp’s data to the location of
data2?

70

Generic Swap

void swap(void *datalptr, void *data2ptr, size t nbytes) {
char temp[nbytes];
// store a copy of datal in temporary storage

memcpy (temp, datalptr, nbytes);
// copy data2 to location of datal

memcpy (datalptr, data2ptr, nbytes);
// copy data in temporary storage to location of data2

memcpy(data2ptr, temp, nbytes);

How can we copy temp’s data to the location of
data2? memcpy!

/1

Generic Swap

void swap(void *datalptr, void *data2ptr, size t nbytes) {
char temp[nbytes];
// store a copy of datal in temporary storage

memcpy (temp, datalptr, nbytes);
// copy data2 to location of datal

memcpy (datalptr, data2ptr, nbytes);
// copy data in temporary storage to location of data2

memcpy(data2ptr, temp, nbytes);

int x = 2;
int y = 5;
swap(&x, &y, sizeof(x));

72

Generic Swap

void swap(void *datalptr, void *data2ptr, size t nbytes) {
char temp[nbytes];
// store a copy of datal in temporary storage

memcpy (temp, datalptr, nbytes);
// copy data2 to location of datal

memcpy (datalptr, data2ptr, nbytes);
// copy data in temporary storage to location of data2

memcpy(data2ptr, temp, nbytes);

short x = 2;
short y = 5;
swap(&x, &y, sizeof(x));

73

Generic Swap

void swap(void *datalptr, void *data2ptr, size t nbytes) {
char temp[nbytes];
// store a copy of datal in temporary storage

memcpy (temp, datalptr, nbytes);
// copy data2 to location of datal

memcpy (datalptr, data2ptr, nbytes);
// copy data in temporary storage to location of data2

memcpy(data2ptr, temp, nbytes);

char *x = "2";
char *y = "5";
swap(&x, &y, sizeof(x));

74

Generic Swap

void swap(void *datalptr, void *data2ptr, size t nbytes) {
char temp[nbytes];
// store a copy of datal in temporary storage

memcpy (temp, datalptr, nbytes);
// copy data2 to location of datal

memcpy (datalptr, data2ptr, nbytes);
// copy data in temporary storage to location of data2

memcpy(data2ptr, temp, nbytes);

mystruct x = {..};
mystruct y = {..};
swap(&x, &y, sizeof(x));

75

* We can use void * and memcpy to handle memory as generic bytes.

* If we are given where the data of importance is, and how big it is, we can
handle it!

void swap(void *datalptr, void *data2ptr, size t nbytes) {
char temp[nbytes];
memcpy (temp, datalptr, nbytes);
memcpy(datalptr, data2ptr, nbytes);
memcpy (data2ptr, temp, nbytes);

76

Lecture Plan

* Disclosure and partiality
* Overview: Generics

* Generic Swap

* Generics Pitfalls

* Generic Array Swap

cp -r /afs/ir/class/csl107/lecture-code/lectl2 .

78

Void * Pitfalls

* void *s are powerful, but dangerous - C cannot do as much checking!

* E.g. with int, C would never let you swap half of an int. With void *s, this can
happen! (How? Let’s find out!)

79

Demo: Void *s Gone Wrong

swap.c

Void *Pitfalls

Void * has more room for error because it manipulates arbitrary bytes without
knowing what they represent. This can result in some strange memory
Frankensteins!

http://i.ytimg.com/vi/10gPoYjq3EA/hqdefault.jpg 81

Lecture Plan

* Disclosure and partiality
* Overview: Generics

* Generic Swap

* Generics Pitfalls

* Generic Array Swap

cp -r /afs/ir/class/csl107/lecture-code/lectl2 .

