
1

This document is copyright (C) Stanford Computer Science and Nick Troccoli, licensed under
Creative Commons Attribution 2.5 License. All rights reserved.

Based on slides created by Cynthia Lee, Chris Gregg, Jerry Cain, Lisa Yan and others.
NOTICE RE UPLOADING TO WEBSITES: This content is protected and may not be shared,

uploaded, or distributed. (without expressed written permission)

CS107, Lecture 13
C Generics – Function Pointers

Reading: K&R 5.11

😷 masks recommended

2

CS107 Topic 4
How can we use our knowledge of memory and data representation to write
code that works with any data type?

Why is answering this question important?
• Writing code that works with any data type lets us write more generic,

reusable code while understanding potential pitfalls (last time)
• Allows us to learn how to pass functions as parameters, a core concept in

many languages (today)

assign4: implement your own version of the ls command, a function to generically
find and insert elements into a sorted array, and a program using that function to sort
the lines in a file like the sort command.

3

Learning Goals
• Learn how to write C code that works with any data type
• Learn how to pass functions as parameters
• Learn how to write functions that accept functions as parameters

4

Lecture Plan
• Generics So Far
• Motivating Example: Bubble Sort
• Function Pointers
• Generic Function Pointers

cp -r /afs/ir/class/cs107/lecture-code/lect13 .

5

Lecture Plan
• Generics So Far
• Motivating Example: Bubble Sort
• Function Pointers
• Generic Function Pointers

cp -r /afs/ir/class/cs107/lecture-code/lect13 .

6

Generics So Far
• void * is a variable type that represents a generic pointer “to something”.
• We cannot perform pointer arithmetic with or dereference (without casting

first) a void *.
• We can use memcpy or memmove to copy data from one memory location to

another.
• To do pointer arithmetic with a void *, we must first cast it to a char *.
• void * and generics are powerful but dangerous because of the lack of type

checking, so we must be extra careful when working with generic memory.

7

Generic Swap
void swap(void *data1ptr, void *data2ptr, size_t nbytes) {

char temp[nbytes];
memcpy(temp, data1ptr, nbytes);
memcpy(data1ptr, data2ptr, nbytes);
memcpy(data2ptr, temp, nbytes);

}

We can use void * to represent a pointer to any
data, and memcpy/memmove to copy arbitrary
bytes.

8

Generic Array Swap
void swap_ends(void *arr, size_t nelems, size_t elem_bytes) {

swap(arr, (char *)arr + (nelems – 1) * elem_bytes, elem_bytes);
}

We can cast to a char * in order to perform
manual byte arithmetic with void * pointers.

9

Void * Pitfalls
void *s are powerful, but dangerous - C cannot do as much checking!
• E.g. with int, C would never let you swap half of an int. With void *s, this can

happen!

int x = 0xffffffff;
int y = 0xeeeeeeee;
swap(&x, &y, sizeof(short));

// now x = 0xffffeeee, y = 0xeeeeffff!
printf("x = 0x%x, y = 0x%x\n", x, y);

10

NEW: memset
memset is a function that sets a specified number of bytes starting at an
address to a certain value.

void *memset(void *s, int c, size_t n);

It fills n bytes starting at memory location s with the byte c. (It also returns s).

int counts[5];
memset(counts, 0, 3); // zero out first 3 bytes at counts
memset(counts + 3, 0xff, 4) // set 3rd entry’s bytes to 1s

11

Lecture Plan
• Generics So Far
• Motivating Example: Bubble Sort
• Function Pointers
• Generic Function Pointers

cp -r /afs/ir/class/cs107/lecture-code/lect13 .

12

Bubble Sort
Let’s write a function bubble_sort_int to sort a list of integers using the
bubble sort algorithm.

Bubble sort repeatedly goes through the array, swapping any pairs of elements
that are out of order. When there are no more swaps needed, the array is
sorted!

4 2 12 -5 56 14

13

Bubble Sort
Let’s write a function bubble_sort_int to sort a list of integers using the
bubble sort algorithm.

Bubble sort repeatedly goes through the array, swapping any pairs of elements
that are out of order. When there are no more swaps needed, the array is
sorted!

