
1

This document is copyright (C) Stanford Computer Science and Nick Troccoli, licensed under
Creative Commons Attribution 2.5 License. All rights reserved.

Based on slides created by Cynthia Lee, Chris Gregg, Jerry Cain, Lisa Yan and others.
NOTICE RE UPLOADING TO WEBSITES: This content is protected and may not be shared,

uploaded, or distributed. (without expressed written permission)

CS107, Lecture 14
Function Pointers, Continued

Reading: K&R 5.11

😷 masks recommended

2

CS107 Topic 4
How can we use our knowledge of memory and data representation to write
code that works with any data type?

Why is answering this question important?
• Writing code that works with any data type lets us write more generic,

reusable code while understanding potential pitfalls (previously)
• Allows us to learn how to pass functions as parameters, a core concept in

many languages (last time + today)

assign4: implement your own version of the ls command, a function to generically
find and insert elements into a sorted array, and a program using that function to sort
the lines in a file like the sort command.

3

Learning Goals
• Learn how to pass functions as parameters
• Learn how to write functions that accept functions as parameters

4

Lecture Plan
• Recap: Function Pointers
• Example: Count Matches
• Introduction: Assembly

cp -r /afs/ir/class/cs107/lecture-code/lect14 .

5

Lecture Plan
• Recap: Function Pointers
• Example: Count Matches
• Introduction: Assembly

cp -r /afs/ir/class/cs107/lecture-code/lect14 .

6

Recap: Function Pointers
Function pointers allow us to pass functions as parameters and store functions
in variables. We can use them to “pass logic around our program”.
• Example – Bubble Sort: we want to write a function anyone can use to sort an

array. We ask the caller to pass in a function as a parameter that can take in
two of the elements and tell us what order they should be in. Bubble Sort can
call this function whenever it needs to know the ordering of two elements.

• We want this “comparison function” to support scenarios with any type of data; the only
way to do this is for the comparison function signature to take in pointers to the two
elements being compared. We use void * to indicate “any pointer”.

void bubble_sort(void *arr, size_t n, size_t
elem_size_bytes, int (*cmp_fn)(void *, void *))

7

Comparison Functions
Function pointers are used often in cases like this to compare two values of the
same type. These are called comparison functions.
• The standard comparison function in many C functions provides even more

information. It should return:
• < 0 if first value should come before second value
• > 0 if first value should come after second value
• 0 if first value and second value are equivalent

• This is the same return value format as strcmp!

int (*compare_fn)(void *, void *)

8

Recap: Function Pointers
• Example – Bubble Sort: we want to write a function anyone can use to sort an

array. We ask the caller to pass in a function as a parameter that can take in
two of the elements and tell us what order they should be in.

void bubble_sort(void *arr, size_t n, size_t
elem_size_bytes, int (*cmp_fn)(void *, void *))

When a program wants to use this function, they use it with a specific kind of
data and would write a comparison function specifically for that kind of data and
the ordering they want. Let’s see an example!

9

Demo: Bubble Sort

bubble_sort_generic.c

10

Calling Generic Bubble Sort
// 0 if equal, neg if first before second, pos if second before first
int sort_descending(void *ptr1, void *ptr2) {

???
}

int main(int argc, char *argv[]) {
int nums[] = {4, 2, -5, 1, 12, 56};
int nums_count = sizeof(nums) / sizeof(nums[0]);
bubble_sort(nums, nums_count, sizeof(nums[0]), sort_descending);
...

}

Key idea: now the comparison function is passed
pointers to the elements being compared.

11

Function Pointers

int sort_descending(void *ptr1, void *ptr2) {
// 1) cast arguments to what they really are here
int *num1ptr = (int *)ptr1;
int *num2ptr = (int *)ptr2;

// 2) dereference typed points to access values
int num1 = *num1ptr;
int num2 = *num2ptr;

// 3) perform operation
return num2 – num1;

}

This function is created by the caller
specifically to compare integers,
knowing their addresses are necessarily
disguised as void *so that bubble_sort
can work for any array type.

12

Function Pointers

int sort_descending(void *ptr1, void *ptr2) {
return *(int *)ptr2 - *(int *)ptr1;

}

13

Comparison Functions
• Exercise: how can we write a comparison function for bubble sort to sort

strings in alphabetical order?
• It should return:

• < 0 if first value should come before second value
• > 0 if first value should come after second value
• 0 if first value and second value are equivalent

int (*compare_fn)(void *a, void *b)

14

String Comparison Function

int string_compare(void *ptr1, void *ptr2) {
// cast arguments and dereference
char *str1 = ___???___ptr1;
char *str2 = ___???___ptr2;

// perform operation
return strcmp(str1, str2);

}
What should we put in the blanks (same
expression in both) to correctly implement a
comparison function for strings? Respond with
your thoughts on PollEv: pollev.com/cs107 or
text CS107 to 22333 once to join.Hint: remember what the true types of

the parameters are. Draw pictures!

15

String Comparison Function

int string_compare(void *ptr1, void *ptr2) {
// cast arguments and dereference
char *str1 = *(char **)ptr1;
char *str2 = *(char **)ptr2;

// perform operation
return strcmp(str1, str2);

}

. . .

Caller’s stack frame

? ? ? ?

. . .

bubble_sort i arr p_prev_elem p_curr_elem

2

. . .