82

You’'re asked to write a function that swaps the first and last elements in an

array of numbers.

void swap_ends_int(int *arr, size_ t nelems) {
int tmp = arr[0];

int

arr[@] = arr[nelems - 1];
arr[nelems - 1] = tmp;

Wait — we just wrote a generic
swap function. Let’s use that!

main(int argc, char *argv[]) {

int nums[] = {5, 2, 3, 4, 1};

sizeof(nums) / sizeof(nums[0O]);
swap_ends_int(nums, nelems);

size t nelems =

// want nums[0]
printf("nums[0]
return 0;

1, nums[4] = 5
%d, nums[4] = %d\n", nums[@], nums[4]);

83

You’'re asked to write a function that swaps the first and last elements in an

array of numbers.

void swap_ends_int(int *arr, size_ t nelems) {
swap(arr, arr + nelems - 1, sizeof(*arr));
}

int main(int argc, char *argv[]) {
int nums[] = {5, 2, 3, 4, 1};

Wait — we just wrote a generic
swap function. Let’s use that!

size_t nelems = sizeof(nums) / sizeof(nums[@]);

swap_ends_int(nums, nelems);
// want nums[@] = 1, nums[4] = 5

printf("nums[@] = %d, nums[4] = %d\n", nums[@], nums[4]);

return 0;

84

Let’s write out what some other versions would look like (just in case).

void swap_ends_int(int *arr, size_ t nelems) {

¥

swap(arr, arr + nelems - 1, sizeof(*arr));

void swap_ends_short(short *arr, size t nelems) {

¥

swap(arr, arr + nelems - 1, sizeof(*arr));

void swap_ends_string(char **arr, size t nelems) {

¥

swap(arr, arr + nelems - 1, sizeof(*arr));

void swap_ends float(float *arr, size t nelems) {

¥

The code seems to be the
same regardless of the type!

swap(arr, arr + nelems - 1, sizeof(*arr));

85

Let’s write a version of swap _ends that works for any type of array.

void swap_ends(void *arr, size t nelems) {
swap(arr, arr + nelems - 1, sizeof(*arr));
}

Is this generic? Does this work?

86

Let’s write a version of swap _ends that works for any type of array.

void swap_ends(void *arr, size t nelems) {

¥

swap(arr, arr + nelems - 1, sizeof(*arr));

Is this generic? Does this work?

Unfortunately not. First, we no longer know the
element size. Second, pointer arithmetic depends
on the type of data being pointed to. With a void *,
we lose that information!

87

Let’s write a version of swap _ends that works for any type of array.

void swap_ends(void *arr, size t nelems) {
swap(arr, arr + nelems - 1, sizeof(*arr));
}

We need to know the element size, so
let’s add a parameter.

88

Let’s write a version of swap _ends that works for any type of array.

void swap_ends(void *arr, size t nelems, size t elem_bytes) {
swap(arr, arr + nelems - 1, elem_bytes);
}

We need to know the element size, so
let’s add a parameter.

89

Pointer Arithmetic

arr + nelems - 1

Let’s say nelems = 4. How many bytes beyond arr is this?

If it’s an array of...
Int?

90

Pointer Arithmetic

arr + nelems - 1

Let’s say nelems = 4. How many bytes beyond arr is this?

If it’s an array of...
Int: adds 3 places to arr, and 3 * sizeof(int) = 12 bytes

91

Pointer Arithmetic

arr + nelems - 1

Let’s say nelems = 4. How many bytes beyond arr is this?

If it’s an array of...
Int: adds 3 places to arr, and 3 * sizeof(int) = 12 bytes
Short?

92

Pointer Arithmetic

arr + nelems - 1
Let’s say nelems = 4. How many bytes beyond arr is this?

If it’s an array of...
Int: adds 3 places to arr, and 3 * sizeof(int) = 12 bytes
Short: adds 3 places to arr, and 3 * sizeof(short) = 6 bytes

93

Pointer Arithmetic

arr + nelems - 1
Let’s say nelems = 4. How many bytes beyond arr is this?

If it’s an array of...