4 2 12 -5 56 14

14

Bubble Sort
Let’s write a function bubble_sort_int to sort a list of integers using the
bubble sort algorithm.

Bubble sort repeatedly goes through the array, swapping any pairs of elements
that are out of order. When there are no more swaps needed, the array is
sorted!

2 4 12 -5 56 14

15

Bubble Sort
Let’s write a function bubble_sort_int to sort a list of integers using the
bubble sort algorithm.

Bubble sort repeatedly goes through the array, swapping any pairs of elements
that are out of order. When there are no more swaps needed, the array is
sorted!

2 4 12 -5 56 14

16

Bubble Sort
Let’s write a function bubble_sort_int to sort a list of integers using the
bubble sort algorithm.

Bubble sort repeatedly goes through the array, swapping any pairs of elements
that are out of order. When there are no more swaps needed, the array is
sorted!

2 4 12 -5 56 14

17

Bubble Sort
Let’s write a function bubble_sort_int to sort a list of integers using the
bubble sort algorithm.

Bubble sort repeatedly goes through the array, swapping any pairs of elements
that are out of order. When there are no more swaps needed, the array is
sorted!

2 4 -5 12 56 14

18

Bubble Sort
Let’s write a function bubble_sort_int to sort a list of integers using the
bubble sort algorithm.

Bubble sort repeatedly goes through the array, swapping any pairs of elements
that are out of order. When there are no more swaps needed, the array is
sorted!

2 4 -5 12 56 14

19

Bubble Sort
Let’s write a function bubble_sort_int to sort a list of integers using the
bubble sort algorithm.

Bubble sort repeatedly goes through the array, swapping any pairs of elements
that are out of order. When there are no more swaps needed, the array is
sorted!

2 4 -5 12 56 14

20

Bubble Sort
Let’s write a function bubble_sort_int to sort a list of integers using the
bubble sort algorithm.

Bubble sort repeatedly goes through the array, swapping any pairs of elements
that are out of order. When there are no more swaps needed, the array is
sorted!

2 4 -5 12 14 56

21

Bubble Sort
Let’s write a function bubble_sort_int to sort a list of integers using the
bubble sort algorithm.

Bubble sort repeatedly goes through the array, swapping any pairs of elements
that are out of order. When there are no more swaps needed, the array is
sorted!

2 4 -5 12 14 56

22

Bubble Sort
Let’s write a function bubble_sort_int to sort a list of integers using the
bubble sort algorithm.

Bubble sort repeatedly goes through the array, swapping any pairs of elements
that are out of order. When there are no more swaps needed, the array is
sorted!

2 4 -5 12 14 56

23

Bubble Sort
Let’s write a function bubble_sort_int to sort a list of integers using the
bubble sort algorithm.

Bubble sort repeatedly goes through the array, swapping any pairs of elements
that are out of order. When there are no more swaps needed, the array is
sorted!

2 -5 4 12 14 56

24

Bubble Sort
Let’s write a function bubble_sort_int to sort a list of integers using the
bubble sort algorithm.

Bubble sort repeatedly goes through the array, swapping any pairs of elements
that are out of order. When there are no more swaps needed, the array is
sorted!

2 -5 4 12 14 56

25

Bubble Sort
Let’s write a function bubble_sort_int to sort a list of integers using the
bubble sort algorithm.

Bubble sort repeatedly goes through the array, swapping any pairs of elements
that are out of order. When there are no more swaps needed, the array is
sorted!

2 -5 4 12 14 56

26

Bubble Sort
Let’s write a function bubble_sort_int to sort a list of integers using the
bubble sort algorithm.

Bubble sort repeatedly goes through the array, swapping any pairs of elements
that are out of order. When there are no more swaps needed, the array is
sorted!

2 -5 4 12 14 56

In general, bubble sort requires up to n - 1 passes to sort an array of
length n, though it may end sooner if a pass doesn’t swap anything.

27

Bubble Sort
Let’s write a function bubble_sort_int to sort a list of integers using the
bubble sort algorithm.

Bubble sort repeatedly goes through the array, swapping any pairs of elements
that are out of order. When there are no more swaps needed, the array is
sorted!