Cmp fn stack frame ptr1 ptr2
Hint: remember what the true types of
the parameters are. Draw pictures!

16

Lecture Plan
• Recap: Function Pointers
• Example: Count Matches
• Introduction: Assembly

cp -r /afs/ir/class/cs107/lecture-code/lect14 .

17

Function Pointers
• We will commonly see function pointers used for comparison functions for

various library functions. But if we implement a function, we can specify any
function we want for the caller to pass in.
• Function pointers can be used in a variety of ways. For instance, you could

have:
• A function to compare two elements of a given type
• A function to print out an element of a given type
• A function to free memory associated with a given type
• And more…

18

Practice: Count Matches
• Let’s write a generic function count_matches that can count the number of a

certain type of element in a generic array.
• It should take in as parameters information about the generic array, and a

function parameter that can take in a pointer to a single array element and tell
us if it’s a match.

int count_matches(void *base, size_t nelems,
size_t elem_size_bytes,
bool (*match_fn)(void *));

🤔

19

Demo: Count Matches

count_matches.c

20

Function Pointer Pitfalls
• If a function takes a function pointer as a parameter, it will accept it if it fits the

specified signature.
• This is dangerous! E.g. what happens if you pass in a string comparison

function when sorting an integer array?

21

More Function Pointer Details
• Function pointers can be set to NULL.
• Function pointers can be more than just parameters – we can also make

variables!

22

Function pointers as variables
int main(int argc, char *argv[]) {

int (*cmp)(void *, void *) = sort_ascending:
if (...) cmp = sort_descending;
else if (...) cmp = sort_odd_then_even;

...

bubble_sort(nums, count, sizeof(nums[0]), cmp);
...

}

1
2
3
4

5
6
7
8
9

10
11
12

23

Generic C Standard Library Functions
• qsort – I can sort an array of any type! To do that, I need you to provide me a

function that can compare two elements of the kind you are asking me to sort.

void qsort(void *base, size_t nmemb, size_t size,
int (*compar)(const void *, const void *));

• scandir – I can create a directory listing with any order and contents! To do
that, I need you to provide me a function that tells me whether you want me
to include a given directory entry in the listing. I also need you to provide me a
function that tells me the correct ordering of two given directory entries.

int scandir(const char *dirp, struct dirent ***namelist,
int (*filter)(const struct dirent *),
int (*compar)(const struct dirent **, const struct dirent **));

24

Generic C Standard Library Functions
• bsearch – I can use binary search to search for a key in an array of any type! To

do that, I need you to provide me a function that can compare two elements
of the kind you are asking me to search.
• lfind – I can use linear search to search for a key in an array of any type! To do

that, I need you to provide me a function that can compare two elements of
the kind you are asking me to search.
• lsearch - I can use linear search to search for a key in an array of any type! I

will also add the key for you if I can’t find it. In order to do that, I need you to
provide me a function that can compare two elements of the kind you are
asking me to search.

25

Generics Recap
• We can pass functions as parameters to pass logic around in our programs.
• Comparison functions are one common class of functions passed as

parameters to generically compare the elements at two addresses.
• Functions handling generic data must use pointers to the data they care about,

since any parameters must have one type and one size.

26

Lecture Plan
• Recap: Function Pointers
• Example: Count Matches
• Introduction: Assembly

cp -r /afs/ir/class/cs107/lecture-code/lect14 .

27

CS107 Topic 5: How does a
computer interpret and
execute C programs?

28

CS107 Topic 5
How does a computer interpret and execute C programs?

Why is answering this question important?
• Learning how our code is really translated and executed helps us write better

code
• We can learn how to reverse engineer and exploit programs at the assembly

level

assign5: find and exploit vulnerabilities in an ATM program, reverse engineer a
program without seeing its code, and de-anonymize users given a data leak.

29

Learning Assembly

Moving data
around

Arithmetic and
logical

operations
Control flow Function calls

30

Bits all the way down
Data representation so far
• Integer (unsigned int, 2’s complement signed int)
• char (ASCII)
• Address (unsigned long)
• Aggregates (arrays, structs)

The code itself is binary too!
• Instructions (machine encoding)

31

GCC
• GCC is the compiler that converts your human-readable code into machine-

readable instructions.
• C, and other languages, are high-level abstractions we use to write code

efficiently. But computers don’t really understand things like data structures,
variable types, etc. Compilers are the translator!
• Pure machine code is 1s and 0s – everything is bits, even your programs! But

we can read it in a human-readable form called assembly. (Engineers used to
write code in assembly before C).
• There may be multiple assembly instructions needed to encode a single C

instruction.
• We’re going to go behind the curtain to see what the assembly code for our

programs looks like.

32

Central Processing Units (CPUs)

Intel 8086, 16-bit
microprocessor
($86.65, 1978)

Raspberry Pi BCM2836
32-bit ARM microprocessor
($35 for everything, 2015)

Intel Core i9-9900K 64-bit
8-core multi-core processor
($449, 2018)

33

Recap
• Recap: Function Pointers
• Example: Count Matches
• Introduction: Assembly

Lecture 14 takeaway: A common
use case for function pointers is
to pass comparison functions to
generic functions like bubble sort
that need to compare elements;
but there are many use cases,
such as with counting matches.
Our next topic, assembly, will take
us on a deep dive of what a
compiled program looks like!