Int: adds 3 places to arr, and 3 * sizeof(int) = 12 bytes

Short: adds 3 places to arr, and 3 * sizeof(short) = 6 bytes
Char *: adds 3 places to arr, and 3 * sizeof(char *) = 24 bytes

In each case, we need to know the element size to do the arithmetic.

94

Let’s write a version of swap _ends that works for any type of array.

void swap_ends(void *arr, size t nelems, size t elem bytes) {
swap(arr, arr + nelems - 1, elem bytes);
}

How many bytes past arr should we go to
get to the last element?

(nelems — 1) * elem_bytes

95

Let’s write a version of swap _ends that works for any type of array.

void swap_ends(void *arr, size t nelems, size t elem bytes) {
swap(arr, arr + (nelems - 1) * elem bytes, elem bytes);
}

How many bytes past arr should we go to
get to the last element?

(nelems — 1) * elem_bytes

96

Let’s write a version of swap _ends that works for any type of array.

void swap_ends(void *arr, size t nelems, size t elem bytes) {

¥

swap(arr, arr + (nelems - 1) * elem_bytes, elem_bytes);

But C still can’t do arithmetic with a
void*. We need to tell it to not worry
about it, and just add bytes. How can we
do this?

97

Let’s write a version of swap _ends that works for any type of array.

void swap_ends(void *arr, size t nelems, size t elem bytes) {

¥

swap(arr, (char *)arr + (nelems - 1) * elem bytes, elem bytes);

But C still can’t do arithmetic with a
void*. We need to tell it to not worry
about it, and just add bytes. How can we
do this?

char * pointers already add bytes!

98

You’'re asked to write a function that swaps the first and last elements in an
array of numbers. Well, now it can swap for an array of anything!

void swap_ends(void *arr, size t nelems, size t elem bytes) {
swap(arr, (char *)arr + (nelems - 1) * elem bytes, elem bytes);
}

int nums[] = {5, 2, 3, 4, 1};
size t nelems = sizeof(nums) / sizeof(nums[@O]);
swap_ends(nums, nelems, sizeof(nums[@]));

99

You’'re asked to write a function that swaps the first and last elements in an
array of numbers. Well, now it can swap for an array of anything!

void swap_ends(void *arr, size t nelems, size t elem bytes) {

¥

swap(arr, (char *)arr + (nelems - 1) * elem bytes, elem bytes);

short nums[] = {5, 2, 3, 4, 1};
size t nelems = sizeof(nums) / sizeof(nums[@O]);
swap_ends(nums, nelems, sizeof(nums[@]));

100

You’'re asked to write a function that swaps the first and last elements in an
array of numbers. Well, now it can swap for an array of anything!

void swap_ends(void *arr, size t nelems, size t elem bytes) {
swap(arr, (char *)arr + (nelems - 1) * elem bytes, elem bytes);
}

Char\ *Str‘S[] — {IIHiII, llHel]—OII, llHowdyll};
size t nelems = sizeof(strs) / sizeof(strs[@]);
swap_ends(strs, nelems, sizeof(strs[0]));

101

You’'re asked to write a function that swaps the first and last elements in an
array of numbers. Well, now it can swap for an array of anything!

void swap_ends(void *arr, size t nelems, size t elem bytes) {
swap(arr, (char *)arr + (nelems - 1) * elem bytes, elem bytes);
}

mystruct structs[] = ..;
size t nelems = .;

swap_ends(structs, nelems, sizeof(structs[0]));

102

Recap

e void * is avariable type that represents a generic pointer “to something”.
* We cannot perform pointer arithmetic with or dereference a void *.

* We can use memcpy or memmove to copy data from one memory location to
another.

* To do pointer arithmetic with a void *, we must first cast it to a char *.

* void * and generics are powerful but dangerous because of the lack of type
checking, so we must be extra careful when working with generic memory.

103

* Disclosure and partiality || ecture 8 takeaway: Partiality helps us

* Overview: Generics better understand competing interests
* Generic Swap such as with vulnerability disclosure.