-5 2 4 12 14 56 ✅

Only two more passes are needed to arrive at the above. The first
exchanges the 2 and the -5, and the second leaves everything as is.

28

Integer Bubble Sort
void bubble_sort_int(int *arr, size_t n) {

while (true) {
bool swapped = false;
for (size_t i = 1; i < n; i++) {

if (arr[i - 1] > arr[i]) {
swapped = true;
int tmp = arr[i - 1];
arr[i - 1] = arr[i];
arr[i] = tmp;

}
}
if (!swapped) {

return;
}

}
}

How can we make this function more generic?
To start, this function always sorts in ascending
order. What about other orders?

29

Integer Bubble Sort
void bubble_sort_int(int *arr, size_t n, bool ascending) {

while (true) {
bool swapped = false;
for (size_t i = 1; i < n; i++) {

if ((ascending && arr[i - 1] > arr[i]) ||
(!ascending && arr[i] > arr[i – 1])) {

swapped = true;
int tmp = arr[i - 1];
arr[i - 1] = arr[i];
arr[i] = tmp;

}
}
if (!swapped) {

return;
}

}
}

We can add parameters, but they only help
so much. What about other orders we
can’t anticipate? (odd-before-even, etc.)

30

Integer Bubble Sort
void bubble_sort_int(int *arr, size_t n) {

while (true) {
bool swapped = false;
for (size_t i = 1; i < n; i++) {

if (should_swap(arr[i – 1], arr[i])) {
swapped = true;
int tmp = arr[i - 1];
arr[i - 1] = arr[i];
arr[i] = tmp;

}
}
if (!swapped) {

return;
}

}
}

What we really want is this – but we don’t
know how to implement this function…the
person calling this function does, though!

31

Key Idea: have the caller
pass a function as a

parameter that takes two
ints and tells us whether

we should swap them.

32

Integer Bubble Sort
void bubble_sort_int(int *arr, size_t n, type?? should_swap) {

while (true) {
bool swapped = false;
for (size_t i = 1; i < n; i++) {

if (should_swap(arr[i – 1], arr[i])) {
swapped = true;
int tmp = arr[i - 1];
arr[i - 1] = arr[i];
arr[i] = tmp;

}
}

if (!swapped) {
return;

}
}

}

33

Lecture Plan
• Generics So Far
• Motivating Example: Bubble Sort
• Function Pointers
• Generic Function Pointers

cp -r /afs/ir/class/cs107/lecture-code/lect13 .

34

Function Pointers
A function pointer is the variable type for passing a function as a parameter.
Here is how the parameter’s type is declared in this case.

bool (*should_swap)(int, int)

35

Function Pointers
A function pointer is the variable type for passing a function as a parameter.
Here is how the parameter’s type is declared in this case.

bool (*should_swap)(int, int)

Return type
(bool)

36

Function Pointers
A function pointer is the variable type for passing a function as a parameter.
Here is how the parameter’s type is declared in this case.

bool (*should_swap)(int, int)

Function pointer name
(should_swap)

37

Function Pointers
A function pointer is the variable type for passing a function as a parameter.
Here is how the parameter’s type is declared in this case.

bool (*should_swap)(int, int)

Function parameters
(two ints)

38

Function Pointers
Here’s the general variable type syntax:

[return type] (*[name])([parameters])

39

Integer Bubble Sort
void bubble_sort_int(int *arr, size_t n, bool (*should_swap)(int, int)) {

while (true) {
bool swapped = false;
for (size_t i = 1; i < n; i++) {

if (should_swap(arr[i – 1], arr[i])) {
swapped = true;
int tmp = arr[i - 1];
arr[i - 1] = arr[i];
arr[i] = tmp;

}
}
if (!swapped) {

return;
}

}
}

40

Function Pointers

bool sort_ascending(int first_num, int second_num) {
return first_num > second_num;

}

int main(int argc, char *argv[]) {
int nums[] = {4, 2, -5, 1, 12, 56};
int nums_count = sizeof(nums) / sizeof(nums[0]);
bubble_sort_int(nums, nums_count, sort_ascending);
...