* Generics Pitfalls We can use void *, memcpy and

e Generic Array Swap memmove to manipulate data even if

we don’t know its type. We can cast
void *s to perform pointer arithmetic.
void *s have no type checking, so we
must be vigilant!

Next time: More Generics, and Function Pointers 104

Overflow Slides

Tips: C to English

* Translate C into English (function/variable declarations):
https://cdecl.org/

* Pointer arithmetic: (char *) cast means byte address.
What is the value of elt in the below (intentionally convoluted) code?

int arr[] = {1, 2, 3, 4};
void *ptr = arr;
int elt = *(int *)((char *) ptr + sizeof(int));

Code clarity: Consider breaking the last A D
line into two lines! (1) pointer K;‘
arithmetic, (2) int cast + dereference. |

https://cdecl.org/

Exercise: Array Rotation

Exercise: You're asked to provide an implementation for a function called
rotate with the following prototype:

void rotate(void *front, void *separator, void *end);

The expectation is that £ront is the base address of an array, end is the past-
the-end address of the array, and separator is the address of some element
in between. rotate moves all elements in between £ront and separator
to the end of the array, and all elements between separator and end move

to the front.

rotate.c

107

Exercise: Array Rotation

int array[7] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
rotate(array, array + 3, array + 10);

front separator end

] ! !

Before: 1 2 3 4 5 6 / 8 9 | 10

After: 4 5 6 / 8 9O 10| 1 2 3

108

Exercise: Array Rotation

Exercise: Implement rotate to generate the provided output.

int main(int argc, char *argv[]) {
int array[l0] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
print_int _array(array, 10); // intuit implementation ©
rotate(array, array + 5, array + 10);
print_int array(array, 10);
rotate(array, array + 1, array + 10);
print_int array(array, 10);
rotate(array + 4, array + 5, array + 6);

print_int_array(array, 10); ...

return 0; myth52:~/lect8$./rotate
} Array: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
Array: 6, 7, 8, 9, 10, 1, 2, 3, 4, 5
Array: 7, 8, 9, 10, 1, 2, 3, 4, 5, 6
Array: 7, 8, 9, 10, 2, 1, 3, 4, 5, 6

myth52:~/lect8$ 109

The inner workings of rotate

front separator end
Before l l l
rotate: 112/ 3|4 |5 |6 7|8 910
temp| 1 2 3
front separator end
Before l l l

last step: 4 |5 /6|7 | 8|91 8 | 9 |10

110

Exercise: Array Rotation

Exercise: A properly implemented rotate will prompt the following program to
generate the provided output.

And here’s that properly implemented function!

void rotate(void *front, void *separator, void *end) {
int width = (char *)end - (char *)front;

int prefix _width = (char *)separator - (char *)front;

int suffix width = width - prefix width;

char temp[prefix width];

memcpy (temp, front, prefix width);

memmove (front, separator, suffix width);

memcpy((char *)end - prefix width, temp, prefix width);

111

* C generics are particularly powerful in helping us create generic data
structures.

* Let’s see how we might go about making a generic Stack in C.

cp -r /afs/ir/class/cs107/lecture-code/lectl2 .

112

Refresher: Stacks

e A Stack is a data structure representing a
stack of things.

* Objects can be pushed on top of or

popped from the top of the stack. push pop, peek
* Only the top of the stack can be accessed; \ /
no other objects in the stack are visible.
e Main operations: S
* push(value): add an element to the top of 2
the stack 10
e pop(): remove and return the top element in stack

the stack

» peek(): return (but do not remove) the top

element in the stack 113

Refresher: Stacks

A stack is often implemented using a linked list internally.
* "bottom" = tail of linked list

* "top" = head of linked list (why not the other way around?)

Stack<int> s;
s.push(42); 17 1+ -3 | 42
s.push(-3);
s.push(17);

Problem: C is not object-oriented! We can’t call methods on variables.

114

Demo: Int Stack

What modifications are
necessary to make a
generic stack?

typedef struct int node {
struct int node *next;
int data;

} int node;

How might we modify the Stack data
representation itself to be generic?

typedef struct int stack {
int nelems;
int node *top;

} int stack;

117

typedef struct int node {
struct int node *next;
int data;

} int node;

typedef struct int stack {
int nelems;
int node *top;

} int stack;

Problem: each node can no longer store the
data itself, because it could be any size!

118

Generic Stack Structs

typedef struct int node {
struct int node *next;
void *data;

} int node;

typedef struct stack {
int nelems;
int elem size bytes;
node *top;

} stack;

Solution: each node stores a pointer, which is
always 8 bytes, to the data somewhere else. We
must also store the data size in the Stack struct.

119

 int_stack create(): creates a new stack on the heap and returns a
pointer to it

 int_stack push(int_stack *s, int data): pushes data onto the
stack

* int_stack pop(int_stack *s): pops and returns topmost stack element

120

Int_stack create

int _stack *int stack create() {

int_stack *s = malloc(sizeof(int_stack));

s->nelems = 0;
s->top = NULL;
return s;

From previous slide:

typedef struct stack {
int nelems;
int elem size bytes;
node *top;

} stack;

How might we modify this function to be
generic?

121

Generic stack create

stack *stack create(int elem size bytes) {
stack *s = malloc(sizeof(stack));
s->nelems = 0;
s->top = NULL;
s->elem_size bytes = elem size bytes;
return s;

122

void int stack push(int stack *s, int data) {
int _node *new _node = malloc(sizeof(int_node));

new node->data = data;

new_node->next = s->top;
s->top = new _node;

s->nelems++;

How might we modify this function to be
generic?

From previous slide:

typedef struct stack {
int nelems;
int elem size bytes;
node *top;

} stack;

typedef struct node {
struct node *next;
void *data;

} node;

123

Generic stack_push

void int stack push(int stack *s, int data) {
int _node *new _node = malloc(sizeof(int_node));
new node->data = data;

new node->next = s->top;
s->top = new _node;
s->nelems++;

Problem 1: we can no longer pass the data itself
as a parameter, because it could be any size!

124

Generic stack_push

void int stack push(int stack *s, const void *data) {
int _node *new _node = malloc(sizeof(int_node));
new node->data = data;

new_node->next = s->top;
s->top = new _node;
s->nelems++;

Solution 1: pass a pointer to the
data as a parameter instead.

125

Generic stack_push

void int stack push(int stack *s, const void *data) {
int _node *new _node = malloc(sizeof(int_node));
new node->data = data;

new node->next = s->top;
s->top = new _node;
s->nelems++;

Problem 2: we cannot copy the existing data
pointer into new_node. The data structure must
manage its own copy that exists for its entire
lifetime. The provided copy may go away!

126

Generic stack_push

int main() {
stack *int stack = stack create(sizeof(int));
add _one(int_stack);
// now stack stores pointer to invalid memory for 7!

¥

void add one(stack *s) {
int num = 7;
stack push(s, &num);

127

Generic stack_push

void stack push(stack *s, const void *data) {
node *new node = malloc(sizeof(node));
new_node->data = malloc(s->elem _size bytes);
memcpy(new_node->data, data, s->elem size bytes);

new_node->next = s->top;
s->top = new _node;
S->nelems++;

Solution 2: make a heap-allocated copy
of the data that the node points to.

128

int_stack_pop

int int stack pop(int stack *s) {
if (s->nelems == 0) {
error(1l, @, "Cannot pop from empty stack™);

}
3:Lnt_n0de *n = s->top; How might we modify this function to be
int value = n->data; generic?

s->top = n->next;

free (n) ’ From previous slide: |
s->nelems--; typedef struct stack { typedef struct node {
int nelems; struct node *next;
int elem size bytes; void *data;
return value; node *top; } node;
} } stack;

129

Generic stack_pop

int int stack pop(int stack *s) {
if (s->nelems == 0) {
error(1l, @, "Cannot pop from empty stack™);
}

int_node *n = s->top;
int value = n->data;

s->top = n->next;

free(n);
s->nelems--;

Problem: we can no longer return the
return value; data itself, because it could be any size!