}
bubble_sort_int is written generically. When
someone imports our function into their
program, they will call it specifying the sort
ordering they want that time.

41

Function Pointers

bool sort_descending(int first_num, int second_num) {
return first_num < second_num;

}

int main(int argc, char *argv[]) {
int nums[] = {4, 2, -5, 1, 12, 56};
int nums_count = sizeof(nums) / sizeof(nums[0]);
bubble_sort_int(nums, nums_count, sort_descending);
...

}
bubble_sort_int is written generically. When
someone imports our function into their
program, they will call it specifying the sort
ordering they want that time.

42

Function Pointers

bool sort_odd_then_even(int first_num, int second_num) {
return (second_num % 2 != 0) && (first_num % 2 == 0);

}

int main(int argc, char *argv[]) {
int nums[] = {4, 2, -5, 1, 12, 56};
int nums_count = sizeof(nums) / sizeof(nums[0]);
bubble_sort_int(nums, nums_count, sort_odd_then_even);
...

}
bubble_sort_int is written generically. When
someone imports our function into their
program, they will call it specifying the sort
ordering they want that time.

43

Function Pointers
Passing a non-function as a parameter allows us to pass data around our
program. Passing a function as a parameter allows us to pass logic around our
program.
• When writing a generic function, if we don’t know how to do something in the

way the caller wants, we can ask them to pass in a function parameter that can
do it for us.
• Also called a “callback” function – function “calls back to” the caller.

• Function writer: writes generic algorithmic functions, relies on caller-provided data
• Function caller: knows the data, doesn’t know how the algorithm works

44

Lecture Plan
• Generics So Far
• Motivating Example: Bubble Sort
• Function Pointers
• Generic Function Pointers

cp -r /afs/ir/class/cs107/lecture-code/lect13 .

45

Integer Bubble Sort
void bubble_sort_int(int *arr, size_t n, bool (*should_swap)(int, int)) {

while (true) {
bool swapped = false;
for (size_t i = 1; i < n; i++) {

if (should_swap(arr[i – 1], arr[i])) {
swapped = true;
int tmp = arr[i - 1];
arr[i - 1] = arr[i];
arr[i] = tmp;

}
}

if (!swapped) {
return;

}
}

}

bubble_sort_int now supports any
possible sort ordering. But it’s not fully
generic - it still only supports arrays of
ints. What about arrays of other types?

46

Generic Bubble Sort

bubblesort.h/c

file_that_sorts_ints.c
#include <bubblesort.h>

int main(int argc, char *argv[]) {
...

}

file_that_sorts_strings.c
#include <bubblesort.h>

int main(int argc, char *argv[]) {
...

}

file_that_sorts_structs.c
#include <bubblesort.h>

int main(int argc, char *argv[]) {
...

}

Goal: write 1 implementation of
bubblesort that any program
can use to sort data of any type.

47

Generic Bubble Sort
To write one generic bubblesort function, we must create one function signature
that works for any scenario.

void bubble_sort(int *arr, size_t n, bool (*should_swap)(int, int));

48

Generic Bubble Sort
To write one generic bubblesort function, we must create one function signature
that works for any scenario.

void bubble_sort(void *arr, size_t n, size_t
elem_size_bytes, bool (*should_swap)(int, int));

Problem: we need one comparison function
signature that works with any type.

49

Generic Bubble Sort
To write one generic bubblesort function, we must create one function signature
that works for any scenario.

void bubble_sort_int(void *arr, size_t n,

size_t elem_size_bytes, bool (*should_swap)(int, int));
void bubble_sort_int(void *arr, size_t n,

size_t elem_size_bytes, bool (*should_swap)(long, long));

void bubble_sort_int(void *arr, size_t n,
size_t elem_size_bytes, bool (*should_swap)(char *, char *));

...
// what we really want is…

void bubble_sort_int(void *arr, size_t n,

size_t elem_size_bytes, bool (*should_swap)(anything, anything));

50

Generic Parameters
Let’s say I want to write a function generic_func that takes in one parameter,
but it could be any type. What should we specify as the parameter type?

generic_func(type param1) { …

• Problem: C needs the parameter to be a single specified size. But in theory it
could be infinitely big (e.g. large struct).
• Key Idea: require the caller to pass in a pointer to the data. Pointers are

always 8 bytes big, regardless of what they point to!
• Problem: which pointer type should I pick? E.g. int *, char *? If it doesn’t

match the actual type, the caller will have to cast (yuck).
• Key Idea #2: make the parameter type a void *, which means “any pointer”.