} 130

Generic stack_pop

void *int stack pop(int stack *s) {
if (s->nelems == 0) {
error(1l, @, "Cannot pop from empty stack™);
}

int _node *n = s->top;
void *value = n->data;

s->top = n->next; While it’s possible to return the heap
free(n); a(?ldress of the eIement,.thls means.the.
s->nelems--; client would be responsible for freeing it.

|deally, the data structure should manage
return value; its own memory here.

} 131

Generic stack_pop

void stack pop(stack *s, void *addr) {
if (s->nelems == 0) {
error(1l, @, "Cannot pop from empty stack™);
}

node *n = s->top;
memcpy(addr, n->data, s->elem_size_bytes);
s->top = n->next;

free(n->data);

free(n); e —
S'>nelem5"; olution: have the caller passa memory

} location as a parameter and copy the data
to that location.

132

Using Generic Stack

int_stack *intstack = int_stack_create();

for (int i = @; i < TEST_STACK _SIZE; i++) {
int _stack push(intstack, i);

¥

We must now pass the address of an element to push
onto the stack, rather than the element itself.

133

Using Generic Stack

stack *intstack = stack create(sizeof(int));

for (int i = @; i < TEST_STACK _SIZE; i++) {
stack _push(intstack, &i);

}

We must now pass the address of an element to push
onto the stack, rather than the element itself.

134

Using Generic Stack

int_stack *intstack = int_stack_create();
int _stack push(intstack, 7);

We must now pass the address of an element to push
onto the stack, rather than the element itself.

135

Using Generic Stack

stack *intstack = stack create(sizeof(int));
int num = 7;
stack _push(intstack, &num);

We must now pass the address of an element to push
onto the stack, rather than the element itself.

136

Using Generic Stack

// Pop off all elements

while (intstack->nelems > 0) {
printf("%d\n", int stack pop(intstack));

}

We must now pass the address of where we would
like to store the popped element, rather than getting
it directly as a return value.

137

Using Generic Stack

// Pop off all elements

int popped int;

while (intstack->nelems > @) {
int_stack pop(intstack, &popped int);
printf("%d\n", popped int);

We must now pass the address of where we would
like to store the popped element, rather than getting
it directly as a return value.

138

Demo: Generic Stack

generic_stack.c

Generic stack create

stack *stack create(int elem size bytes) { Stack

Heap

stack *s = malloc(sizeof(stack));
s->nelems = 0;

s->top = NULL;

s->elem size bytes = elem size bytes;
return s;

stack *numStack = stack create(sizeof(int));

typedef struct stack { typedef struct node {
int nelems; struct node *next;
int elem size bytes; void *data;
node *top; } node;

} stack;

140

Generic stack_push

void stack push(stack *s, const void *data) { Stack Heap
node *new node = malloc(sizeof(node));
new node->data = malloc(s->elem size bytes);
memcpy (new_node->data,

data, s->elem size bytes);

new_node->next = s->top;
s->top = new node;
s->nelems++;

¥

int x = 2;
stack_push(numStack, &2);

typedef struct stack { typedef struct node {
int nelems; struct node *next;
int elem size bytes; void *data;
node *top; } node;
} stack; 141

Generic stack_pop

void stack pop(stack *s, void *addr) { Stack Heap
node *n = s->top;
memcpy (addr, n->data,

s->elem size bytes);

s->top = n->next;
free(n->data);
free(n);
s->nelems--;

¥

int num;
stack_pop(numStack, &num);
printf("%d\n", num);

typedef struct stack { typedef struct node {
int nelems; struct node *next;
int elem size bytes; void *data;
node *top; } node;
} stack; 142