51

Generic Bubble Sort
We will use the same idea for bubble sort’s comparison function. Make its
parameters void *s. Then we must call them by specifying pointers to what we
want to compare, not the elements themselves.

Let’s write a generic version of bubblesort:
1. Make the parameters and swap functionality generic
2. Make the comparison function usage generic

52

Generic Bubble Sort
void bubble_sort(int *arr, size_t n,

bool (*should_swap)(int, int)) {
while (true) {

bool swapped = false;
for (size_t i = 1; i < n; i++) {

if (should_swap(arr[i - 1], arr[i])) {
swapped = true;
int tmp = arr[i - 1];
arr[i - 1] = arr[i];
arr[i] = tmp;

}
}

if (!swapped) {
return;

}
}

}

Let’s start by making the parameters
and swap generic.

53

Generic Bubble Sort
void bubble_sort(void *arr, size_t n, size_t elem_size_bytes,

bool (*should_swap)(int, int)) {
while (true) {

bool swapped = false;
for (size_t i = 1; i < n; i++) {

if (should_swap(arr[i - 1], arr[i])) {
swapped = true;
swap(&arr[i – 1], &arr[i], elem_size_bytes);

}
}

if (!swapped) {
return;

}
}

}

Let’s start by making the parameters
and swap generic.

54

Generic Bubble Sort
void bubble_sort(void *arr, size_t n, size_t elem_size_bytes,

bool (*should_swap)(int, int)) {
while (true) {

bool swapped = false;
for (size_t i = 1; i < n; i++) {

if (should_swap(arr[i - 1], arr[i])) {
swapped = true;
swap(&arr[i – 1], &arr[i], elem_size_bytes);

}
}

if (!swapped) {
return;

}
}

}

Problem: we can’t do pointer
arithmetic / indexing with void *s!

55

Generic Bubble Sort
void bubble_sort(void *arr, size_t n, size_t elem_size_bytes,

bool (*should_swap)(int, int)) {
while (true) {

bool swapped = false;
for (size_t i = 1; i < n; i++) {

if (should_swap(arr[i - 1], arr[i])) {
swapped = true;
swap(arr + i – 1, arr + i, elem_size_bytes);

}
}

if (!swapped) {
return;

}
}

}

Problem: we can’t do pointer
arithmetic / indexing with void *s!

56

Key Idea: Locating i-th Elem
A common generics idiom is getting a pointer to the i-th element of a generic
array. From last lecture, we know how to locate the last element:

void swap_ends(void *arr, size_t nelems, size_t elem_bytes) {
swap(arr, (char *)arr + (nelems – 1) * elem_bytes, elem_bytes);

}

How can we generalize this to get the location of the i-th element?

void *ith_elem = (char *)arr + i * elem_bytes;

57

Generic Bubble Sort
void bubble_sort(void *arr, size_t n, size_t elem_size_bytes,

bool (*should_swap)(int, int)) {
while (true) {

bool swapped = false;
for (size_t i = 1; i < n; i++) {

void *p_prev_elem = (char *)arr + (i - 1) * elem_size_bytes;
void *p_curr_elem = (char *)arr + i * elem_size_bytes;
if (should_swap(arr[i - 1], arr[i])) {

swapped = true;
swap(p_prev_elem, p_curr_elem, elem_size_bytes);

}
}
if (!swapped) {

return;
}

}
}

Let’s start by making the parameters
and swap generic.

58

Generic Bubble Sort
void bubble_sort(void *arr, size_t n, size_t elem_size_bytes,

bool (*should_swap)(void *, void *)) {
while (true) {

bool swapped = false;
for (size_t i = 1; i < n; i++) {

void *p_prev_elem = (char *)arr + (i - 1) * elem_size_bytes;
void *p_curr_elem = (char *)arr + i * elem_size_bytes;
if (should_swap(p_prev_elem, p_curr_elem)) {

swapped = true;
swap(p_prev_elem, p_curr_elem, elem_size_bytes);

}
}
if (!swapped) {

return;
}

}
}

Now let’s make the comparison
function generic.

59

Comparison Functions
Function pointers are used often in cases like this to compare two values of the
same type. These are called comparison functions.
• The standard comparison function in many C functions provides even more

information. It should return:
• < 0 if first value should come before second value
• > 0 if first value should come after second value
• 0 if first value and second value are equivalent

• This is the same return value format as strcmp!

int (*compare_fn)(void *, void *)

60

Generic Bubble Sort
void bubble_sort(void *arr, size_t n, size_t elem_size_bytes,

int (*should_swap)(void *, void *)) {
while (true) {

bool swapped = false;
for (size_t i = 1; i < n; i++) {

void *p_prev_elem = (char *)arr + (i - 1) * elem_size_bytes;
void *p_curr_elem = (char *)arr + i * elem_size_bytes;
if (should_swap(p_prev_elem, p_curr_elem) > 0) {

swapped = true;
swap(p_prev_elem, p_curr_elem, elem_size_bytes);

}
}
if (!swapped) {

return;
}

}
}

61

Generic Bubble Sort
void bubble_sort(void *arr, size_t n, size_t elem_size_bytes,

int (*should_swap)(void *, void *)) {
while (true) {

bool swapped = false;

for (size_t i = 1; i < n; i++) {
void *p_prev_elem = (char *)arr + (i - 1) * elem_size_bytes;
void *p_curr_elem = (char *)arr + i * elem_size_bytes;
if (should_swap(p_prev_elem, p_curr_elem) > 0) {

swapped = true;
swap(p_prev_elem, p_curr_elem, elem_size_bytes);

}
}

if (!swapped) {
return;

}
}

}

. . .

Caller’s stack frame

? ? ? ?

. . .

bubble_sort i arr p_prev_elem p_curr_elem

2

62

Calling Generic Bubble Sort
// 0 if equal, neg if first before second, pos if second before first
int sort_descending(void *ptr1, void *ptr2) {

???
}

int main(int argc, char *argv[]) {
int nums[] = {4, 2, -5, 1, 12, 56};
int nums_count = sizeof(nums) / sizeof(nums[0]);
bubble_sort(nums, nums_count, sizeof(nums[0]), sort_descending);
...

}

Key idea: now the comparison function is passed
pointers to the elements being compared.

63

Function Pointers
How does the caller implement a comparison function that bubble sort can use?
The key idea is now the comparison function is passed pointers to the
elements that are being compared.

We can use the following pattern:
1) Cast the void *argument(s) and set typed pointers equal to them.
2) Dereference the typed pointer(s) to access the values.
3) Perform the necessary operation.

(steps 1 and 2 can often be combined into a single step)

64

Function Pointers

int sort_descending(void *ptr1, void *ptr2) {
// 1) cast arguments to what they really are here
int *num1ptr = (int *)ptr1;
int *num2ptr = (int *)ptr2;

// 2) dereference typed points to access values
int num1 = *num1ptr;
int num2 = *num2ptr;

// 3) perform operation
return num2 – num1;

}

This function is created by the caller
specifically to compare integers,
knowing their addresses are necessarily
disguised as void *so that bubble_sort
can work for any array type.

65

Function Pointers

int sort_descending(void *ptr1, void *ptr2) {
return *(int *)ptr2 - *(int *)ptr1;

}
. . .

Caller’s stack frame

? ? ? ?

. . .

bubble_sort i arr p_prev_elem p_curr_elem

2

. . .

Cmp fn stack frame ptr1 ptr2

66

Recap
• Generics So Far
• Motivating Example: Bubble Sort
• Function Pointers
• Generic Function Pointers

Lecture 13 takeaway: A function
pointer is a type of variable that
stores a function. We can pass
them as parameters. A common
use case is to pass comparison
functions to generic functions like
bubble sort that need to compare
elements.

